Future of Blockchain: Prospective on Bitcoin

Shin’ichiro Matsuo
Georgetown University

Blockcahin@UBC Conference
About Me

@Shanematsuo

• Research Professor at Georgetown University
• Director of Blockchain Technology and Ecosystem Design (B-TED) research center
• Director’s Liaison for Financial Cryptography at MIT Media Lab

• Co-Founder of Bsafe.network (Blockchain Research)
• Program committee and editor: Scaling Bitcoin, IEEE, ACM conferences, Ledger Journal and more…
• Program co-chair of Scaling Bitcoin 2018
• Standardization at ISO TC307 (Blockchain and DLT)
• Ph.D. from Tokyo Institute of Technology

Shin’ichiro Matsuo
BSafe.network
(Re-) Inventing an Academic Software Base for Blockchain
I have no Bitcoin and any cryptocurrencies.

I have no position on the exchange rate to FIAT currency.

@Shanematsuo
How Mature?

Refinement by iteration

- Experimental
- Technically Confirmed
- Commercialization
- New Applications/Ecosystem
Several huge incidents

Mt. Gox

The DAO Attack

Coincheck

Monacoin

Selfish Mining
Regulation is the matter, again

History

BitLicense (2015)

Current

Scam, scam and scam

“Cryptocurrency” to “Cryptoasset”

Now is the time to revisit what original Bitcoin claims.
What is “the Cryptocurrency Exchange?”

No uniformed definitions and models
Revisit what Satoshi proposed

An electronic **payment** system based on cryptographic proof instead of trust, allowing any two willing parties to transact directly with each other without the need for a trusted third party.

In this paper, we propose a **solution to the double-spending problem** using a peer-to-peer distributed timestamp server to generate computational proof of the chronological order of transactions.
Satoshi’s boundary

Without Trusted Party (nearly equal to “decentralization”)

Payment system

Settlement system

More applications

With Trusted Party
Gaps between Satoshi’s paper and real

• There is no exchange to Fiat Currency in the ecosystem
• Everything is closed inside Bitcoin ecosystem
• All participant has equal computational power
• Lack of consideration of Governance
Functions of currency, what Satoshi proposed and the reality

<table>
<thead>
<tr>
<th>Medium of Exchange</th>
<th>What Satoshi Says</th>
<th>Reality of use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure of Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard of deferred payment</td>
<td>✔️</td>
<td>Some of… ✔️</td>
</tr>
<tr>
<td>Store of Value</td>
<td></td>
<td>Mainly ✔️</td>
</tr>
</tbody>
</table>
Governance and regulation issues

- **Bitcoin = New economical nation**
 - Mathematics of Bitcoin = (economical) Constitution of the nation
 - Current chaos of governance: Lack of procedure of amendment of constitution
 - Branching of Bitcoin: independence with new constitution
- **How do we think the new economical nation?**
 - Decentralized Virtual Currency (for greater innovation) vs. stable virtual currency
Possibility of another ATARI shock

- Video Game Crash of 1983
- Too many “Junk Games” discounted the value of game platform.
- Lack of control of quality
- Nintendo started control of quality of each game.

- In the case of current many Virtual Currency and ICO projects?
- How can we control the quality in the era of decentralization?
What the exchange rate to fiat says: Similarity to Japanese telephone registration fee

- In Japan, users of telephone paid “registration fee” as a initial cost for facilities of telephone network.
- 80K JPY in 1976
- The registration was transferable: traded like “a right.”
- Currently, the registration fee (as a right) is not needed: The market value of “the right” become almost zero.
 - The cost for each communication became near zero: source of tons of merits of internet ecosystem
- Similarity to the exchange rate of Bitcoin to fiat currency
 - Mining cost as an initial cost of initiating network
 - Bitcoin as a medium of exchange something: Do we need to pay expensive cost to obtain it?
Competition among Blockchain technologies/services

Common to Internet-like innovation

Fail Fast
Horizontal and Vertical

Difference to Internet-like innovation

Experiment using consumers money/asset
Lack of Due-diligence: Need to have good way to realize it
Ecosystem for innovation: competition among blockchain projects
Source of technology related immaturity

Unproven technology
- Security
- Scalability
- Trust model

Community Risk and Quality assurance
- Need healthy community and ecosystem

Lack of evaluation criteria toward technological due-diligence
- Standardization

Gap between
- What original Satoshi paper proposes and
- Expectation to Blockchain technology and its application
Trade-offs in Bitcoin and Blockchain Technology

- Security
- Privacy
- Operational Cost
- Performance/Scalability
- Usability

Find Good Balance

How Decentralized?

(Re-) Inventing an Academic Software Base for Blockchain: BSafe.network
Shin’ichiro Matsuo
BSafe.network
Technology Issues of Current Blockchain

- Cryptography and Cryptographic Operation
- Secure System Design and Operation
- Trade-off between Performance/Scalability and “De-centralization”
- Finality and Immutability

+ Need healthy community and ecosystem by designing better incentive/economic model
The Security of Bitcoin/Cryptocurrency/Public Blockchain relies not only on technology but also on incentive design.

Some flaws in the current design of Bitcoin ecosystem are the cause of debates and chaos.

Regulation: Recent hot topic
Scaling!

7 tx/sec (Bitcoin) vs 10,000 tx/sec (VISA)

Trade-offs among scalability and security

Recent Selfish mining warns us again
Two Directions toward scaling

Off-chain vs On-chain

Like IPv4+NAT and IPv6

Both directions are important.
Layer 2 Technology of Blockchain

Layer 2

Layer 1

Enhance Scalability, privacy…
Beyond the payment

Enrichment of scripting
Carefully broaden the Satoshi’s boarder
Simplicity
Reconsider Blockchain as a “Slow-network”

The Internet is called as “Stupid-network”.

End to End Principle
Let the ends do it
Let the user decide
Too redundant but produces innovation

Blockchain is a “slow network”

10 minutes block interval : for security and from DNS and the Internet limitation
Let collaboration of over 51% nodes do it
Too redundant but eliminate tampering and produces innovation
THE WAY FORWARD
NSFNet for the Internet

ARPANET 1969
CSNet 1981
CSNet (NSFNET) 1985
Research Networks
Non-Profit

CIX Association 1991
Externalizing Costs
Commercial ISPs
Making $$$

April 30th 1995

1977
1995

NSFNET T3 Network 1992

Berkeley Software Distribution (BSD)
History of Berkeley Software Distribution (BSD) UNIX

AT&T Unix

Came to Berkeley

Beginning of BSD Unix

1969

1974

1977

1990

1995

Ultrix (DEC)

SunOS

4.4 BSD Lite Release 2
Outcomes from Berkeley Software Distribution (BSD)

Academic research and efforts matured codebase of Unix

Many Descendants

FreeBSD

OpenBSD

macOS High Sierra

Firm foundation of Internet ecosystem

Collection of knowledge, tons of experts and engineers are helping development of Linux
Academic Research is still needed

The Case of Internet Technology

Research (University) → Implementation (Company) → Standardization → Business (Company)

“BSD” and open-source facilitated innovation

The Case of Bitcoin and Blockchain

Satoshi Paper → Implementation (Company) → Business (Company) → Standardization

Need rebuild → Research (University)

Innovation by iteration
BSafe.network: Plays the same role as NSFNet and BSD

- A **neutral, stable and sustainable** research test network for Blockchain technology by international universities.
- Founded by me and Pindar Wong in March 2016. Each university becomes a blockchain node.
- Research on Blockchain and its applications
 - Not limited to Security. All aspects will be researched.

- Neutral platform
- de-anchored trust of Blockchain network
- More nodes (with Neutrality)
- Testbed for academic research
Why is university the good place?

The place for experiments

The place of neutrality

The place of diversity

The place of international collaboration

The number of university: > 15K, scalable!
27 International Universities Already Join and We Add More...

- MIT
- Boston Univ
- Georgetown
- Univ. of Illinois
- St. Mary's Law
- Univ. of Houston
- Newcastle Univ.
- Imperial College London
- Cambridge
- Univ. of West London
- Univ. of Tokyo
- Keio Univ.
- Toho Univ.
- Ritsumeikan Univ.
- SIM Univ.
- Newcastle Univ.
- Imperial College London
- Cambridge
- Univ. of West London
- Univ. of Tokyo
- Keio Univ.
- Toho Univ.
- Ritsumeikan Univ.
- SIM Univ.
- University of British Columbia
- Univ. of Cape Coast
- Univ. of Nicosia
- Indian Statistical Institute
- Telecom Sud Paris
- ETHZurich EPFL
- IPMCE Siberian Federal University
- King Mongkut’s University of Technology North Bangkok
- Univ. of Tokyo
- Keio Univ.
- Toho Univ.
- Ritsumeikan Univ.
- University of British Columbia
- Univ. of Cape Coast
- Univ. of Nicosia
- Indian Statistical Institute
- Telecom Sud Paris
- ETHZurich EPFL
- IPMCE Siberian Federal University
- King Mongkut’s University of Technology North Bangkok
- Univ. of Tokyo
- Keio Univ.
- Toho Univ.
- Ritsumeikan Univ.
Open Competition of Technology

A good way to develop and select a appropriate technology which fits a certain goal.

Has a common goal

Has a common evaluation criteria

Fair, open and public verifiable result

Produces new knowledge on technology

Produces reliable codebase
An example of open competition of technology: SHA-3

 - MD5, RIPEMD, SHA0 and SHA1
 - SHA2 is still secure

2. Develop a new hash standard (2005-2012)
 - Alternative to SHA2
 - Open competition from international researchers
 - Same as the AES competition
 - Succeeded in making technology consensus by its careful process
NIST’s and cryptographer’s Intention for SHA-3 Competition

• The competition promotes the research on Hash function.

• Same as AES competition: We had much research results and knowledge from the competition.

• We didn’t have sufficient knowledge on secure Hash function.

• Even if SHA-1 was compromised, NIST had SHA-2 as a alternative.

• However, SHA-2 has similar structure as SHA-1 (MD construction)

• We needed to consider another option.

• To have well studied technology and implementation

• Not only security evaluation, but also implementation evaluation
Steps of SHA-3 Competition

1. Preparation
 - 1st workshop (2005)
 - Identify the problem
 - 2nd workshop (2006)
 - Discuss Requirements

2. Federal Register
 - Based on academic papers
 - Presentation of 51 candidates
 - Security and Performance Evaluation
 - • Continue Evaluation
 • Complement SHA2

3. Evaluation and Selection
 - Screening
 - 1st conference (2009)
 - Select 14 candidates
 - 2nd conference (2010)
 - Select 5 finalists
 - 3rd conference (2012)
 - Winner (2012)

(Re-) Inventing an Academic Software Base for Blockchain: BSafe.network
Shin'ichiro Matsuo
BSafe.network
Philosophy in SHA-3 Competition

- Open and public discussions
- Setting technical requirements
- Security and performance evaluation
- Using mailing list and wiki
- Cooperation with academic community
- Refer peer reviewed papers
- NIST SHA3 conferences were co-located with top conferences
- Requirements and evaluation criteria are consistently given by NIST.
Best Practice from SHA-3 Competition

1. Open discussion and public verifiability are key to fairness

2. Followings should be defined for good consensus.
 • Firm requirements
 • Evaluation criteria
 • Evaluation platform
 • Target applications and platform

3. Cooperation with academic community is important for trust and consent.

4. Aiming design diversity is good for long-term stability.
Layer 2 Competition for Blockchain

Two categories of competitions

Layer 2 Protocol Proposal

New protocol and implementation of Layer 2 technology to enhance scalability, privacy and security, and their trade-offs

Layer 2 Measurement method and tool

Measurement mechanisms

Standard dataset for evaluation
Goal of Layer 2 Competition

Provide neutral evaluation results from experiment and reviews by experts
1) Collecting attack models on layer 2 network,
2) Building measurement of security and performance of layer 2 technology
3) Finding better and best realization

Not selecting something, but provide academia backed data and research results to public

Outcome to public
Program codes: cc-by license

Evaluation software/platform
Layer 2 software

Evaluation data

Byproduct
Security testing theory and tools for Layer 2 technology
Scaling Bitcoin 2018 Tokyo

• A Series of workshops to enhance bitcoin technology
• The place where good new technological advances are presented
 • 2015 Montreal: Lightning
 • 2015 Hong Kong: Segregated Witness
 • 2016 Milan: TumbleBit, MimbleWimble
 • 2017 Stanford: FlyClient, etc
• Scalability, privacy, game-theory, …
• Will be held in Tokyo October 6 and 7
• An associated event: Bitcoin Edge Dev++
Theme of this year: Kaizen

- Let us “Kaizen” Bitcoin and Blockchain technology!
Call for Proposals

• Two types of proposals
 • 20-30 minutes presentation
 • One hour long workshop

• Important dates
 • Submission deadline: 2018-06-30 23:59 UTC
 • Author notification: 2018-08-15 23:59 UTC

• Program Co-chairs:
 Shin’ichiro Matsuo (Georgetown University),
 Tadge Dryja (MIT DCI)
Program committee members: TBA
Bitcoin Edge Dev++

- Two days education program to broaden the number of Bitcoin/blockchain developers
- Good place to learn about blockchain, theory, implementation and practice
- Bring your own laptop, write and run codes.
- Lecturers are Bitcoin core developers and blockchain researchers
- Will be held on days before Scaling Bitcoin 2018
- https://bitcoinedge.org
More information

https://tokyo2018.scalingbitcoin.org
The next step of Blockchain R&D
From tons of experiments to new ecosystem design

- 2017

- Tons of experiments to seek use cases
 - Few use cases with utilizing merit of public blockchain
 - Limitation of technology
- Gap between expectation and real
- Regulation Issues
 - ICO
 - Much scams
- Governance of public blockchain
 - Bitcoin scalability
 - Many forks and chaos
- Many less-focused consortiums

Next step
Multi-disciplinary research

Ecosystem
Application
Economy
Regulation
Standardization
Evaluation
Experiments
Technology

Goal
Becoming the Internet like innovative platform and ecosystem

- Permissionless
- Cross-border
- Web of business and applications
- Vertical over new horizontal

GEORGETOWN UNIVERSITY
Blockchain Technology and Ecosystem Design (B-TED) Research Center

- **Funding**
 - NSF

- **B-TED Sites Universities**
 - Universities
 - Blockchain Fundamental Research
 - Application Research

- **Industrial Advisory Board (IAB)**
 - Funding, Research direction
 - Research result, IPR
 - Access to Faculty and students

- **Affiliates**
 - Joint Research Collaboration among companies
Goals of B-TED

• Be a trusted Industrial - academic research platform and anchor
 • NSFNet and BSD for Blockchain
 • Provide independent, academic and neutral evaluation criteria for Blockchain technology
• Provide research results and IPR to Affiliates
 • Multi-disciplinary research, International connection
 • Technology and ecosystem design: tech, economics, legal and connection to industry, government and regulators
• Applications and its deployment
• Contribution to Standardization
 • IETF, ISO, IEEE, etc.
Member Universities

• Georgetown University (Leader)
• University of Houston
• University of Central Florida
• and more …
Examples of research projects

• Foundation of Blockchain
 • Evaluation -> Common criteria for Due-diligence
 • Game Theory and security economics
 • Open Source Community organization

• Applications of Blockchain
 • New forms of finance and economy
 • Blockchain x Security
 • Blockchain x Supply Chain and Logistics
 • Blockchain x IoT, Fog
 • Blockchain x Medical Record and Insurance
Practice from the Development of TLS1.3

Academia → Formal Verification → IETF

TLS1.3 Specification

← TRON Conference

Developer/Open Source Community

Add trust
Decentralization by Diversity

P2P
Cryptography
Consensus
Business Logic

The DAO Attack

Program Code by Developer Community

De-centralized Ecosystem

Academia
Computer Science
Economics
Law

Decentralization by Diversity
Academia is the essential part of diversity, and it makes bitcoin/blockchain ecosystem healthy.
Thank you!