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Abstract

The sum-check protocol of Lund, Fortnow, Karloff, and Nisan underlies SNARKs with the fastest
known prover. In many of its applications, the prover can be implemented with a number of field
operations that is linear in the number, n, of terms being summed.

We describe an optimized prover implementation when the protocol is applied over an extension field
of a much smaller base field. The rough idea is to keep most of the prover’s multiplications over the base
field (at the cost of performing more total field multiplications).

When the sum-check protocol is applied to a product of polynomials that all output values in the base
field, our algorithm reduces the number of extension field operations by multiple orders of magnitude. In
other settings, our improvements are more modest but nonetheless meaningful.

In SNARK design, the sum-check protocol is often combined with a polynomial commitment scheme,
which are growing faster, especially when the values being committed are small. These improved
commitment schemes may render the sum-check prover the overall bottleneck, which our results help to
mitigate.

1 Introduction

The sum-check protocol [LFKN90] underpins SNARKs with the fastest known prover. It is especially effective
at forcing the prover to perform useful work, while minimizing the amount of data to which the prover must
cryptographically commit. This alleviates a key bottleneck for SNARK provers, which is the cost (both in
time and space) of computing cryptographic commitments to large vectors of field elements.

For an ℓ-variate polynomial g over field F, the sum-check protocol forces the prover to sum up g’s evaluations
over {0, 1}ℓ.1 That is, the sum-check protocol is an interactive proof for computing∑

x∈{0,1}ℓ

g(x). (1)

Throughout this manuscript, let n = 2ℓ denote the number of terms in this sum. Suppose that g can be
expressed as a product of d multilinear polynomials p1, . . . , pd,

g(x) =

d∏
i=1

pi(x). (2)

Also, suppose that for each pi, the prover is provided pi(x) for all inputs x ∈ {0, 1}ℓ. For constant values of
d, it is well-known that the prover in the sum-check protocol can be implemented with O(n) field operations
[CTY11, Tha13], which is within a constant factor of the time required simply to compute Equation (1)
term-by-term.

∗a16 crypto research and Georgetown University
1The sum-check protocol can more generally sum up g’s evaluations over any product set Hℓ for some H ⊆ F.



SNARKs over large and small fields. A popular viewpoint in SNARK design today is that one should
endeavor to work over a “small” field F for performance reasons.2 This is because a given number m of
field operations are much faster if those operations occur over, say, a 32-bit field rather than a 256-bit field.
Similarly, hashing a vector of m field elements can be faster if all field elements are 32 bits rather than 256.

Most SNARKs are obtained by combining a protocol called a polynomial IOP with a cryptographic protocol
called a polynomial commitment scheme to obtain an interactive succinct argument, and then applying the
Fiat-Shamir transformation to render it non-interactive. Hashing-based polynomial commitment schemes
such as FRI [BBHR18] have become popular, in part because they enable working over smaller fields than
elliptic-curve-based polynomial commitment schemes.

In fact, whether or not it makes sense to work over a small field depends on several factors. For example,
SNARK statements that are natively defined over a large prime-order field (such as proving knowledge of
elliptic-curve-based digital signatures authorizing blockchain transactions) are most efficiently proven by
working over that field. In addition, hashing-based commitment schemes are actually slower than curve-based
ones if the hash function used is a slow “SNARK-friendly” hash function such as Poseidon [GKR+21], and
the prover only needs to commit to “small” values (say, in {0, 1, . . . , 220}).3 This is indeed the case in
state-of-the-art sum-check-based SNARKs such as Lasso and Jolt [STW23, AST23].

Fortunately, new work by Diamond and Posen [DP23b] gives a substantially faster hashing-based commitment
scheme for small values, and integrates the scheme with sum-check-based polynomial IOPs to give very fast
SNARKs for standard, fast hash functions like Keccak. Diamond and Posen’s SNARKs work over the field
GF[2128], and their prover’s commitment costs are low enough that the sum-check protocol is likely to be the
prover bottleneck. Motivated by these developments, our goal in this manuscript is to optimize the sum-check
protocol when it is applied over fields of small characteristic.

Sum-check-based SNARKs over small fields. In current linear-time implementations of the sum-check
prover, about half of the field multiplications performed by the prover occur over the extension field (i.e., both
operands in the multiplication are extension-field elements). This is because, to ensure adequate soundness
error in the sum-check protocol, random field elements r1, . . . , rℓ should be chosen in each round of the
protocol from a field of size (at least) 2128. So if the polynomial g being summed is defined over a small base
field, r1, . . . , rℓ should be chosen from an extension field.

For example, if using a degree-4 extension of a 32-bit base field, then extension field multiplications are
roughly 9-16 times more expensive than base field multiplications. If half of the multiplications performed are
over the extension field, then the prover will be at least 5-8 times slower than if all multiplications were over
the base field. In other words, even if the sum-check protocol contributes just 13% of the prover’s work for a
SNARK defined over a large field, they may become the dominant prover cost when the same SNARK is
applied over a degree-4 extension field of a 32-bit base field. The situation is amplified further for larger-degree
extensions. In particular, Diamond and Posen [DP23b] make particularly heavy use of degree-8 extensions
(where the base field is GF[216] and the extension field is GF[2128]) and degree-128 extensions (where the base
field is GF[2]). Motivated by projects that seek more than 128 bits of security, in this manuscript we consider
extension degrees up to 256.

In some contexts base field multiplications can even be considered so cheap relative to extension field
multiplications that they are essentially free. One example is GF[2], as multiplying any field element by 0 or 1
is essentially trivial (the result is either 0 or x).

Repetition, and why it should be avoided. Another option would be to choose r1, . . . , rℓ from the base
field, and apply parallel or sequential repetition. But sequential repetition does not increase security when
combined with the Fiat-Shamir transformation to render the protocol non-interactive. The same goes for
parallel repetition, at least if naively implemented, unless the number of repetitions is very large. Specifically,

2In order to achieve λ bits of security, deployed SNARKs work over a large field (size at least 2λ) for at least some parts of
the protocol. Hence, we personally prefer to view all SNARKs as working over a large field, with the question being whether the
characteristic of that field is large or small.

3See for example https://hungrycatsstudio.github.io/posts/benching-pcs/.
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when applying parallel repetition followed by Fiat-Shamir to an ℓ-round interactive protocol, ℓ · k repetitions
are necessary to amplify λ/k bits of security to λ bits of security. In the context of sum-check, this results
in O(nk log n) base field operations for the prover, which is typically worse than the number of base field
operations achieved by existing work on linear-time sum-check provers [CTY11, Tha13] (depending on details
of the field extension and the algorithm used to perform multiplications in the extension field, this number is
typically O(nk1.58496...) or perhaps O(nk2), where k is the degree of the field extension, see Section 2.1 for
details.). Indeed, log n is typically 20 or larger.

We strongly recommend not to combine parallel repetition with the Fiat-Shamir transformation, due to both
its introduction of subtle security issues and performance degradation. Regardless, our work improves over
both the O(nk log n) base field operations from parallel repetition, as well as over the existing linear-time
sum-check prover algorithms.

Our results. We first describe two algorithms from prior works for implementing the sum-check prover
[CTY11, Tha13, CMT12], carefully optimizing them for the extension-field context we consider. Surprisingly,
we point out that the second algorithm, which is asymptotically and concretely slower than the first algorithm
in the standard “large field” setting, is actually cheaper than the first when base field multiplications (and
base-field-times-extension-field multiplications) are much cheaper than extension-field multiplications.

We then present our main technical contribution: a third algorithm that performs almost no extension field
multiplications in early rounds of the sum-check protocol (at the cost of performing quite a large number of
base-field multiplications).

In later rounds, the costs of this new, third algorithm start to exceed those of the first two. Hence, after
enough rounds have passed, it makes sense to “switch” from the third algorithm to one of the first two. We
calculate the optimal sequence of switches, and compare the costs to prior work alone.

Generally speaking, the cheaper base field multiplications are relative to extension-field multiplications,
the stronger our results. When it is reasonable to consider base field multiplications (and base-field-times-
extension-field multiplications) as “free” relative to extension-field multiplications, our results speed up the
sum-check prover by multiple orders of magnitude (Section 5).

When the relative costs obey those of Karatsuba’s algorithm, our improvements are considerably more modest
but can still be a factor of close to five (see Section 6).

Even modest improvements to sum-check prover time are meaningful. This is because recent SNARKs only
require the prover to commit to base-field elements [STW23, AST23], and polynomial commitment schemes
are growing extremely fast when committing only to such elements [DP23b]. This may render the sum-check
protocol the prover bottleneck in these SNARKs, and our results help mitigate this bottleneck.

In Section 7 we describe extensions of our results to more general settings that arise in some of these recent
SNARKs.

2 Preliminaries

2.1 Background on extension fields

Let B be a base field and F an extension of B of degree k. F is a k-dimensional vector space over B, and
elements of F are often represented relative to some basis β1, . . . , βk of this vector space. That is, an element
x ∈ F can represented by (α1, . . . , αk) where

x =

k∑
i=1

αi · βi.

A popular basis to use when representing extension fields is the monomial basis. Indeed, the extension field
F can be viewed as the set of all degree-k polynomials over the base field B, modulo a degree-k irreducible
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polynomial over B. In this view, an extension field element’s representation under the standard monomial
basis is simply its coefficients when viewed as such a polynomial.

2.1.1 Tower fields vs. the standard monomial basis

Suppose k = 2z for some integer z > 0. Then a degree-k extension field F of B is said to be constructed as a
tower extension if it is constructed from B by first constructing a degree-2 extension B′, and then constructing
a degree-2 extension B′′ of B′ (which is a degree-4 extension of B), and so forth for z iterations. This leads
to a basis for F in which, for any integer j > 0, the first j basis elements are in the degree-j extension field
obtained after j iterations of the tower construction. Particularly fast and elegant tower field constructions
are known for fields of characteristic two [Wie88, FP97].

There are (at least) two benefits to using a tower basis that are extremely important to applications of the
sum-check protocol in SNARK design [DP23b].

Subfield elements are compressed. Let B′ be a subfield arising in the tower construction, i.e., B′ is a
degree-j extension of B for some j < k with j a power of two. Then one can identify any element x ∈ B′ via
just j elements of B (specifically, the first j coefficients of x in the tower basis, as all other coefficients are
zero).

Information-theoretically, representing elements of B′ with j base-field elements is also possible over the
standard monomial basis, but this comes at a major cost: embedding B′ into F becomes expensive. That is,
unlike in the tower construction, it is not the case that the “compressed” representation of B′ elements is the
same as its representation in the standard monomial basis for F.

Lower memory consumption for subfield elements can have a very large effect on performance: it affects
bandwidth usage for hardware acceleration, and cache efficiency in CPUs.

Fast base-field-by-subfield (or sub-field-by-subfield) multiplication. The above also ensures that
multiplying an element of B by an element of B′ costs only j base-field multiplications, rather than k = 2z of
them. Such fast multiplication of elements of the base field and subfields is not supported by the standard
monomial basis for F.

In this manuscript, for simplicity we present our algorithms assuming that the sum-check protocol is applied
to an ℓ-variate polynomial g that is a product of multilinear polynomials p1, . . . , pd, each of which maps
{0, 1}ℓ to the base field B. For tower fields, due to fast sub-field-by-sub-field multiplication, our algorithms
also “automatically” improve on prior work under the weaker assumption that different pi’s map {0, 1}ℓ to
different subfields of F. See Section 7 for other extensions and applications of our results.

2.1.2 Multiplication algorithms for extension fields

Karatsuba’s algorithm for tower field multiplication. Let B be a base field and let F be a degree-2
extension of B. Using Karatsuba’s algorithm, multiplying two elements of F can be done with roughly three
base-field multiplications (and several addition operations, followed by reducing a degree-two polynomial
modulo another degree-two polynomial). In general, doubling the extension degree roughly triples the cost of
a multiplication in the extension field. Asymptotically, this means that multiplications in degree-k extension
field F are roughly O(klog2(3)) = O(k1.58496...) times more expensive than multiplications in the base field F.4

Karatsuba’s algorithm for non-tower bases. Karatsuba’s algorithm applies in a different way over
non-tower bases. Specifically, given two elements of F represented in the standard monomial basis, one can
use Karatsuba’s algorithm to multiply the two polynomials in O(k1.58496...) time (and then perform a single
reduction modulo an irreducible polynomial of degree k).

4Optimized field multiplication algorithms have been studied for extension degrees k that are not a power of two. For
example, multiplications in extension fields of degree k = 3 can be performed with 5 base field multiplications via the Toom-Cook
algorithm. For extension degree k = 5, extension field multiplications can be done with nine base field multiplications (with over
a hundred base field additions) [EMGI11], or with fourteen base field multiplications and a smaller number of additions.
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Multiplication of extension field elements tends to be faster when using the standard monomial basis rather
than a tower basis (though use of the monomial basis lacks the benefits discussed in Section 2.1.1). In particular,
some hardware supports certain finite field arithmetic as a primitive operation when using the standard
monomial basis (e.g., Intel’s Galois Field instruction set (GFNI) has native support for GF[28] multiplication)
and on this hardware multiplication via the monomial basis can be over an order of magnitude faster. However,
with FPGAs, the difference is much smaller, with recent estimates indicating that multiplications in the
monomial basis uses only 20% fewer resources than tower bases [DP23a].5

2.1.3 Notation for costs of field multiplications

Let bb denote the cost of multiplying two base field elements, be ≈ k ·bb denote the cost of multiplying a base
field element by an extension field element, and ee denote the cost of applying two extension field elements.
As discussed above, via Karatsuba’s algorithm, if k is a power of two then ee ≈ k1.5849 · bb. Abusing notation,
we also use bb as shorthand for base-base multiplications, be for base-extension multiplications, and ee for
extension-extension.

When to model bb and be multiplications as “free”, relative to ee multiplications. When the
base field is B = GF[2], multiplying a base field element b by an extension field e element is essentially free, as
b · e is 0 if b = 0 and is e if b = 1. Hence, it is not the case that ee ≈ k1.5849 · bb (as bb = 0). The goal as an
algorithm designer in this case is to minimize the number of extension field multiplications.

There are other situations where it may be reasonable to consider bb and be multiplications as much less
expensive than ee multiplications (i.e., by more than a factor of k1.5849 and k0.5849 respectively). One example
is when base-field multiplication is a primitive operation on relevant hardware (e.g., Intel’s GFNI primitive
instruction for GF[28] multiplication). In this case, bb multiplications may be so cheap that the extra work
performed by Karatsuba’s algorithm for ee multiplication (outside of the O(k1.5849) bb multiplications) could
be a dominant cost.

The cheaper that bb and be multiplications are relative to ee multiplications, the more significant our
improvements over prior work. This is because our algorithms perform a lot of bb and be multiplications, in
order to reduce the number of ee multiplications.

Other considerations. As indicated above, we will be interested not only in base fields B that are of
prime size, but also in base fields that are themselves prime power size. For example, one may want to view
GF[2128] as, say, a degree-16 extension of GF[28] rather than a degree-128 extension field of B because our
algorithms assume that the sum-check protocol is applied to a product of ℓ-variate polynomials that map
{0, 1}ℓ to B (though see Section 7 for weakenings of this assumption). In some settings, this will indeed hold
for B = GF[2], but in others it will not.

2.2 Background on the sum-check protocol

As per Equations (1) and (2), let us consider applying the sum-check polynomial to compute∑
x∈{0,1}ℓ

g(x),

where g has degree at most d in each variable. A complete description of the sum-check protocol is in the
codebox below.

In each round j, the honest prover sends a univariate polynomial sj of degree d. As any degree-d univariate
polynomial is specified by its evaluations on any set of d+ 1 points, computing sj(c) for all c ∈ {0, 1, . . . , d}
suffices to uniquely specify sj . Here, we are assuming that the characteristic of the field over which g is defined

5GFNI instructions also benefit tower field constructions. Very roughly speaking, one can build a tower field over the base
field GF[28], using the monomial basis for the base field, and building a tower basis on top of that. GFNI also has primitive
instructions to compute affine transformations in GF[28], allowing fast conversation between the monomial basis for GF[28] and a
tower basis for GF[28] over GF[2].
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is at least d. If this is not the case, then one should replace the set {0, 1, . . . , d} with a set {0, 1, x1, . . . , xd−1}
for any convenient points x1, . . . , xd−1 in the field. For example, if F = GF[2128] is constructed as a tower
field (see Section 2.1), then it makes sense to choose x1, . . . , xd−1 to all reside in the subfield GF[2k] where k
is the smallest power of two greater than log(d− 1).

Accordingly, in round j, the prover must compute

sj(c) =
∑

x∈{0,1}ℓ−j

g(r1, . . . , rj−1, c, x), (3)

for all c ∈ {0, 1, . . . , d}. We will ignore the cost of all additions in our accounting below, as well as
multiplications by 2.

Description of Sum-Check Protocol applied to the polynomial g of degree at most d in each variable
(description taken from [Tha22, Chapter 4]). In this paper, we assume g is defined over a base field B
and that F is an extension field of B.

• At the start of the protocol, the prover sends a value C1 claimed to equal the value defined in
Expression (4).

• In the first round, P sends the univariate polynomial s1(X1) claimed to equal∑
(x2,...,xℓ)∈{0,1}ℓ−1

g(X1, x2, . . . , xℓ).

V checks that
C1 = s1(0) + s1(1),

and that s1 is a univariate polynomial of degree at most d, rejecting if not.

• V chooses a random element r1 ∈ F, and sends r1 to P.

• In the jth round, for 1 < j < ℓ, P sends to V a univariate polynomial sj(Xj) claimed to equal∑
(xj+1,...,xℓ)∈{0,1}ℓ−j

g(r1, . . . , rj−1, Xj , xj+1, . . . , xℓ).

V checks that sj is a univariate polynomial of degree at most d, and that sj−1(rj−1) =
sj(0) + sj(1), rejecting if not.

• V chooses a random element rj ∈ F, and sends rj to P.

• In Round ℓ, P sends to V a univariate polynomial sℓ(Xℓ) claimed to equal

g(r1, . . . , rℓ−1, Xℓ).

V checks that sℓ is a univariate polynomial of degree at most d, rejecting if not, and also checks
that sℓ−1(rℓ−1) = sℓ(0) + sℓ(1).

• V chooses a random element rℓ ∈ F and evaluates g(r1, . . . , rℓ) with a single oracle query to g.
V checks that sℓ(rℓ) = g(r1, . . . , rℓ), rejecting if not.

• If V has not yet rejected, V halts and accepts.

Theorem 1. The sum-check protocol is a perfectly complete protocol for computing∑
x∈{0,1}ℓ

g(x),

with soundness error at most ℓ · d/|F|. That is, an honest prover will always pass the verifier’s checks, and a
dishonest prover will pass the verifier’s checks with probability at most ℓ · d/|F|.

Unless stated otherwise, when applying the sum-check protocol to an ℓ-variate polynomial g, we assume
throughout that g is defined over the base field B. In particular, we assume that g(x) ∈ B for all x ∈ {0, 1}ℓ.

For expository purposes, for each of the sum-check prover algorithms we describe, we begin by considering
Equation (2) in the case that d = 2. In this case, for readability, let us replace p1 with p and p2 with q, so
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that the goal of the sum-check protocol is to compute∑
x∈{0,1}ℓ

p(x) · q(x). (4)

2.3 A key lemma for multilinear polynomials

The following lemma will be used throughout this note.

Lemma 1. Suppose p : Fℓ → F is an ℓ-variate multilinear polynomial over F. Then for any input (r1, x
′) ∈

F× Fℓ−1,
p(r1, x

′) = r1 · p(1, x′) + (1− r1) · p(0, x′). (5)

Proof. The right hand side of Equation (5) is clearly a multilinear polynomial in x = (r1, x
′), and agrees with

p(x) for all x = (r1, x
′) ∈ {0, 1}ℓ. Hence it must equal p(x), as {0, 1}ℓ is an interpolating set for multilinear

polynomials. That is, if p and q are two multilinear polynomials satisfying p(x) = q(x) for all x ∈ {0, 1}ℓ,
then p and q are the same polynomial.

Lagrange basis polynomials and a generalization of Lemma 1. For any S ∈ {0, 1}ℓ, let

χS(x) =

ℓ∏
i=1

(xiSi + (1− xi)(1− Si))

denote the S’th multilinear Lagrange basis polynomial. For example, if ℓ = 4 and S = (0, 1, 1, 0), then
χS(x) = (1− xi)x2x3(1− x4). We have the following generalization of Lemma 1

Lemma 2. Suppose p : Fℓ → F is an ℓ-variate multilinear polynomial over F. Then then for any input
((r1, . . . , ri), x

′) ∈ Fi × Fℓ−i,

p(r1, . . . , ri, x
′) =

∏
S⊆i

χS(r1, . . . , ri) · p(S, x′). (6)

Proof. The right hand side of Equation (6) is a multilinear polynomial in x = (r1, . . . , ri, x
′), and agrees

with p(x) for all x = (r1, . . . , ri, x
′) ∈ {0, 1}ℓ. Hence it must equal p(x), as {0, 1}ℓ is an interpolating set for

multilinear polynomials.

The equality function and its multilinear extension. Let ẽqℓ : Fℓ×Fℓ → F be the following multilinear
polynomial:

ẽqℓ(x, y) =
ℓ∏

j=1

(xjyj + (1− xj)(1− yj)) .

ẽqℓ is the unique multilinear polynomial satisfying, for all x, y ∈ {0, 1}ℓ,

ẽqℓ(x, y) =

{
1 if x = y

0 otherwise.

That is, ẽqℓ is the so-called multilinear extension of the equality function over {0, 1}ℓ × {0, 1}ℓ. Note that for
any S ∈ {0, 1}ℓ, ẽqℓ(S, y) = χS(y). We omit the subscript ℓ from ẽqℓ when ℓ is clear from context.
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3 Existing algorithms: Algorithms 1 and 2

3.1 Algorithm 1

3.1.1 Description when d = 2

Consider applying the sum-check polynomial to g(x) = p(x) · q(x) per Equation (4). The known linear-time
sum-check prover [CTY11, Tha13] operates as follows. The prover maintains two arrays, say A and B, which
initially store all evaluations of p and q over {0, 1}ℓ. We will index entries of A and B by x ∈ {0, 1}ℓ, so that
at initialization, A[x] stores p(x) and B[x] stores q(x). In each round, the size of the arrays will halve.

Round 1. Given the contents of A and B upon initialization, the prover can compute s1(0) and s1(1) with
n = 2ℓ bb multiplications in total. Indeed,

s1(0) =
∑

x∈{0,1}ℓ−1

p(0, x) · q(0, x) =
∑

x∈{0,1}ℓ−1

A(0, x) ·B(0, x), (7)

and similarly for

s1(1) =
∑

x∈{0,1}ℓ−1

p(1, x) · q(0, x) =
∑

x∈{0,1}ℓ−1

A(1, x) ·B(1, x). (8)

How does the prover compute s1(2)? By Lemma 1,

s1(2) =
∑

x∈{0,1}ℓ−1

p(2, x) · q(2, x)

=
∑

x∈{0,1}ℓ−1

((1− 2) · p(0, x) + 2 · p(1, x)) · ((1− 2) · q(0, x) + 2 · q(1, x)) . (9)

Since we are ignoring the cost of additions and multiplications by two, s1(2) can be computed with n/2
bb multiplications. Indeed, ((1− 2) · p(0, x) + 2 · p(1, x)) is a base field element that can be computed via
additions and multiplications by two, as is ((1− 2) · q(0, x) + 2 · q(1, x)), and the results can be multiplied
together with one base-field multiplication.

After the verifier selects r1 ∈ F, the prover updates the arrays A and B as follows. For each x ∈ {0, 1}ℓ−1,
the prover sets

A[x]← (1− r1)A[0, x] + r1A[1, x] = A[0, x] + r1(A[1, x]−A[0, x])

and
B[x]← (1− r1)B[0, x] + r1B[1, x] = B[0, x] + r1(B[1, x]−B[0, x]).

Updating both arrays costs n be multiplications in total (n/2 per array). By Lemma 1, at the end of the
update, for each x ∈ {0, 1}ℓ−1, A[x] = p(r1, x) and B[x] = q(r1, x).

Round 2. Given the contents of the updated arrays, the prover can compute s2(0) and s2(1) with n/4 ee
multiplications in total, since

s2(0) =
∑

x∈{0,1}ℓ−2

p(r1, 0, x) · q(r1, 0, x) =
∑

x∈{0,1}ℓ−2

A[0, x] ·B[0, x]

and
s2(1) = s1(r1)− s2(0).
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By Lemma 1,

s2(2) =
∑

x∈{0,1}ℓ−2

p(r1, 2, x) · q(r1, 2, x)

=
∑

x∈{0,1}ℓ−2

((1− 2) · p(r1, 0, x) + 2 · p(r1, 1, x)) · ((1− 2) · q(r1, 0, x) + 2 · q(r1, 1, x)) (10)

=
∑

x∈{0,1}ℓ−2

((1− 2) ·A[0, x] + 2 ·A[1, x]) · ((1− 2) ·B[0, x] + 2 ·B[1, x]) .

Hence, s2(2) can be computed in n/4 ee multiplications.

After the verifier chooses r2 ∈ F, the prover updates A and B as follows. For each x ∈ {0, 1}ℓ−2, the prover
applies the update:

A[x]← (1− r2)A[0, x] + r2A[1, x] = A[0, x] + r2(A[1, x]−A[0, x])

and
B[x]← (1− r2)B[0, x] + r2B[1, x] = B[0, x] + r2(B[1, x]−B[0, x]),

thereby ensuring via Lemma 1 that A[x] = p(r1, r2, x) and B[x] = q(r1, r2, x).

Round i > 2. Following the above blueprint from round 2, in each round i > 2, the prover ensures that at
the start of round i, A and B respectively store p(r1, . . . , ri−1, x) and q(r1, . . . , ri−1, x) for all x ∈ {0, 1}ℓ−i+1.
Given these values, the prover can compute si(0), si(1), and si(2) with n/2i−1 ee multiplications in total.
Here, n/2i ee multiplications are devoted to computing si(0) (from which the value si(1) can be derived,
given si−1(ri−1)), and another n/2i are devoted to computing si(2).

The prover can then update the two arrays with n/2i−1 ee multiplications in total, ensuring that A and B
respectively store p(r1, . . . , ri, x) and q(r1, . . . , ri, x) for all x ∈ {0, 1}ℓ−i.

Total Algorithm 1 prover costs when d = 2. Across all ℓ rounds, the prover’s work in Algorithm 1 is
as follows:

((3n/2) · bb+ n · be) +
ℓ∑

i=2

4n/2i · ee

≤ (3n/2) · bb+ n · be+ 2n · ee.

Here, the first term is for computing the round 1 message s1(0), s1(1), and s1(2), and the following array
update. The sum is for computing the round i message and array updates for all rounds i ≥ 2.

3.1.2 Algorithm 1 for general degrees d

Algorithm 1 has a straightforward generalization to the case where g(x) = p1(x) · p2(x) · · · · pd(x). The
algorithm stores d arrays, with the j’th array at the end of round i storing the values pi(r1, . . . , ri, x) for all
x ∈ {0, 1}ℓ−i.

Assuming that multiplication by field elements in {0, 1, . . . , d} are free, the cost in each round i ≥ 2 of
computing si(0), si(1), . . . , si(d) is d(d − 1) ee multiplications. This is because si(1) can be derived as
si−1(ri−1)− si(0), while the other d evaluations of si can each be expressed as the product of d ee elements,
one for each of the d arrays. The cost at the end of round i of updating all d arrays is d ·n/2i ee multiplications.

Hence, the cost of Algorithm 1 across all ℓ rounds is:

((d · (d− 1) · n/2) · bb+ (dn/2) · be) +
ℓ∑

i=2

d2n/2i · ee (11)

≤ ((d2 − 1)n/2) · bb+ (dn/2) · be+ (d2/2) · n · ee. (12)
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In Expression (11), the expressions before the sum account for computing the round 1 message s1(0), s1(1),
. . . . s1(d),

6 and the following array update. The sum in Expression (11) is for computing the round i message
and array updates for all rounds i ≥ 2.

3.2 Algorithm 2

3.2.1 The case of d = 2

A second known sum-check prover implementation, dating to work of Cormode, Mitzenmacher, and Thaler
[CMT12], has the prover perform O(2ℓ) field operations per round rather than in total.7

However, as we will show, most of these field operations are be operations rather than ee operations. Even
for “dense” polynomials p (where m = n and ℓ = log n), m log n be multiplications can be faster than O(n)
ee multiplications.

Round 1. Round 1 proceeds identically to Algorithm 1, with the prover computing s1(0), s1(1) and s1(2)
with n bb multiplications in total.8

The difference from Algorithm 1 is that, after the verifier selects r1 ∈ F, the prover does not update the
arrays A and B.

Round i ≥ 2. In each round i ≥ 2, the prover can compute si(0), si(1), and si(2) as follows. For each
x ∈ {0, 1}ℓ−i and y ∈ {0, 1}i−1, let

C[y, 0, x] = ẽqi−1(y, r1, . . . , ri−1) · p(y, 0, x)

C[y, 1, x] = ẽqi−1(y, r1, . . . , ri−1) · p(y, 1, x)

D[y, 0, x] = ẽqi−1(y, r1, . . . , ri−1) · q(y, 0, x)

D[y, 1, x] = ẽqi−1(y, r1, . . . , ri−1) · q(y, 1, x)

E[y, x] = ẽqi−1(y, r1, . . . , ri−1) (−p(y, 0, x) + 2p(y, 1, x)) ,

and
F [y, x] = −ẽqi−1(y, r1, . . . , ri−1) (−q(y, 0, x) + 2q(y, 1, x)) ,

Lemma 2 implies that ∑
y∈{0,1}i−1

C[y, 0, x] = p(r1, . . . , ri−1, 0, x),

∑
y∈{0,1}i−1

C[y, 1, x] = p(r1, . . . , ri−1, 1, x),

∑
y∈{0,1}i−1

D[y, 0, x] = q(r1, . . . , ri−1, 0, x),

∑
y∈{0,1}i−1

D[y, 1, x] = q(r1, . . . , ri−1, 1, x),

∑
y∈{0,1}i−1

E[y, x] = p(r1, . . . , ri−1, 2, x),

6Specifically, evaluating s1(i) requires (d− 1) ·n/2 base field multiplications for any i ∈ {0, 1, . . . , d}. Here, n/2 is the number
of terms in the sum defining s1, see Equation (3).

7More precisely, the number of field operations performed by the prover in each round is linear in the sparsity m of p and q,
meaning the number of inputs x ∈ {0, 1}ℓ for which p(x) · q(x) ̸= 0. However, we won’t focus on sparse polynomials in this
manuscript.

8For Algorithm 1, we stated a bound of n+ n/2, but it is easy to see by inspection that computing s1(0) and s1(1) only
require one bb multiplication per x ∈ {0, 1}ℓ such that p(x) · q(x) ̸= 0. Similarly, the n/2 term can be replaced with m.
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and ∑
y∈{0,1}i−1

F [y, x] = q(r1, . . . , ri−1, 2, x).

Standard techniques enable the prover to use 2i−1 ee multiplications to compute ẽqi−1(y, r1, . . . , ri−1) for all
y ∈ {0, 1}i−1, given ẽqi−2(y, r1, . . . , ri−1) for all y ∈ {0, 1}i−2 (see [Tha22, Lemma 3.8]). With these values in
hand, the prover can compute all necessary values (that is, C[y, 0, x], C[y, 1, x], D[y, 0, x], D[y, 1, x], E[y, x]
and F [y, x]) with 3n be multiplications. At that point, the prover can compute s2(0), s2(1), and s2(2) with
n/2i ee multiplications each, owing to the fact that

si(0) =
∑

x∈{0,1}ℓ−i

p(r1, . . . , ri−1, 0, x) · q(r1, . . . , ri−1, 0, x) (13)

si(1) =
∑

x∈{0,1}ℓ−i

p(r1, . . . , ri−1, 1, x) · q(r1, . . . , ri−1, 1, x), (14)

and
si(2) =

∑
x∈{0,1}ℓ−i

p(r1, . . . , ri−1, 2, x) · q(r1, . . . , ri−1, 2, x). (15)

As an optimization, si(1) can instead be derived as

si(1) = si−1(ri−1)− si(0).

Algorithm 2 costs when d = 2. With the aforementioned optimization, in each round i, the prover
performs 2n be multiplications and

(
2 · n/2i + 2i−1

)
ee multiplications.

Remark 1 (Cost comparison of Algorithm 1 vs. Algorithm 2). Algorithm 2 has fewer ee multiplications in
each round i, until the final ℓ/2 rounds (when the 2i−1 term for Algorithm 2 becomes dominant). After round
ℓ/2, one should “switch” from Algorithm 2 to Algorithm 1. That is, the 2n/2i ee multiplications in round i
of Algorithm 2 is superior to the 4n/2i ee multiplications of Algorithm 1.

The main downside of Algorithm 2 is that it also performs 2n be multiplications per round. However, when
be multiplications are “free” (e.g., when the base field is GF[2]), then this downside is not relevant, and
Algorithm 2 is preferable to Algorithm 1 until the last few rounds.

Conceptually, for general degree bounds d, Algorithm 2 cuts out all of the d/2i many ee multiplications that
Algorithm 1 “spends” to update its d arrays in each round. This benefit is particularly significant for small
degrees d, e.g., for d = 2 this cuts the number of ee multiplications by a factor of 2. The price that Algorithm
2 pays for this is increasing the number of be multiplications from about Θ(dn) across all rounds, to Θ(dn)
per round.

3.2.2 Algorithm 2 for general degrees d

Algorithm 2 has a straightforward generalization to the case where g(x) = p1(x) · p2(x) · · · · pd(x). Assuming
that multiplication by field elements in {0, 1, . . . , d} are free, the cost of this algorithm in each round i > 1 is:

(d+ 1) · n · be+
(
d(d− 1)n/2i + 2i−1

)
· ee.

Here, the 2i−1 term is the number of ee multiplications required to evaluate all (i− 1)-variate Lagrange basis
polynomials at (r1, . . . , ri−1) via a standard memoization procedure (see [Tha22, Figure 3.3 and Lemma 3.8]).
The d(d−1)n/2i term is the number of ee multiplications required to evaluate the degree-d analog of Equations
(13)-(15). Specifically, there are d+1 equations, one for each of si(0), si(1), . . . , si(d). Each equation involves
a sum over n/2i terms, with each term involving a product of d extension-field elements (such a product
can be computed with d− 1 ee multiplications). However, si(1) can be derived as si(1) = si−1(ri−1)− si(0),
reducing the effective number of equations that must be computed from d+ 1 to d.
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4 An optimized prover for extension fields: Algorithm 3

Overview of the improvement. In the existing linear-time prover algorithm (Algorithm 1), starting in
Round 2 the prover begins multiplying extension-field elements, because in round 1 the first variable of p and
q was bound to a random extension field element r1.

The main idea for optimization is that in Expression (10), although p(r1, x) and q(r1, x) for x ∈ {0, 1}ℓ−1, is
an extension field element, it is a simple expression of just four base-field elements, namely p(0, x), p(1, x),
q(0, x) and q(1, x). In fact, it is a linear combination of the four products p(0, x) · q(0, x), p(1, x) · q(1, x),
p(0, x) · q(1, x), p(1, x) · q(0, x). Moreover, the first two of these four products already had to be computed
just to determine the correct answer. So it makes sense (for the first several rounds at least) not to treat
p(r1, x) and q(r1, x) as arbitrary extension-field elements, but rather to compute them as the appropriate
linear combination of (products of) base field elements, thereby keeping (almost) all arithmetic within the
base field for the first several rounds. We call this Algorithm 3.

Below, we first work out the optimal combination of Algorithms 1 and 3, handling early rounds with Algorithm
3 before “switching over” to Algorithm 1. After that, we work out the optimal combination of all three
algorithms in settings where using all three makes sense. In these settings, the prover’s messages in the
earliest rounds are computed with Algorithm 3, before “switching over” to Algorithm 2, and then finally
switching over to Algorithm 1.

4.1 Details of Algorithm 3 when d = 2

The prover maintains an array C initially of length n = 2ℓ, indexed by x ∈ {0, 1}ℓ. Initially, C[x] contains
p(x) · q(x). This initialization costs n · bb multiplications.

Round 1. Given the contents of the array, the prover can compute s1(0) and s1(1) with no multiplications
at all, since

s1(0) =
∑

x∈{0,1}ℓ−1

p(0, x) · q(0, x) =
∑

x∈{0,1}ℓ : x1=0

C[x],

and
s1(1) =

∑
x∈{0,1}ℓ−1

p(1, x) · q(1, x) =
∑

x∈{0,1}ℓ : x1=1

C[x].

How does the prover compute s1(2)? Per Equation (9),

s1(2) =
∑

x∈{0,1}ℓ−1

p(2, x) · q(2, x)

=
∑

x∈{0,1}ℓ−1

((1− 2) · p(0, x) + 2 · p(1, x)) · ((1− 2) · q(0, x) + 2 · q(1, x))

=
∑

x∈{0,1}ℓ−1

(p(0, x) · q(0, x) + 4p(1, x) · q(1, x)− 2q(0, x) · p(1, x)− 2p(1, x) · q(0, x)) .

Since we are ignoring the cost of additions and multiplications by two, this quantity can be computed in n bb
multiplications, as the products p(0, x) · q(0, x) and p(1, x) · q(1, x) have already all been computed, so the only
additional products required are the “cross-terms” q(0, x) · p(1, x) and p(1, x) · q(0, x) for all x ∈ {0, 1}ℓ−1.

These extra products (namely, p(y) · q(ȳ) for all y ∈ {0, 1}ℓ with ȳ denoting y with the first bit flipped) are
stored by the prover for use in future rounds. Specifically, the data structure C is updated to store not only
p(y)q(y) for all y ∈ {0, 1}ℓ, but also p(y) · q(ȳ).

Remark 2. In Algorithm 1 (Section 3.1.1), the prover computed

((1− 2) · p(0, x) + 2 · p(1, x)) · ((1− 2) · q(0, x) + 2 · q(1, x))
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with a single base-field multiplication, while here we are computing it with two base-field multiplications (one
for each cross term, p(0, x) · q(1, x) and p(1, x) · q(0, x)), in addition to the two base-field multiplications, that
were required simply to compute the correct answer, namely p(0, x) · q(0, x) and p(1, x) · q(1, x). The reason to
pay the extra price in our new prover implementation, of two base field multiplications instead of one, is that
these cross terms will be useful in subsequent rounds.

Round 2. Given the products stored in the data structure C, the prover can compute s2(0) and s2(1) with
just three additional be multiplications and two ee multiplications in total. This is because s2(0) and s2(1)
are simple expressions of the already-computed products, which are all of the form p(x) · q(x) and p(x) · q(x̄)
as x ranges over {0, 1}ℓ. For example:

s2(0) =
∑

x∈{0,1}ℓ−2

p(r1, 0, x) · q(r1, 0, x)

=
∑

x∈{0,1}ℓ−2

((1− r1) · p(0, 0, x) + r1 · p(1, 0, x)) · ((1− r1)q(0, 0, x) + r1 · q(1, 0, x)) .

Expanding the x’th term of this sum yields:

(1−r1)2·p(0, 0, x)·q(0, 0, x)+(1−r1)·r1·p(0, 0, x)·q(1, 0, x)+r1·(1−r1)·p(1, 0, x)·q(0, 1, z)+r21·p(1, 0, x)·q(1, 0, x).

Hence, every term equals a previously-computed product, times either r21, r1(1− r1), or (1− r1)
2.9

Computing s2(2), however, involves additional products, namely all those of the form p(x) · q(x′), where x
and x′ disagree in their second bit (and may or may not disagree on their first bit). This is an additional
2n · bb multiplications (since for every one of the n possible inputs x, there are two new inputs x′ such that
the prover must compute p(x) · q(x′), namely the x′ that agrees with x in the first bit but not the second,
and the x′ that agrees with x in the second bit but not the first).

Specifically,

s2(2) =
∑

x∈{0,1}ℓ−2

p(r1, 2, x) · q(r1, 2, x) =
∑

x∈{0,1}ℓ−2

((1− r1)p(0, 2, x) + r1p(1, 2, x)) · ((1− r1)q(0, 2, x) + r1q(1, 2, x)) .

This expression in turn equals ∑
x∈{0,1}ℓ−2

G(x) ·H(x), (16)

where
G(x) = ((1− r1) ((1− 2)p(0, 0, x) + 2p(0, 1, x))) + r1 ((1− 2)p(1, 0, x) + 2p(1, 1, x)))

and
H(x) = ((1− r1) ((1− 2)q(0, 0, x) + 2q(0, 1, x)) + r1 (1− 2)q(1, 0, x) + 2q(1, 1, x))) .

Applying the distributive law expresses G(x) · H(x) as the desired sum of sixteen different products of
evaluations of p and q, namely:

(1− r1)
2 (p(0, 0, x) · q(0, 0, x)− 2p(0, 0, x) · q(0, 1, x)− 2p(0, 1, x) · q(0, 0, x) + 4p(0, 1, x) · q(0, 1, x))

+(1− r1)r1 (p(0, 0, x) · q(1, 0, x)− 2p(0, 0, x) · q(1, 1, x)− 2p(0, 1, x) · q(1, 0, x) + 4p(0, 1, x) · q(1, 1, x))
+(1− r1)r1 (p(1, 0, x) · q(0, 0, x)− 2p(1, 0, x) · q(0, 1, x)− 2p(1, 1, x) · q(0, 0, x) + 4p(1, 1, x) · q(0, 1, x))

+r21 (p(1, 0, x) · q(1, 0, x)− 2p(1, 0, x) · q(1, 1, x)− 2p(1, 1, x) · q(1, 0, x) + 4p(0, 1, x) · q(1, 1, x)) .
9Of course, it is simpler and cheaper to compute s2(1) as s1(r1)− s2(0).
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Hence, in round two, the prover appends an additional 2n products to the data structure C, so that C stores
all products of the form p(x)q(x̄), where x ranges over {0, 1}ℓ and x̄ ranges over the four vectors in {0, 1}ℓ
that agree with x in all but the first two coordinates.

Round i. In round i > 2, the prover can always compute si(0) and si(1) given products computed and
stored in the data structure C during the previous round (namely, p(x) · q(x̄), where x ranges over {0, 1}ℓ
and x̄ ranges over the 2i vectors in {0, 1}ℓ that agree with x on all but the first i coordinates).

Computing si(2) requires an additional 2i−1 · n bb multiplications, the results of which are stored in the
data structure C. Specifically, at the start of round i, C contains all products of the form p(x)q(x̄) where x
ranges over {0, 1}ℓ and x̄ ranges over vectors in {0, 1}ℓ that agree with x on all but the first i− 1 coordinates.
During round i, the prover appends an additional 2i−1 · n base field elements to C, ensuring that C contains
p(x) · q(x̄), where now x̄ ranges over vectors that agree with x on all but the first i coordinates.

When expressing si(2) as a linear combination of the values stored in C at the end of round i, p(y) · q(y′)
gets multiplied by

ẽq((y1, . . . , yi), (r1, . . . , ri−1, 2)) · ẽq((y′1, . . . , y′i), (r1, . . . , ri−1, 2)). (17)

For each j = 1, . . . , i− 1, letting zj = yj + y′j . this is a product of the factors

r
zj
j · (1− rj)

2−zj ,

(along with the additional factor ẽq(yi, 2) · ẽq(y′i, 2)).

Hence, the algorithm at each round i computes an array D of 3i−1 values, one for each vector z =
(z1, . . . , zi−1) ∈ {0, 1, 2}i−1, with D[z] equal to:

i−1∏
j=1

r
zj
j · (1− rj)

2−zj .

D in round i can be updated with 1 + 3i−1 ee multiplications in total, via the recurrence10

D[z]← r
zi−1

i−1 ·D[z1, . . . , zi−2] + (1− ri−1)
2−zi−1 ·D[z1, . . . , zi−2]. (18)

This means that across the entirety of the first j rounds, the number of ee multiplications to maintain the
array D is at most j+3j , and the number of be multiplications to multiply each entry of D by the appropriate
sum of entries of C is 3j .

Combining Algorithm 3 with prior algorithms. In Algorithm 3, eventually i gets large enough that
2i · n bb multiplications and 1 + 3i−1 ee multiplications is worse than the cost of Algorithm 1 at round i+ 1
onwards. Moreover, Algorithm 3’s need to store 2i · n base field elements in round i can also be prohibitive in
practice when i gets large.

Accordingly, eventually one should “switch over” to Algorithm 1 or Algorithm 2. Per Remark 1, Algorithm 1
should be used if be multiplications are expensive, while Algorithm 2 should be used if be multiplications are
cheap. Later (Sections 5 and 6), we work out the optimal rounds at which to switch over from Algorithm 3
to Algorithm 1 and/or Algorithm 2.

4.2 Algorithm 3 When d = 3

Let g(x) = p(x) · q(x) · h(x) where p, q, and h are each multilinear. The prover maintains two arrays C and
C ′ initially of length n = 2ℓ, indexed by x ∈ {0, 1}ℓ. Initially, C[x] contains p(x) · q(x) and C ′[x] contains
C[x] · h(x). This initialization of the two arrays costs 2n · bb multiplications in total.

10The first ee multiplication simply computes r2i−1, from which (1− ri)
2 can be derived with no additional ee multiplications.
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Round 1. Given the contents of the array, the prover can compute s1(0) and s1(1) with no multiplications
at all, since

s1(0) =
∑

x∈{0,1}ℓ−1

p(0, x) · q(0, x) · h(0, x) =
∑

x∈{0,1}ℓ : x1=0

C ′[x],

and
s1(1) =

∑
x∈{0,1}ℓ−1

p(1, x) · q(1, x) · h(1, x) =
∑

x∈{0,1}ℓ : x1=1

C ′[x].

The prover computes s1(2) as follows. Per Equation (9),

s1(2) =
∑

x∈{0,1}ℓ−1

p(2, x) · q(2, x) · h(2, x)

=
∑

x∈{0,1}ℓ−1

((1− 2) · p(0, x)+2 · p(1, x)) · ((1−2) · q(0, x)+2 · q(1, x)) · ((1−2) · h(0, x)+2 · h(1, x))

=
∑

x∈{0,1}ℓ−1

z(x), (19)

where

z(x) = −p(0, x) · q(0, x) · h(0, x) + 2q(0, x) · p(0, x) · h(1, x) + 2q(0, x) · p(1, x) · h(0, x)− 4q(0, x) · p(1, x) · h(1, x)
+2q(1, x) · p(0, x) · h(0, x)− 4q(1, x) · p(0, x) · h(1, x)− 4q(1, x) · p(1, x) · h(0, x) + 8p(1, x) · q(1, x) · h(1, x).

Here, z(x) involves eight terms, one for each product of the form p(y) · q(y′) · q(y′′) where y, y′, y′′ ∈ {0, 1}ℓ
agree on their last ℓ− 1 bits (and may or may not differ in their first bit). How expensive is it to compute all
such products given the contents of C and C ′?

Since we are ignoring the cost of additions and multiplications by powers of two, this quantity can be computed
in 4n bb multiplications. Indeed, the products p(0, x) · q(0, x) ·h(0, x) = C ′[0, x] and p(1, x) · q(1, x) ·h(1, x) =
C ′[1, x] have already all been computed. Meanwhile, p(0, x) · q(0, x) · h(1, x) and p(1, x) · q(1, x) · h(0, x) can
each be computed with one additional bb multiplication each (as they equal C[0, x] ·h(1, x) and C[1, x] ·h(0, x)
respectively). The remaining four terms equal one of the two “cross-terms” computed by Algorithm 3 in
round 1 of the degree-2 case (namely p(y) · q(ȳ) for some y ∈ {0, 1}ℓ), times either h(y) or h(ȳ). So across all
x ∈ {0, 1}ℓ−1, these four terms can be computed with 3n bb multiplications in total: n for the cross-terms
p(y) · q(ȳ) and 2n more to multiply each such cross-term by h(y) and h(ȳ).

All of these extra products are stored by the prover in C and C ′ for use in future rounds. Specifically, as in
the degree-two case, the data structure C is updated to store not only p(y)q(y) for all y ∈ {0, 1}ℓ, but also
p(y) · q(ȳ). Similarly, the data structure C ′ is updated to store p(y) · q(y′) · q(y′′) where y, y′, y′′ ∈ {0, 1}ℓ
may or may not differ in their first bit.

Because s1(X) has degree d = 3, the prover has to evaluate not only s1(0), s1(1), and s1(2), but also s1(3).
Fortunately, analogous to Equation (10),

s1(3) =
∑

x∈{0,1}ℓ−1

((1− 3) · p(0, x) + 3 · p(1, x)) · ((1− 3) · q(0, x) + 3 · q(1, x)) · ((1− 3) · h(0, x) + 3 · h(1, x)) .

This sum can also be written as ∑
x∈{0,1}ℓ−1

z′(x)

such that z′(x) is a weighted sum of the same products arising in the computation of s1(2), namely
p(y) · q(y′) · q(y′′) where y, y′, y′′ ∈ {0, 1}ℓ agree on their last ℓ− 1 bits. So s1(3) can be computed without
any additional multiplications.
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Round 2. Given the products stored in the data structures C and C ′, the prover can compute s2(0) and
s2(1) with just four additional be multiplications and six ee multiplications in total. This is because s2(0) and
s2(1) are simple expressions of the already-computed products, which are all of the form p(y) · q(y′) · h(y′′) as
y ranges over {0, 1}ℓ and y′ and y′′ may or may not differ from y in their first bit. For example:

s2(0)=
∑

x∈{0,1}ℓ−2

p(r1, 0, x) · q(r1, 0, x) · h(r1, 0, x)

=
∑

x∈{0,1}ℓ−2

((1− r1) · p(0, 0, x)+r1 · p(1, 0, x)) · ((1− r1)q(0, 0, x)+r1 · q(1, 0, x)) · ((1− r1)h(0, 0, x)+r1 · h(1, 0, x)) .

Expanding the x’th term of this sum yields:

(1− r1)
3 · p(0, 0, x) · q(0, 0, x) · h(0, 0, x) + (1− r1)

2 · r1 · p(0, 0, x) · q(0, 0, x) · h(1, 0, x)+
(1− r1)

2 · r1 · p(0, 0, x) · q(1, 0, x) · h(0, 0, x) + (1− r1) · r21 · p(0, 0, x) · q(1, 0, x) · h(1, 0, x)
(1− r1)

2r1 · p(1, 0, x) · q(0, 0, x) · h(0, 0, x) + (1− r1) · r21 · p(1, 0, x) · q(0, 0, x) · h(1, 0, x)+
(1− r1) · r21 · p(1, 0, x) · q(1, 0, x) · h(0, 0, x) + r31 · p(1, 0, x) · q(1, 0, x) · h(1, 0, x).

Hence, every term equals a previously-computed product, times either r31, r
2
1(1− r1), r1(1− r1)

2, or (1− r1)
3.

Computing s2(2) and s2(3). Computing s2(2), however, involves additional products, namely all those
of the form p(y) · q(y′) · h(y′′), where y, y′, and y′ may or may not disagree on their first two bits. This is
16n · bb terms in total (since for every one of the 4n possible choices of y, y′, there are four new inputs y′′

such that the prover must compute p(y) · q(y′) · h(y′′)).

Specifically,

s2(2) =
∑

x∈{0,1}ℓ−2

p(r1, 2, x) · q(r1, 2, x) · h(r1, 2, x)

=
∑

x∈{0,1}ℓ−2

((1− r1)p(0, 2, x) + r1p(1, 2, x)) · ((1− r1)q(0, 2, x) + r1q(1, 2, x)) · ((1− r1)h(0, 2, x) + r1h(1, 2, x)) .

This expression in turn equals ∑
x∈{0,1}ℓ−2

F (x) ·G(x) ·H(x), (20)

where
F (x) = ((1− r1) ((1− 2)p(0, 0, x) + 2p(0, 1, x))) + r1 ((1− 2)p(1, 0, x) + 2p(1, 1, x)))

and
G(x) = ((1− r1) ((1− 2)q(0, 0, x) + 2q(0, 1, x)) + r1 (1− 2)q(1, 0, x) + 2q(1, 1, x))) ,

and
H(x) = ((1− r1) ((1− 2)h(0, 0, x) + 2h(0, 1, x)) + r1 (1− 2)h(1, 0, x) + 2h(1, 1, x))) ,

Applying the distributive law expresses F (x) ·G(x) ·H(x) (for x ∈ {0, 1}ℓ−2) as the desired sum of 64 different
products of evaluations of p, q, and h (each multiplied by r31, r

2
1(1− r1), r1(1− r1)

2, or (1− r1)
3). Across all

such x, this indeed results in 64 · (n/4) = 16n products of the form p(y) · q(y′) · q(y′′) in total.
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Optimizing computation of s2(2) and s2(3). However, several of the terms (or partial products thereof)
have already been computed in round one. Specifically, p(y) · q(y′) · h(y′′) is already stored in C ′ so long as
y, y′, and y′′ all agree in their second bit. This captures 4n out of the 16n terms. For the remaining 12n
terms, if y and y′ agree on their second bit11 then C already stores p(y) · q(y′) and hence just one more
multiplication is required to compute p(y) · q(y′) · h(y′′) (and the algorithm appends the result to C ′). If y
and y′ do not agree on their second bit, then two multiplications are required, one to compute p(y) · q(y′)
(which the algorithm appends to C) and one to multiply the result by h(y′′) (the algorithm appends the result
to C ′). In total, this is 12n+ 2n = 14n bb multiplications. Here, the 2n term captures the multiplications
required in total to compute the relevant products appended to C, and the 12n term captures the additional
multiplications required to compute the additional entries of C ′.

The prover stores all products (including partial products p(y) · q(y′)) in round two. That is, the prover
expands the size of the data structure C to 4n, so that C stores all products of the form p(y)q(y′), where
y ranges over {0, 1}ℓ and y′ ranges over the four vectors in {0, 1}ℓ that agree with y in all but the first
two coordinates. The prover similarly ensures that C ′ has size 16n, containing all products of the form
p(y) · q(y′) · q(y′′) where y, y′, and y′′ agree in all but the first two coordinates.

As with s1(3), s2(3) can be computed without any additional multiplications.

Round i. In round i > 2, the prover can always compute si(0) and si(1) given products computed and
stored in the data structure C ′ during the previous round. For degree d = 3, the total cost is at most
2 · (d− 1) + (d+ 1) + (d+ 1)i−1 ee multiplications to compute all (d+ 1)i−1 relevant products of powers of
r1, (1− r1), r2, (1− r2), . . . , ri−1, (1− ri−1), and (d+ 1)i−1 be multiplications to multiply the results by the
appropriate sums of entries of C ′. Here, 2 · (d− 1) counts the number of multiplications needed to compute
the first d powers of ri and (1− ri), d+1 counts the number of multiplications needed to derive rji · (1− ri)

i−j

for j = 0, . . . , d, and (d+ 1)i−1 counts the number of multiplications needed to derive every possible product
of these values across variables 1, . . . , i− 1 (given that all possible products for the first i− 2 variables were
computed and stored via previous rounds).

Computing si(2) and si(3) requires an additional
(
2i−1 + (4i − 4i−1)

)
· n bb multiplications to update the

entries of C and C ′.

4.3 Algorithm 3 for general d

Algorithm description. Suppose g(x) = p1(x) · p2(x) · · · · · pd(x). For general d, the algorithm is closely
analogous to the degree-3 case. Rather than maintaining two arrays C and C ′ as in the case d = 3, the
prover will maintain d− 1 arrays C2, . . . , Cd. At the end of each round j, Ci will store all relevant products
of the form p1(y

(1)) · p2(y(2)) · · · · · pi(y(i)), where y(1) . . . , y(i) ∈ {0, 1}ℓ agree in their last ℓ− j entries. The
same reasoning as for the degree d = 3 case explains that si(0), . . . , si(d) are each a linear combination of
these values, with the coefficients in the linear combinations given by products of appropriate powers of
r1, (1− r1), . . . , rj , (1− rj). The number of ee and be multiplications needed to compute these coefficients
across the entirety of the first j rounds is at most (d− 1)j + (d+ 1)j .

Completing the cost analysis. In each round, the arrays are updated one at a time, starting with C2 and
proceeding to Cd. The cost of updating the i’th array in round j is 2ji − 2j(i−1) bb multiplications. Indeed,
in round j, array Ci grows from size 2(i−1)j to 2ij , and each new element can be computed by multiplying an
already-computed element of Ci−1 by pi(y

(i)) for some y(i) ∈ {0, 1}ℓ.

Thus, the cost for applying this algorithm for the first j rounds is (d − 1)j + (d + 1)j ee multiplications,
(d+ 1)j be multiplications, plus the following number of bb multiplications:(

(d− 1) + 2j + 4j + 8j + · · ·+ 2(d−1)j
)
n. (21)

114n out of the remaining 12n terms agree on their second bit.
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5 Cost optimization when bb and be multiplications are “free”

When the goal is to minimize the number of ee multiplications, with be and bb multiplications considered
free, it is optimal to use Algorithm 1 for the early rounds of sum-check, then switch to Algorithm 2, then to
Algorithm 3.

How to implement the switch from Algorithm 2 to Algorithm 1. The prover can switch from
Algorithm 2 to Algorithm 1 at the end of round i by computing the contents of all d arrays from Algorithm 1
at the end of round i of the protocol (i.e., immediately after ri has been bound). This requires (n− n/2i) · be
multiplications per array (of course, the precise number is not important if we are ignoring the cost of be
multiplications).

For example, consider the case that d = 2 so there are two arrays A and B. Then after round 1, for each
x ∈ {0, 1}ℓ−1,

A[x] = r1p(1, x) + (1− r1)p(0, x) = p(0, x) + r1(p(1, x)− p(0, x)),

which can be computed with n/2 be multiplications. And after round 2, for each x ∈ {0, 1}ℓ−2,

A[x] = r1r2p(1, 1, x) + r1(1− r2)p(1, 0, x) + (1− r1)r2p(0, 1, x) + (1− r1)(1− r2)p(0, 0, x)

=r1r2 (p(1, 1, x)−p(1, 0, x)−p(0, 1, x) + p(0, 0, x))+r1 (p(1, 0, x)−p(0, 0, x))+r2 (p(0, 1, x)−p(0, 0, x))+p(0, 0, x).

For general rounds i > 2, for each x ∈ {0, 1}ℓ−i, at the end of round i of Algorithm 1, A[x] can be expressed
as a sum of 2i terms, each involving a multiplication by an extension field element (a product of a subset of
{r1, . . . , ri}, where the empty product equals 1) and a base field element (obtained as a sum of at most 2i

evaluations of p). This means all entries of A can be computed at the end of round i with (1− 1/2i) · n be
multiplications in total.

The optimal round to switch from Algorithm 2 to Algorithm 1. If the switchover happens at the
end of round j, then for rounds R = j + 1, . . . , ℓ, the number of ee multiplications that the Algorithm 1
prover performs across rounds j + 1, . . . , ℓ is:

d(d− 1)n

ℓ∑
R=j+1

1/2R ≤
(
d2/2j

)
· n.

Accordingly, the optimal round i for switching from Algorithm 2 to Algorithm 1 is roughly the i satisfying
d2n/2i = d(d− 1)2i, which means i ≈ ℓ/2.

The optimal round to switch from Algorithm 3 to Algorithm 2. If the switch from Algorithm 3 to
Algorithm 2 occurs at the end of round j, then the total number of ee multiplications performed is:

(d− 1)j + (d+ 1)j +

 ℓ/2∑
i=j+1

(d2 − d)n/2i + 2i−1

+

 ℓ∑
i=ℓ/2+1

d2n/2i

 .

Hence, the optimal switchover round j, for switching from Algorithm 3 to Algorithm 2, is roughly the j
satisfying (d+ 1)j = (d2 − d)n/2j , which means

j ≈ log(n)/(1 + log(d+ 1)).

In this case, for constant d the total number of ee multiplications is O(n1−1/(1+log(d+1))). For example, if
d = 3, this is O(n2/3) and if d = 16, then this is about O(n0.803). In particular, for any constant degree d, we
reduce the number of ee multiplications to be sublinear in the number n of terms being summed.
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Savings over prior work. The best prior algorithm (the combination of Algorithms 1 and 2 discussed in
Remark 1) required roughly the following number of ee multiplications:

d(d− 1) · n/2.

For example, if d = 3 we have reduced the prover’s cost by a factor of about Θ(n1/3).

Concretely, the savings can be several orders of magnitude. For example, for d = 3 and for reasonable values
of n (say, 220 ≤ n ≤ 230), we improve the prover time relative to prior algorithms by a factor of several
hundred. Specifically, when n = 230, our new algorithm does 7.47 million extension field multiplications,
while Algorithm 1 alone would do 3 · 230 of them. This is a savings of over 430×. For n = 224, our algorithm
does 434,000 ee multiplications, vs. 3 · 224 for Algorithm 1 alone. The savings is therefore still larger than a
factor of 115.

In practice, the high space complexity of Algorithm 3 may necessitate switching to Algorithm 2 earlier than
round log(n)/(1 + log2(d+ 1)). Fortunately, most of the savings over prior work comes from the first few
rounds, as the number of ee multiplications falls geometrically as the switchover round increases.

6 Cost optimization when bb and be multiplication aren’t free

When be multiplications are not free, and Karatsuba’s algorithm is used for ee multiplications, it typically
does not make sense to use Algorithm 2, as the savings in ee multiplications relative to Algorithm 1 does not
compensate for the increased number of be multiplications. So in this case, the optimal combination is to
switch straight from Algorithm 3 to Algorithm 1. In the following sections, we determine at what point it is
best to switch (in the case d = 2 we also slightly optimize the cost of implementing the switch). We then
calculate how much the resulting algorithm improves over Algorithm 1 alone.

6.1 Degree d = 2

An extra optimization when switching to Algorithm 1. If the switchover from Algorithm 3 to
Algorithm 1 happens at the end of round j, then per Remark 2, the cost of round j can be reduced by
a factor of two, from 2j−1n bb multiplications, to 2j−2 bb multiplications. This is because the reason for
computing extra cross terms p(x)q(x̄) in round j that were not already computed by round j − 1 is to make
use of those cross terms in future rounds, yet if the switch-over happens at the end of round j then there is
no point to computing these cross terms. For example, in the case j = 2, Equation (16) reveals that s2(2)
can be expressed as ∑

x∈{0,1}ℓ−2

G(x) ·H(x)

where G(x) is of the form w(x) + r1z(x) and H(x) is of the form w′(x) + r1z
′(x) for some base field elements

w(x), z(x), w′(x), z′(x). Hence,

s2(2) =

 ∑
x∈{0,1}ℓ−2

w(x) · w′(x)

+ r1 ·

 ∑
x∈{0,1}ℓ−2

w(x) · z′(x) + z(x)w′(x)

+ r21

 ∑
x∈{0,1}ℓ−2

z(x)z′(x)

 .

This therefore entails the prover computing 4 base field multiplications for each of the n/4 terms of the sum
in Equation (16), a factor-2 improvement over the 2n base field multiplications required to compute the extra
cross terms that would otherwise be added to the data structure C in round j.

Total costs of combining Algorithms 1 and 3. In summary, if the switchover to Algorithm 3 occurs
at the end of round j, the total prover cost for the remaining rounds is 4n/2j ee multiplications, plus(
n+

(∑j
i=1 2

i−1 · n
)
− 2j−2n

)
· bb = (3/4) · 2j · n · bb from the first j rounds, plus (2 · n − n/2j) be
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Extension degree 4 8 16 32 64 128 256
Optimal switchover round j (switch at end of round j) 3 4 4 5 6 7 8

Prover cost in terms of ee mults per term of sum 2.0 1.27 0.78 0.483 0.302 0.192 0.122
Prover cost in terms of bb mults per term of sum 18 34 63 117 220 420 800

Prover cost in ee mults for Algorithm 1 2.61 2.35 2.21 2.14 2.09 2.06 2.04
Factor improvement over Algorithm 1 alone 1.31 1.85 2.83 4.43 6.92 10.8 16.7

Table 1: Cost of our prover implementation combining Algorithms 1 and 3, for d = 2, in terms of number of
ee multiplications. We assume that Karatsuba’s algorithm is used for extension field multiplication, so that
be and ee multiplications are respectively k and k1.585 times costlier than bb multiplications.

multiplications to compute the A and B arrays used in Algorithm 1 at the end of round j.12 Thus, the total
prover cost will be:

(3/4) · 2j · n · bb+ (2 · n− n/2j + 3j) · be+
(
4/2j + (j + 3j)

)
· n · ee. (22)

Optimal choice of switchover. The optimal choice of switchover round j occurs roughly when setting

(3/4) · 2j+1 · n · bb =
(
4n/2j

)
ee⇐⇒ ee = (3/8)22j · bb⇐⇒ j =

log((8/3) · ee/bb)
2

If using a degree k extension and Karatsuba’s algorithm for extension field multiplication, then ee ≈ k1.5849 ·bb,
and the above simplifies to

j =
1.5849 · log(k) + log(8/3)

2
.

See Table 1 for concretely optimal switchover rounds.

As the extension degree k approaches infinity, the optimal switchover occurs roughly at round .8 · log k. This
more or less replaces the 2 · n ee multiplications of Algorithm 1 with roughly 2n/2.8 log(k) ee multiplications,
a savings of roughly a factor of k0.8. However, most the savings come from the first few rounds.

6.2 The case of general d

For general degrees d, per Equation (21), if one switches from Algorithm 3 to Algorithm 1 at the end of
round j, the total prover cost will be:

((
(d− 1) + 2j + 4j + 8j + · · ·+ 2(d−1)j

)
n
)
bb+

(
d(1− 1/2j)n

)
· be+

(
(d2/2j)n

)
· ee,

plus (at most) an additional (d−1)j+(d+1)j be and ee multiplications. These last quantities are independent
of n (so long as the switchover round j is independent of n) and will not be a significant contributor to costs
for values of j relevant to this section.

This can be compared to the cost of Algorithm 1 alone, which recall (Equation (12)) is roughly:

((d2 − 1)n/2) · bb+ (dn/2) · be+ (d2/2) · n · ee.

For degree d = 3, we numerically calculate the optimal switchover round and improvement factor in Table 2.
The improvement is a relatively modest factor of 1.89 for extension degree k = 16, but grows to a substantial
factor of 5.4 for k = 128.

12Algorithm 3 also incurs at most an additional j + 3j ee and be multiplications in total over the first j rounds, per Equation
(18). We include these terms in Expression (22) for completeness, but they will not be a major contributor to costs for values of
j relevant to this section of the manuscript. This is because per Table 1, the optimal switchover round j is at most 9 and we are
generally interested in sums with at least 2ℓ ≥ 220 terms.
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Extension degree k = 8 k = 16 k = 32 k = 64 k = 128
Optimal switchover round j (switch at the end of round j) 2 3 3 4 4

Prover cost in terms of ee mults per term of sum 3.73 2.56 1.77 1.19 0.85
Algorithm 1 prover costs (ee mults per term) 5.1 4.85 4.71 4.64 4.59
Factor improvement over Algorithm 1 alone 1.37 1.89 2.66 3.9 5.4

Table 2: Cost of Algorithm 3 (combined with Algorithm 1) for d = 3 in terms of number of ee multiplications,
assuming extension field multiplications are k1.585 times more expensive than bb multiplications and k times
more expensive than be multiplications.

7 Applications and Extensions

A major issue not yet discussed is whether the most important applications of the sum-check protocol satisfy
the assumption under which we analyzed the costs of Algorithms 1-3 above, namely that the sum-check
protocol is applied to a polynomial g(x) of the form

d∏
i=1

pi(x),

where pi(x) is a base-field element for all x ∈ {0, 1}ℓ.

This is the case for at least some applications of sum-check. One example is the super-efficient13 protocol for
counting triangles of [Tha13] (see [Tha22, Section 4.5.1] for an exposition), if that protocol is instantiated over
an extension field.14 Specifically, if A is the adjacency matrix of a graph, A2 is the squared adjacency matrix,

and Ã and Ã2 their multilinear extension polynomials respectively, then the counting triangles protocol
applies the sum-check protocol to the polynomial

g(x) = Ã(x) · Ã2(x).

However, in the most important applications of the sum-check protocol to SNARK design, the sum-check
protocol is applied to a polynomial g(x) that does not quite satisfy the assumption. In this section we explain
these deviations from the assumption, and how to address them.

7.1 First generalization: g has one factor that is not in the base field

Suppose that

g(x) =

d∏
i=1

pi(x)

where for i = 2, . . . , d, pi(x) ∈ B for all x ∈ {0, 1}ℓ but this is not the case for p1(x). For example, suppose
that g1(x) = ẽq(r, x) for some value r ∈ Fℓ chosen by the verifier from the full field F. This situation arises
in important applications of the GKR protocol such as in the Lasso lookup argument [Tha13, STW23], as
well as in sum-check-based SNARKs like Spartan [Set20], BabySpartan [ST23], Hyperplonk [CBBZ23], and
Binius [DP23b].

Cost analysis of Algorithm 1. Algorithm 1 (applied to a polynomial of degree d) directly handles this
case, but its cost changes from Expression (12)

13Super-efficient means the honest prover runs the fastest known algorithm for the problem and then performs a low-order
amount of additional work to prove the answer is correct.

14Since the number of triangles in a graph with N nodes can be as large as N3, one would need to work over a field of
characteristic at least N3 to avoid “wrap around” issues. This is not necessary in settings where the number of triangles is a
priori bounded by a number much less than N3. One could also apply the protocol over several field of characteristic O(logN)
and apply the Chinese remainder theorem to compute the actual number of triangles.
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The accounting for this expression is as follows. Computing the round 1 message s1(0), s1(1), . . . . s1(d)
now costs d − 2 bb multiplications and one be multiplication for each of the d + 1 evaluation points and
each of the n/2 terms of the sum defining s1 (see Equation (3)). The cost to update all arrays at the end of
round one is now (d− 1) · (n/2) be multiplications and n/2 ee multiplications. The cost of Algorithm 1 in all
remaining rounds is unchanged. Hence, roughly speaking, when one factor of g is not in the base field the
cost of Algorithm 1 goes up by dn/2 be multiplications and n/2 ee multiplications.

However, recall that the Algorithm 1 cost analysis assumes that the prover has already computed an array
storing all the quantities p1(x). When

p1(x) = ẽq(r, x) : x ∈ {0, 1}ℓ,

computing these quantities can be done with n ee multiplications via a standard recurrence. So in total, the
fact that in applications of the GKR protocol and elsewhere,

p1(x) = ẽq(r, x) : x ∈ {0, 1}ℓ,

causes the cost of Algorithm 1 to go up by roughly dn/2 be multiplications and 3n/2 ee multiplications.

Cost analysis of Algorithm 3. Algorithm 3 also easily generalizes to the case that p1 does not output
base field elements even when evaluated at inputs in {0, 1}ℓ, by combining with the technique of Algorithm 1.
Specifically, using standard dynamic programming techniques (see [Tha22, Lemma 3.8]), one first spends n
ee multiplications to compute an array A storing, for each x ∈ {0, 1}ℓ,

A[x] = p1(x) = ẽq(r, x).

As per Algorithm 1, at the end of each round j, with n/2j ee multiplications one can update A to ensure
that for each x ∈ {0, 1}ℓ−j , A[x] = p1(r1, . . . , rj , x).

Algorithm 3 can be applied in each round j to

g′(x) :=

d∏
i=2

pi(x)

in order to compute computing g′(r1, . . . , rj−1, z, x) : x ∈ {0, 1}ℓ−j , where z ranges over {0, 1, . . . , d}. To
obtain g(x) = g′(x) · p1(x), each such quantity g(x) is multiplied by p1(r1, . . . , rj−1, z, x), which is a linear
combination of elements of the array A (with coefficients given by products as differences of elements in the
interpolating set {0, 1, . . . , d}, per univariate Langrange interpolation over this interpolating set).

Thus, the costs in round j are the same as the cost of Algorithm 3 applied to the degree-(d− 1) polynomial
g′, plus an extra 2n ee multiplications to compute and update A over the course of the protocol, and at most
n extra be multiplications over the course of the protocol.

Savings over prior work bb and be multiplications are free. If the goal is to minimize the number of
ee multiplications, then the cost of Algorithm 1 alone is roughly the following number of ee multiplications:

(d2 + 3) · n/2.

Meanwhile, Algorithm 3 combined with Algorithm 1 costs (2 + o(1))n ee multiplications. Accordingly, the
savings is a factor of roughly

(d2 + 3)/4.

For example, if d = 3, the savings is a factor of 15/4 = 3.75, while if d = 16 the savings is a much more
substantial factor of 64.75.
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7.2 Second Generalization: Translations of Base-Field Elements

In Lasso [STW23], an optimized variant of the GKR protocol [GKR15], due to Thaler [Tha13], is applied
to a circuit (specifically, a tree of multiplication gates) whose inputs w = (w1, . . . , wm) are not themselves
base-field elements, but rather each wi is of the form yi− r′, where each yi is a base field element and r′ is an
extension-field element chosen at random by the verifier. We provide two different techniques for addressing
this setting.

Warmup: Modifying the GKR protocol to mitigate the cost of the most expensive layer. When
the circuit has fan-in two (i.e., a binary tree of multiplication gates), the prover spends about half of its

work processing the layer of gates adjacent to the input layer of the circuit. Let W̃ denote the multilinear
extension of the gate values at the circuit layer below the inputs. When the GKR protocol reaches this layer,
the verifier needs to ascertain W̃ (r) for a random values r ∈ Flog(m)−1.

To do so, the sum-check protocol is applied to the (log(m)− 1)-variate polynomial

g(x) = ẽq(r, x) · w̃(x, 0) · w̃(x, 1). (23)

This indeed computes W̃ (r), owing to the fact that

W̃ (r) =
∑

x∈{0,1}log(m)−1

ẽq(r, x) · w̃(x, 0) · w̃(x, 1). (24)

To see that Equation (24) holds, observe that the right hand side is a multilinear polynomial in r and agrees

with W at all inputs in {0, 1}log(m)−1. Hence, it must equal W̃ (r).

In the application of the GKR protocol in Lasso, wi = yi − r′ for all i = 1, . . . ,m. In this case, the following
variant of Equation (24) holds:

W̃ (r) =

 ∑
x∈{0,1}log(m)−1

ẽq(r, x) · ỹ(x, 0) · ỹ(x, 1)

− r′ · (ỹ(r, 0) + ỹ(r, 1)) + (r′)2. (25)

Again, this equation holds because the right hand side is a multilinear polynomial in r and agrees with W at
all inputs in {0, 1}log(m)−1.

Accordingly, to compute rather than applying the sum-check protocol to the polynomial g(x) defined in
Equation (23), we can apply it to

g(x) = ẽq(r, x) · ỹ(x, 0) · ỹ(y, 1), (26)

and set W̃ (r) to the result, plus
−r′ · (ỹ(r, 0) + ỹ(r, 1)) + (r′)2. (27)

The polynomial g(x) in Equation (26) satisfies the assumptions of Section 7.1, and hence the techniques
in that section substantially speed up the prover. At the end of the sum-check protocol, the verifier needs
to evaluate ỹ(r′′, 0) and ỹ(r′′, 1) for some r′′ ∈ Flog(m)−1. Hence, this modification increases the number of
evaluation queries to ỹ from two to four.

In Lasso, ỹ is committed with any multilinear polynomial commitment scheme. With many polynomial
commitment schemes, the cost of these multiple evaluations can be amortized, i.e., all four evaluations can be
provided at roughly the cost (to both prover and verifier) of a single evaluation.
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Have the prover apply the distributive law. The above modification of the GKR protocol can be
viewed as requiring the verifier to apply the sum-check protocol to a different polynomial, compared to prior
work that did not leverage the polynomial’s structure as a (product of translations of) multilinear polynomials
outputting small values. This changes the verification procedure of the protocol. It also led to the verifier
making extra evaluating queries to the base-field polynomial ỹ.

We can avoid modification to the verification procedure with a different approach. Suppose the sum-check
protocol is applied to an ℓ-variate polynomial g(x) =

∏d
i=1 pi(x) where each pi(x) = qi(x)− r′ where qi is a

multilinear polynomial that maps {0, 1}ℓ to B. Roughly speaking, the prover can apply the distributive law
to express

∑
x∈{0,1}ℓ

g(x)

as a sum of “sub-sums”, where each sub-sum applies to a product of a subset of the qj ’s (multiplied by a
power of r′).

One can then apply the algorithms of this manuscript to each of these sub-sums individually. The prover’s
i’th-round message in the sum-check protocol applied to g is simply the appropriate sum of the i’th-round
message in the sum-check protocol applied to each sub-sum.

In more detail,

g(x) =
∑

S⊆{1,2,...,d}

(−r)|S| ·
∏
j∈S

qj(x).

Let gS :=
∏

j∈S qj(x) and let si,S(x) be the i’th round message in the sum-check protocol applied to gS .
Then the i’th round message si in the sum-check protocol applied to g is

∑
S⊆{1,2,...,d}

(−r)|S|si,S(x).

Accordingly, the prover can compute si,S(x) for each S ⊆ {1, . . . , d} using the algorithms of this manuscript,
and then obtain si via O(d) additional ee multiplications.

Cost analysis. Naively, one can bound the increase in prover costs relative to the case where each pi is
untranslated (i.e., r′ = 0) by at most a factor of 2d, but in fact a much stronger bound holds.

Recall from Section 5 that in settings where bb and be multiplications are “free”, the total prover work
to compute si,S is O(n1−1/(1+log2(d+1))). For constant d, this means that the cost of computing si,S for
S = {1, . . . , d} asymptotically dominates the total cost of computing si,S′ for all other S′ ⊂ {1, . . . , d}.

Even in the case where bb multiplications are not free, the number of bb multiplications required to compute
si,S grows exponentially with |S|, and so we expect that the cost of computing si,S for S = {1, . . . , d}
dominates the total cost of computing si,S′ for all other S′ ⊂ {1, . . . , d}.

In addition, for many pairs of sets S′, S′′, all of the multiplications required to process gS′ via Algorithm
3 are already computed by Algorithm 3 when applied to compute gS′′ . For example, for S′′ = {1, . . . , d},
Algorithm 3 performs all of the multiplications necessary to compute si,S′ for any S′ equal to a “prefix” of
{1, . . . , d − 1}, meaning any set of the form {1, 2, 3, . . . , j} for j < d. Hence, applying Algorithm 3 to gS′

adds no multiplications to the cost of Algorithm 3, beyond what was already necessary to process gS′′ .
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