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Linear PCPs and Succinct Arguments
Lecturer: Justin Thaler

1 Interactive Arguments From “Long”, Structured PCPs

1.1 Overview

Ishai, Kushilevitz, and Ostrovsky [IKO07] (IKO) put forth an ingenious two-step methodology for devel-
oping argument systems for arithmetic circuit satisfiability, without the use of “short” PCPs (which, as
mentioned in the previous lecture, tend to be quite complicated). The basic idea is the following. Why
is the prover inefficient if one instantiates Kilian’s argument system with a PCP of superpolynomial size
L = nω(1)? The problem is that P has to materialize the full proof π in order to compute its Merkle-hash
and thereby “commit” to π . Materializing a proof of superpolynomial length clearly takes superpolynomial
time.

But IKO [IKO07] show that if π is highly structured in a manner made precise below, then there is a way
for P to commit to π without materializing all of it.This enables them to use structured PCPs of exponential
size, which turn out to be much simpler than “short” PCPs for circuit satisfiability (by short, we mean of
length quasilinear in the circuit size). The commitment protocol of [IKO07] is based on any semantically
secure, additively-homomorphic cryptosystem, such as the Goldwasser-Micali cryptosystem [GM84].

The downside of this approach is that in order for P the commit to a proof π of size L, the verifier must
first send P a message of size logL. If L is exponential in the circuit size S = |C|, then even log(L) is linear
in the circuit size, so even writing down the verifier’s message takes time Ω(S). Compare this to the MIPs
and PCPs from previous lectures, where the verifier’s total runtime was O(n+polylog(S)).

However, these downsides are offset by the ability of the verifier to amortize this large cost when out-
sourcing the evaluation of C on many separate inputs. In addition, the communication in the reverse direc-
tion, from prover to verifier, is very small (a constant number of field elements) and the verifier’s online
verification phase is especially fast as a consequence (V performs just O(1) field or group operations to
check P’s final message).

1.2 Linear PCPs

The type of structure that IKO [IKO07] exploit is linearity. Specifically, in a linear PCP, the proof is
interpreted as a function mapping Fv→ F for some integer v > 0. A linear PCP is one in which the “honest”
proof is a linear function π . That is, π should satisfy that for any two queries q1,q2 ∈ Fv, π(q1 +q2) =
π(q1)+π(q2). This is the same as requiring that π be a v-variate polynomial of total degree 1, with constant
term equal to 0. Note that in a linear PCP, soundness should even against “cheating” proofs that are non-
linear. So the only difference between a linear PCP and a PCP is that in a linear PCP, the honest proof is
guaranteed to have special structure.

The arguments of IKO [IKO07] conceptually proceeds in the same two steps as Kilian’s approach based
on short PCPs. In the first step, the prover commits to the proof, but unlike in Kilian’s approach, here the
prover can leverage the linearity of the proof to commit to it without ever materializing the whole thing.
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In the second step, the argument system verifier simulates the linear PCP verifier asks the prover to reveal
certain locations of the proof, which the prover does using the reveal phase of the commitment protocol.

Hence, in order to give an efficient argument system, IKO [IKO07] had to do two things. First, they
gave a commit/reveal protocol for linear functions. Second, they gave a linear PCP for arithmetic circuit
satisfiability.

Unfortunately, when applied to circuits of size S, their linear PCP had length |F|O(S2). It takes O(S2) time
for the verifier to even write down a query into a proof of this length. A subsequent refinement of Gennaro,
Gentry, Parno, and Raykova (GGPR) [GGPR13] give a linear PCP1 of length |F|O(S). GGPR’s linear PCP
has formed the theoretical foundation for many of the argument systems that have been implemented in the
research literature and deployed in commercial settings.

In this lecture, we cover only IKO’s commit/reveal protocol for linear functions. Next lecture we will
see IKO’s linear PCP of length |F|O(S2), and the following lecture we will see GGPR’s linear PCP of length
|F|O(S).

1.3 Committing to a Linear PCP without Materializing It

Let π be a linear function Fv → F. This section sketches the technique of IKO [IKO07] for allowing the
prover to first commit to π in a “commit phase” and then answer a series of queries k queries q(1), . . . ,q(k) ∈
Fv in a “reveal phase”. Roughly speaking, the security guarantee is that at the end of the commit phase,
there is some function π ′ (which may not be linear) such that, if the verifier’s checks in the protocol all pass
and P cannot break the cryptosystem used in the protocol, then the prover’s answers in the reveal phase are
all consistent with π ′.2

In more detail, the protocol uses a semantically secure homomorphic cryptosystem. Roughly speaking,
semantic security guarantees that, given a ciphertext c = Enc(m) of a plaintext m, any probabilistic polyno-
mial time algorithm cannot “learn anything” about m. A cryptosystem is (additively) homomorphic if it is
possible, for any pair of plain texts (m1,m2), it is possible to efficiently compute the encryption of m1 +m2
from the encryptions of m1 and m2 individually.

In the commit phase, the verifier chooses a vector r = (r1, . . . ,rv) ∈ Fv at random, encrypts each entry of
r and sends all v encryptions to the prover. Since π is linear, there is some vector d = (d1, . . . ,dv) ∈ Fv such
that π(q) = ∑

v
i=1 di · qi = 〈d,q〉 for all queries q = (q1, . . . ,qv). Hence, using the homomorphism property

of the encryption scheme, the prover can efficiently compute the encryption of π(r) from the encryptions of
the individual entries of r. The prover sends this encryption to the verifier, who decrypts it to obtain (what
is claimed to be) s = π(r).3

In the reveal phase, the verifier picks k field elements α1, . . . ,αk ∈ F at random, and keeps them secret.
The verifier then sends the prover the queries q(1), . . . ,q(k) in the clear, as well as q∗ = r+∑

k
i=1 αi · q(i)

(throughout, we can assume that none of the queries are the all-zeros vector, since any linear function π

evaluates to 0 on the all-zeros vector). The prover returns claimed answers a(1), . . . ,a(k),a∗ ∈ F, which are

1The observation that GGPR’s protocol is actually a linear PCP as defined by IKO was made in later work [BCI+13,SBV+13].
2This section actually sketches a refinement of IKO’s commitment/reveal protocol, due to Setty et al. [SMBW12]. The original

protocol of IKO guaranteed that for each query i, there is a separate function πi to which P was committed. Setty et al. [SMBW12]
tweaked the protocol of IKO in a way that both reduced costs and guaranteed that P was committed to answering all k queries using
a single function π ′ (which is possibly non-linear).

3This is kind of amazing. Using the homomorphism property of Enc and the linearity of π , the honest prover has managed to
send to the verifier an encoding of π(r), even though the prover has no idea what r is (this is roughly what semantic security of Enc
guarantees). Moreover, the prover can compute Enc(π(r)) from Enc(r1), . . . ,Enc(rv) in time O(v). This is far less time the Ω(|F|v)
time required to evaluate π at all points, which would be required if the prover were to build a Merkle tree with the evaluations of
π as the leaves.
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supposed to equal π(q(1)), . . . ,π(q(k)),π(q∗). The verifier checks that a∗ = s+∑
k
i=1 αi · a(i), accepting the

answers as valid if so, and rejecting otherwise.
Clearly the verifier’s check will pass if the prover is honest. The proof of binding roughly argues that the

only way for P to pass the verifier’s tests, if P does not answer all queries using a single function, is to know
the αi’s, in the sense that one can efficiently compute the αi’s given access to such a prover. But if the prover
“knows” the αi’s, then the prover must be able to solve for r, since V reveals q∗ = r+∑

k
i=1 αi ·q(i) to the

prover. But this would contradict the semantic security of the underlying cryptosystem, which guarantees
that the prover learned nothing about r from the encryptions of r’s entries.

1.4 Detailed Presentation of Binding Property When k = 1

We present the main idea of the proof of binding, in the case the k = 1.
What does it mean for the prover not to be bound to a fixed function after the commitment phase of the

protocol? It means that there are at least two runs of the reveal protocol, where in the first run, the verifier
sends queries q1 and q∗ = r+α ·q1, and the prover responds with answers a1 and a∗, while in the second
run the verifier sends queries q1 and q̂ = r+α ′ ·q1, and the prover responds with answers a′1 6= a1 and â.
That is, in two different runs of the reveal protocol, the prover responded to the same query q1 with two
different answers, and managed to pass the verifier’s checks.

We will argue that in this case, the prover must know α and α ′. But this breaks the semantic security
of the encryption scheme. Roughly speaking, this is because if the prover really learned nothing about r
from Enc(r1), . . . ,Enc(rv) as promised by semantic security of Enc, then it should be impossible for the
prover to determine α with probability any better than random guessing, even given q1, q∗ = r+α ·q1, and
q̂ = r+α ′ ·q1. This is because, without knowing r, all that the equations

q∗ = r+αq1 (1)

and

q̂ = r+α
′ ·q1 (2)

tell the prover about α and α ′ is that they are two field elements satisfying q∗− q̂ = (α−α ′)q1. That is, for
every pair α,α ′ ∈ F satisfying Equations (1) and (2) for r, and any c ∈ F, the pair α + c,α ′+ c also satisfy
both equations when r is replaced by r+ cq1. So without knowing anything about r, Equations (1) and (2)
reveal no information whatsoever about α itself.

Showing that the prover must know α and α ′. Recall that s is the decryption of the value sent by the
prover in the commit phase, which is claimed to be Enc(π(r)). The prover doesn’t know s, but the verifier
does. Even though the prover does not know s, if the verifier’s checks in the two runs of the reveal phase
pass, then the prover does know that:

a∗ = s+αa1, (3)

and

â = s+α
′a1, (4)

Subtracting these two equations means that the prover knows that

(a∗− â) = αa1−α
′a′1, (5)
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Similarly, even though the prover doesn’t know r, the prover does know that Equations (1) and (2) hold.
Subtracting those two equations implies that q∗− q̂ = (α−α ′)q1.

In particular, since we have assumed q1 is not the all-zeros vector, if we let j denote any non-zero
coordinate of q1, then:

q∗j − q̂ j = (α−α
′)q1, j (6)

Since a1 6= a′1, Equations (5) and (6) express α and α ′ via two linearly independent equations in two
unknowns, and these have a unique solution. Hence, the prover can solve these two equations for α and α ′

as claimed.
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