
2 Definitions: Interactive Proofs and Argument Systems

Throughout these notes, boldface will be used for vectors, to distinguish them from scalars. The notation
Õ(·) hides polylogarithmic factors. So, for example, n log4 n = Õ(n).

2.1 Interactive Proofs

Definition 2.1. Given a function f mapping {0,1}n to a finite range R, an interactive proof system for
f consists of a probabilistic polynomial time verifier V and a prover P who are given a common input
x 2 {0,1}n. P and V exchange a sequence of messages to produce a transcript t = (V(r),P)(x), where r
denotes V’s internal randomness. After the transcript t is produced, V must output value in R[{?}, where
? is a special “rejection” symbol indicating that V rejects P’s claims as invalid. Denote by out(V,x,r,P)
the output of verifier V on input x given prover strategy P and that V’s internal randomness is equal to r.

The interactive proof system has completeness error dc and soundness error ds if the following two
properties hold.

1. (Completeness) There exists a prover strategy P such that for every x 2 L,

Pr[out(V,x,r,P) = f (x)]� 1�dc.

2. (Soundness) For every x /2 L and every prover strategy P 0,

Pr[out(V,x,r,P 0) 62 f (x),{?}] ds.

An interactive proof system is valid if dc,ds  1/3. The complexity class IP is the class of all languages
possessing valid interactive proof systems.

Intuitively, for any input x, the completeness condition requires that there be a convincing proof for what
is the value of f at x. The soundness condition requires that false statements of the form “ f (x) = z” for any
z 6= f (x) lack a convincing proof.

Several additional clarifying remarks are in order.

• All of the interactive proofs that we will see in this course actually satisfy perfect completeness,
meaning that dc = 0. That is, the honest prover will always convince the verifier that it is honest.

• Regarding the requirement that ds  1/3, the constant 1/3 is chosen by convention. In all of the
interactive proofs that we see in this course, the soundness error will always be proportional to 1/|F|,
where F is the field over which the interactive proof is defined. In practice, 1/|F| be astronomically
small (e.g. smaller than, say, 2�60).

• We highlight the fact that the soundness requirement in Definition 2.1 is required to hold even against
computationally unbounded provers P0, who might be devoting enormous computational resources to
trying to trick V into outputting an incorrect answer.

• Observe that Definition 2.1 implicitly assumes that the total number of messages exchanged by P
and V is poly(n), as the definition requires that V run in poly(n) time over the entire course of the
interaction (if the number of messages were superpolynomial in n, then V could not even read all of
the messages in poly(n) time).

5

• We clarify that in an interactive proof system, V’s randomness is internal, and in particular is not
visible to the prover.

The two costs of paramount importance in any interactive proof are P’s runtime and V’s runtime, but
there are other important costs as well: P and V’s space usage, the total number of bits communicated, and
the total number of messages exchanged. If V and P exchange at most m messages for every pair (x,r),
then dm/2e is referred to as the round complexity of the interactive proof system.

Robustness of the Model. The key to the power of interactive proofs is the combination of randomness
and interaction. If no interaction is allowed, but the verifier is allowed to toss random coins and accept an
incorrect proof with small probability, the resulting complexity class is known as MA. This class is widely
believed to be equal to NP, a much smaller class than PSPACE = IP. Meanwhile, if no randomness is
allowed (equivalently, if perfect soundness is required), then the resulting complexity class is once again IP.

However, as long as we allow both randomness and interaction, the interactive proofs model is robust to
a wide variety of tweaks to the definition.

• (Public Coins vs. Private Coins). Interactive proofs were introduced in 1985 by Goldwasser, Micali,
and Rackoff [GMR89]. At the same conference, Babai [Bab85] independently introduced the Arthur-
Merlin class hierarchy, which captures constant-round interactive proof systems, with the additional
requirement that the verifier’s randomness is public—that is, visible to the prover. Goldwasser and
Sipser [GS86] subsequently proved that the distinction between public and private coins is not crucial:
any constant-round private coin interactive proof system can be simulated by a constant-round public
coin system (with a polynomial blowup in costs).

• (2 Rounds vs. O(1) Rounds). Babai and Moran showed that any constant-round interactive proof can
be simulated by a 2-message interactive proof with a polynomial blowup in costs [Bab85, BM88].

• (Perfect vs. Imperfect Completeness). Goldwasser and Sipser [GS86] also showed that any interactive
proof with imperfect completeness can be simulated by an interactive proof with perfect completeness.

On Interactive Proofs for Languages Versus Functions. A language L ✓ {0,1}⇤ is any subset of
Boolean strings (here, {0,1}⇤ denotes the set of all finite Boolean strings). In an interactive proof for
L, the verifier V interacts with a prover P in exactly the same manner as in Definition , and at the end of the
interaction, V must either output “accept” or “reject”. The requirements are:

• Completeness. For any x2L, there is some prover strategy will cause the verifier to accept with high
probability.

• Soundness. For any x 62 L, then for every prover strategy, the verifier outputs reject with high proba-
bility.

Note in particular that, for x 62 L, it is not required that there to a “convincing proof” of the fact that
fL(x) = 0. The reasoning behind this formalization of interactive proofs for languages is as follows. One
thinks of inputs in the language as true statements, and inputs not in the language as false statements. The
above completeness and soundness properties require that all true statements have convincing proofs, and
all false statements do not have convincing proofs. It is not required that false statements have convincing
refutations (i.e., convincing proofs of their falsity).

6

In contrast, Definition 2.1 (which defines an interactive proof system for a function f) requires that for
any x, there is a convincing proof of the value of f (x). The notions of interactive proofs for languages
and functions are, however, related in the following sense: given a function f , an interactive proof for f is
equivalent to an interactive proof for the language L f := {(x,y) : y = f (x)}.

In these lecture notes, we will primarily be concerned with interactive proofs for functions instead of
languages (we only talk about interactive proofs for languages when referring to complexity classes such as
IP, defined in the next subsection).

2.1.1 NP and IP

Let IP be the class of all languages solvable by an interactive proof system (with a polynomial time verifier).
The class IP can be viewed as an interactive, randomized variant of the classical complexity class NP (NP
is the class obtained by restricting the proof system to be non-interactive and deterministic, meaning that the
completeness and soundness errors are 0).

We will see soon that the class IP is in fact equal to PSPACE, the class of all languages solvable by
algorithms using polynomial space (and possibly exponential time). PSPACE is believed to be a vastly
bigger class of languages than NP, so this is one formalization of the statement that “interactive proofs are
far more powerful than classical static (i.e, NP) proofs”.

Interestingly, both ingredients (interaction and randomness) seem necessary to make the resulting proof
systems substantially more powerful than static proofs. In particular, if we allow proof systems to be inter-
active but not randomized, then the class of languages solvable by such proof systems with polynomial time
verifiers is still just NP (showing this may be a question on the first problem set). And if we allow proof
systems to be randomized by not interactive, then the class of languages solvable by such proof systems
with polynomial time verifiers is called MA (short for Merlin-Arthur). Many people believe that MA = NP;
that is, it is suspected that allowing randomness but not interaction in proof systems does not endow them
with significantly more power than deterministic static proofs.

2.1.2 Argument Systems

Definition 2.2. An argument system for a language L ✓ {0,1}⇤ is an interactive proof for L, in which the
soundness condition is only required to hold against prover strategies that run in polynomial time.

Argument systems were introduced by Brassard, Chaum, and Crépeau in 1986 [BCC88]. Unlike inter-
active proofs, argument systems are able to utilize cryptographic primitives. While a super-polynomial time
prover may be able to break the primitive and thereby trick the verifier into accepting an incorrect answer,
a polynomial time prover will be unable to break the primitive. The use of cryptography often allows argu-
ment systems to achieve additional desirable properties that are unattainable for interactive proofs, such as
reusability (i.e., the ability for the verifier to reuse the same “secret state” to outsource many computations
on the same input), zero-knowledge, public verifiability, etc. These properties will be discussed in more
detail later in this survey.

2.2 Schwartz-Zippel Lemma

2.2.1 Terminolgy

For an m-variate polynomial g, the degree of a term of g is the sum of the exponents of the variables in the
term. For example if g(x1,x2) = 7x2

1x2 + 6x4
2, then the degree of the term 7x2

1x2 is 3, and the degree of the

7

term 6x4
2 is 4. The total degree of g is the maximum of the degree of any term of g.

2.2.2 The Lemma Itself

Interactive proofs frequently exploit the following basic property of polynomials, which is commonly known
as the Schwartz-Zippel lemma [Sch80, Zip79].

Lemma 2.3 (Schwartz-Zippel Lemma). Let F be any field, and let g : Fm! F be a nonzero polynomial of
total degree at most d. Then on any finite set S✓ F,

Pr
x Sm

[g(x) = 0] d/|S|.

In words, if x is chosen uniformly at random from Sm, then the probability that g(x) = 0 is at most d/|S|.
In particular, any two distinct polynomials of total degree at most d can agree on at most d/|S| fraction of
points in Sm.

We will not prove the lemma above, but it is easy to find a proof online (see, e.g., the wikipedia article
on the lemma). An easy implication of the Schwartz-Zippel lemma is that for any two distinct m-variate
polynomials p and q of total degree at most d over F, p(x) = q(x) for at most a d/|F| fraction of inputs. The
lecture on Reed-Solomon fingerprinting exploited precisely this implication in the special case of univariate
polynomials (i.e., m = 1).

2.3 Low Degree and Multilinear Extensions

Let F be any finite field, and let f : {0,1}v ! F be any function mapping the v-dimensional Boolean hy-
percube to F. A v-variate polynomial g over F is said to be an extension of f if g agrees with f at all
Boolean-valued inputs, i.e., g(x) = f (x) for all x 2 {0,1}v.2

Preview: Why low-degree extensions are useful. One can think of a (low-degree) extension g of f as
an error-corrected (or, at least, distance-amplifying) encoding of f in the following sense: if two Boolean
functions f , f 0 disagree at even a single input, then any degree d extensions g, g0 must differ almost every-
where (assuming d ⌧ |F|). This is made precise by the Schwartz-Zippel lemma above, which guarantees
that g and g0 agree on at most d/|F| fraction of points in Fv. As we will see in the next subsection, these
error-correcting properties give the verifier surprising power over the prover.

Definition 2.4. A multivariate polynomial g is multilinear if the degree of the polynomial in each variable
is at most one.

For example, the polynomial g(x1,x2) = x1x2 +4x1 +3x2 is multilinear, but the polynomial h(x1,x2) =
x2

2 +4x1 +3x2 is not.
Throughout this course, we will frequently use the following fact.

Fact 2.5. Any function f : {0,1}v! {0,1} has a unique multilinear extension (MLE) over F, and we reserve
the notation ef for this special extension of f .

That is, ef , is the unique multilinear polynomial over F satisfying ef (x) = f (x) for all x 2 {0,1}v. See
Figure 3 for an example of a function and its multilinear extension.

MLEs have a particularly simple representation, given by Lagrange interpolation:
2Later in this course, we will consider extensions of functions f : {0, . . . ,M� 1}v! F with M > 1. In this case, we say that

g : Fv! F extends f if g(x) = f (x) for all x 2 {0, . . . ,M�1}v. Here, we interpret each number in {0, . . . ,M�1} as elements of F
via any efficiently computable injection from {0, . . . ,M�1} to F.

8

0	 1	
0	

1	

Figure 2: A function f mapping {0,1}2 to the field F5.

0	 1	 2	 3	 4	
0	

1	

2	

3	

4	

Figure 3: The multilinear extension, ef of f over F5.

Lemma 2.6. Let f : {0,1}v! F be any function. Then, as formal polynomials,

ef (x1, . . . ,xv) = Â
w2{0,1}v

f (w) ·cw(x1, . . . ,xv), (1)

where, for any w = (w1, . . . ,wv),

cw(x1, . . . ,xv) :=
v

’
i=1

(xiwi +(1� xi)(1�wi)). (2)

Proof. For any vector w 2 {0,1}v, cw is the unique multilinear polynomial satisfying: cw(w) = 0, and
cw(y) = 0 for all other vectors y 2 {0,1}v. Clearly the right hand side of Equation (1) is a multilinear
polynomial in (x1, . . . ,xv), so in order to show that it is equal to the unique MLE of f , we need only show
that Âw2{0,1}v f (w) · cw(y) = f (y) for all Boolean vectors y 2 {0,1}v; this is immediate from the previous
sentence.

Suppose that the verifier is given as input the values f (w) for all n = 2v Boolean vectors w 2 {0,1}v.
Equation (1) yields two efficient methods for evaluating ef at any point r2Fv, The first method was described
in [CTY10]: it requires O(n logn) time, and allows V to make a single streaming pass over the f (w) values
while using v+ 1 = O(logn) words of space. The second method is due to Vu et al. [VSBW13]: it shaves
a logarithmic factor off of V’s runtime, bringing it down to linear time, i.e., O(n), but increases V’s space
usage to O(n).

Lemma 2.7 ([CTY10]). Fix a positive integer v and let n = 2v. Given as input f (w) for all w 2 {0,1}v

and a vector r 2 Flogn, V can compute ef (r) in O(n logn) time and O(logn) words of space with a single
streaming pass over the input (regardless of the order in which the f (w) value are presented).

Proof. V can compute the right hand side of Equation (1) incrementally from the stream by initializing
ef (r) 0, and processing each update (w, f (w)) via:

ef (r) ef (r)+ f (w) ·cw(r).

9

V only needs to store ef (r) and r, which requires O(logn) words of memory (one for each entry of r).
Moreover, for any w, cw(r) can be computed in O(logn) field operations (see Equation (2)), and thus V can
compute ef (r) with one pass over the stream, using O(logn) words of space and O(logn) field operations
per update.

Lemma 2.8 ([VSBW13]). Fix a postive integer v, and let n = 2v. Given as input f (w) for all w 2 {0,1}v

and a vector r = (r1, . . . ,rv) 2 Flogn, V can compute ef (r) in O(n) time and O(n) space.

Proof. Notice the right hand side of Equation (1) expresses ef (r) as the inner product of two n-dimensional
vectors, where the w’th entry of the first vector is f (w) and the wth entry of the second vector is cw(r). This
inner product can be computed in O(n) time given a table of size n whose wth entry contains the quantity
cw(r). Vu et al. show how to build such a table in time O(n) using memoization.

The memoization procedure consists of v = logn stages, where Stage j constructs a table A(j) of size
2 j, such that for any (w1, . . . ,w j) 2 {0,1} j, A(j)[(w1, . . . ,w j)] = ’ j

i=1 cwi(ri). Notice A(j)[(w1, . . . ,w j)] =
A(j�1)[(w1, . . . ,w j�1)] ·(w jr j +(1�w j)(1� r j)), and so the jth stage of the memoization procedure requires
time O(2 j). The total time across all logn stages is therefore O(Âlogn

j=1 2 j) = O(2logn) = O(n).

2.4 Sum-Check Protocol

Suppose we are given a v-variate polynomial g defined over a finite field F. The purpose of the sum-check
protocol [LFKN92] is to compute the sum:

H := Â
b12{0,1}

Â
b22{0,1}

. . . Â
bv2{0,1}

g(b1, . . . ,bv).

In applications, this sum will often be over a very large number of terms, so the verifier may not have
the resources to compute the sum without help. Instead, she uses the sum-check protocol to force the prover
to compute the sum for her.

Remark 1. In full generality, the sum-check protocol can compute the sum Âb2Bmg(b) for any B✓ F, but
most of the applications covered in this survey will only require B = {0,1}.

For presentation purposes, we assume here that the verifier has oracle access to g, i.e., V can evaluate
g(r1, . . . ,rv) for a randomly chosen vector (r1, . . . ,rv) 2 Fv with a single query to an oracle, though this will
not be the case in applications. In our applications, V will either be able to efficiently evaluate g(r1, . . . ,rv)
unaided, or if this is not the case, V will ask the prover to tell her g(r1, . . . ,rv), and P will subsequently
prove this claim is correct via further applications of the sum-check protocol.

The protocol proceeds in v rounds. In the first round, the prover sends a polynomial g1(X1), and claims
that g1(X1) = Â(x2,...,xv)2{0,1}v�1 g(X1,x2, . . . ,xv). If g1 is as claimed, then H = g1(0)+g1(1).

Throughout, let degi(p) denote the degree of variable i in variable p. The polynomial g1(X1) has degree
deg1(g). Hence g1 can be specified with deg1(g)+1 field elements, for example by sending the evaluation
of g1 at each point in the set {0,1, . . . ,deg1(g)}.

Then, in round j > 1, V chooses a value r j�1 uniformly at random from F and sends r j�1 to P . We refer
to this step by saying that variable j�1 gets bound to value r j�1. In return, the prover sends a polynomial
g j(Xj), and claims that

g j(Xj) = Â
(x j+1,...,xv)2{0,1}v� j

g(r1, . . . ,r j�1,Xj,x j+1, . . . ,xv). (3)

10

The verifier compares the two most recent polynomials by checking g j�1(r j�1) = g j(0)+ g j(1), and
rejecting otherwise. The verifier also rejects if the degree of g j is too high: each g j should have degree
deg j(g), the degree of variable x j in g.

In the final round, the prover has sent gv(Xv) which is claimed to be g(r1, . . . ,rv�1,Xv). V now checks that
gv(rv) = g(r1, . . . ,rv) (recall that we assumed V has oracle access to g). If this test succeeds, and so do all
previous tests, then the verifier is convinced that H = g1(0)+g1(1).

The protocol is summarized below.

Description of Sum-Check Protocol.

• Fix an H 2 F.

• In the first round, P sends the univariate polynomial

g1(X1) := Â
(x2,...,xv)2{0,1}v�1

g(X1,x2, . . . ,xv).

V checks that g1 is a univariate polynomial of degree at most deg1(g), and that H = g1(0)+
g1(1), rejecting if not.

• V chooses a random element r1 2 F, and sends r1 to P .

• In the jth round, for 1 < j < v, P sends to V the univariate polynomial

g j(Xj) = Â
(x j+1,...,xv)2{0,1}v� j

g(r1, . . . ,r j�1,Xj,x j+1, . . . ,xv).

V checks that g j is a univariate polynomial of degree at most deg j(g), and that g j�1(r j�1) =
g j(0)+g j(1), rejecting if not.

• V chooses a random element r j 2 F, and sends r j to P .

• In Round v, P sends the univariate polynomial

gv(Xv) = g(r1, . . . ,rv�1,Xv)

to V . V checks that gv is a univariate polynomial of degree at most degv(g), rejecting if not.

• V chooses a random element rv 2 F and evaluates g(r1, . . . ,rv) with a single oracle query to g.
V checks that gv(rv) = g(r1, . . . ,rv), rejecting if not.

• If V has not yet rejected, V halts and accepts.

The following proposition formalizes the completeness and soundness properties of the sum-check pro-
tocol.

Proposition 2.9. Let g be a v-variate polynomial of total degree at most d defined over a finite field F. For
any H 2 F, let L be the language of of polynomials g (given as an oracle) such that

H = Â
b12{0,1}

Â
b22{0,1}

. . . Â
bv2{0,1}

g(b1, . . . ,bv).

The sum-check protocol is an interactive proof system for L with completeness error dc = 0 and sound-
ness error ds  vd/|F|.

Proof. Completeness is evident: if the prover sends the prescribed polynomial g j(Xj) at all rounds j, then
V will accept with probability 1.

11

Communication Rounds V time P time
O(Âv

i=1 degi(g)|) field elements v at most O(Âv
i=1 degi(g)) + T at most O(2v ·T)

Table 1: Costs of sum-check protocol when applied to a v-variate polynomial g over F. degi(g) denotes the degree of
variable i in g, and T denotes the cost of an oracle query to g.

The proof of soundness is by induction on v. In the case v = 1, P’s only message specifies a degree
d univariate polynomial g1(X1). If g1(X1) 6= g(X1), then by Lemma 2.3, g1(r1) 6= g(r1) with probability at
least 1�d/|F| over the choice of r1, and hence V’s final check will cause V to reject with probably at least
1�d/|F|.

Assume by way of induction that for all v�1-variate polynomials, the sum-check protocol has soundness
error at most (v� 1)d/|F|. Let h1(X1) = Âx2,...,xv2{0,1}v�1 g(X1,x2, . . . ,xv). Suppose P sends a polynomial
g1(X1) 6= h1(X1) in Round 1. Then by Lemma 2.3, h1(r1) 6= g1(r1) with probability at least 1�d/|F|. Condi-
tioned on this event, P is left to prove the false claim in Round 2 that g1(r1)=Â(x2,...,xv)2{0,1}v�1 g(r1,x2, . . . ,xv).
Since g(r1,x2, . . . ,xv) is a v�1-variate polynomial of total degree d, the inductive hypothesis implies the V
will reject at some subsequent round of the protocol with probability at least 1�d(v�1)/|F|. Therefore, V
will reject with probability at least

1�Pr[h1(r1) 6= g1(r1)]� (1�Pr[V rejects in some Round j > 1|h1(r1) 6= g1(r1)])

� 1� d
|F| �

d(v�1)
|F| = 1� dv

|F| .

Discussion of costs. There is one round in the sum-check protocol for each of the v variables of g. The
total communication is Âv

i=1 degi(g)+ 1 = v+Âv
i=1 degi(g) field elements. In particular, if degi(g) = O(1)

for all j, then the communication cost is O(v) field elements.
The running time of the verifier over the entire execution of the protocol is proportional to the total

communication, plus the cost of a single oracle query to g to compute g(r1, . . . ,rv).
Determining the running time of the prover is less straightforward. Recall that P can specify g j by

sending for each i 2 {0, . . . ,deg j(g)} the value:

g j(i) = Â
(x j+1,...,xv)2{0,1}v� j

g(r1, . . . ,r j�1, i,x j+1, . . . ,xv). (4)

An important insight is that the number of terms defining the value g j(i) in Equation (4) falls geo-
metrically with j: in the jth sum, there are only 2v� j terms, each corresponding to a Boolean vector
in {0,1}v� j. Thus, the total number of terms that must be evaluated over the course of the protocol is
Âv

j=1 deg j(g)2v� j = O(2v) if deg j(g) = O(1) for all j. Consequently, if P is given oracle access to g, then
P will require just O(2v) time.

In all of the applications covered in this survey, P will not have oracle access to the truth table of g,
and the key to many of the results in this survey is to show that P can nonetheless evaluate g at all of the
necessary points in close to O(2v) total time.

The costs of the sum-check protocol are summarized in Table 1. Since P and V will not be given oracle
access to g in applications, the table makes the number of oracle queries to g explicit.

12

Preview: Why multilinear extensions are useful. We will see several scenarios where it is useful to
compute H = Âx2{0,1}v f (x) for some function f : {0,1}v ! F derived from the verifier’s input. We can
compute H by applying the sum-check protocol to any low-degree extension g of f . When g = ef , or is
derived from ef in some way, then Equation (1) can often be exploited to ensure that enormous cancellations
occur in the computation of the prover’s messages, allowing fast computation.

Preview: Why using multilinear extensions is not always possible. Although the use of the MLE ef
typically ensures fast computation for the prover, ef cannot be used in all applications. The reason is that the
verifier has to be able to evaluate ef at a random point r 2 Fv to perform the final check in the sum-check
protocol, and in some settings, this computation would be too costly.

Equation (1) gives a way for V to evaluate f̃ (r) in time Õ(2v), since it represents f̃ (r) as a sum of 2v

terms. This might or might not be an acceptable runtime, depending on the relationship between v and the
verifier’s input size n. If v = logn+poly(log logn), then Õ(2v) = Õ(n), and the verifier runs in quasilinear
time. But we will see some applications where v = c logn for some constant c > 1, and others where v = n
(cf. the #SAT protocol in the next lecture). In these settings, Õ(2v) runtime for the verifier is unacceptable,
and we will be forced to use an extension g of f that has a succinct representation, enabling V to compute
g(r) in o(2v) time. Sometimes ef itself has such a succinct representation, but other times we will be forced
to use a higher-degree extension of f .

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof veri-
fication and the hardness of approximation problems. Journal of the ACM (JACM), 45(3):501–
555, 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
np. Journal of the ACM (JACM), 45(1):70–122, 1998.

[Bab85] László Babai. Trading group theory for randomness. In Robert Sedgewick, editor, STOC, pages
421–429. ACM, 1985.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-
prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[BM88] László Babai and Shlomo Moran. Arthur-merlin games: a randomized proof system, and a
hierarchy of complexity classes. Journal of Computer and System Sciences, 36(2):254–276,
1988.

[CTY10] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive
proofs. Electronic Colloquium on Computational Complexity (ECCC), 17:159, 2010.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989.

13

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In Juris Hartmanis, editor, STOC, pages 59–68. ACM, 1986.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for inter-
active proof systems. J. ACM, 39:859–868, October 1992.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701–717, October 1980.

[Sha90] Adi Shamir. IP=PSPACE. In 31st Annual Symposium on Foundations of Computer Science, St.
Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 11–15. IEEE Computer Society,
1990.

[VSBW13] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid architecture
for interactive verifiable computation. In 2013 IEEE Symposium on Security and Privacy, SP
2013, Berkeley, CA, USA, May 19-22, 2013, pages 223–237. IEEE Computer Society, 2013.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng, editor,
EUROSAM, volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer, 1979.

14

