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Abstract

Lasso (Setty, Thaler, Wahby, ePrint 2023/1216) is a recent lookup argument that ensures that the
prover cryptographically commits to only “small” values. This note describes BabySpartan, a SNARK for
a large class of constraint systems that achieves the same property. The SNARK is a simple combination of
SuperSpartan and Lasso. The specific class of constraint systems supported is a generalization of so-called
Plonkish constraint systems (and a special case of customizable constraint systems (CCS)). Whereas a
recent work called Jolt (Arun, Setty, and Thaler, ePrint 2023/1217) can be viewed as an application of
Lasso to uniform computation, BabySpartan can be viewed as applying Lasso to non-uniform computation.

1 Introduction

A succinct non-interactive argument of knowledge (SNARK) [Kil92, Mic94, GGPR13] allows an untrusted
prover to prove that it knows a witness satisfying some property. Most SNARKs are designed by com-
bining a protocol called a polynomial IOP with a polynomial commitment scheme. Popular examples of
polynomial commitment schemes include KZG [KZG10] and FRI [BBHR18] (for univariate polynomials),
and KZG+Gemini [BCHO22], Zeromorph [KT23], Ligero [AHIV17], Brakedown [GLS+23], Hyrax [WTS+18],
and Bulletproofs/IPA [BCC+16, BBB+18] (for univariate or multilinear polynomials).

The notion of Plonkish constraint systems was introduced to roughly capture the most general class of
constraint systems that Plonk [GWC19], a popular SNARK, can prove statements about. However, the
polynomial IOP underlying Plonk requires the prover to commit to many random field elements, even when
all variables in the witness are small. Such random field elements are much more expensive to commit to
with many polynomial commitment schemes, especially those based on elliptic curve group operations, such
as Bulletproofs/IPA, KZG and its variants, and Hyrax.

SuperSpartan [STW23a], a natural generalization of Spartan [Set20], is an alternative SNARK for that applies
to a substantial generalization of Plonkish constraint systems. This generalization is called customizable
constraint systems (CCS). In the case of “uniform” CCS instances, the Super-Spartan prover does not commit
to any random values (we will define what we mean by uniform shortly). However, for non-uniform instances
of CCS, the SuperSpartan prover does commit to a number of random values that is linear in the number of
non-zero entries of the CCS constraint matrices.

In this note, we describe an alternative SNARK, which we refer to as BabySpartan, for Plonkish that avoids
the prover committing to random values. This construction is a combination of SuperSpartan [STW23a]
and Lasso [STW23b] (the latter is also a generalization of a core component of Spartan [Set20] to obtain a
lookup argument). In particular, BabySpartan can be viewed as a SNARK for non-uniform circuits built
from (indexed) lookup arguments.

We hope that BabySpartan makes it easier to combine the performance benefits of Lasso with existing tooling,
which often involves non-uniform constraint systems.
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2 Preliminaries

2.1 Background on the sum-check protocol

Let g be an ℓ-variate polynomial over field F. The sum-check protocol [LFKN90] is an interactive proof for
proving claims of the form, where T ∈ F:

T =
∑

x∈{0,1}ℓ

g(x). (1)

It consists of ℓ rounds, with the prover sending a univariate polynomial si in each round i, whereby the
degree of si is at most the degree of g in its ith variable. At the end of the sum-check protocol, the verifier
must evaluate g(r) for a single r ∈ Fℓ. Hence, from the verifier’s perspective, the sum-check protocol is a
reduction from the task of checking Equation (1), which involves evaluating g at 2ℓ inputs and summing the
results, to the potentially easier task of evaluating g at the single random point r.

Theorem 1. The sum-check protocol is a perfectly complete interactive proof protocol for proving

T =
∑

x∈{0,1}ℓ

g(x),

with soundness error at most ℓ · d/|F|.

The sum-check protocol is public-coin, which means it can be rendered non-interactive via the Fiat-Shamir
transformation [FS86]. It is known to satisfy round-by-round soundness, and hence if the interactive protocol
has soundness error 2−λ, the non-interactive protocol obtained by applying Fiat-Shamir has roughly λ bits of
security [BCS16, CCH+19, CMS19].

An ℓ-variate polynomial is said to be multilinear if it has degree at most one in each variable. It is well-known
that if g(x) =

∏k
i=1 pi(x) where each pi is multilinear, then given as input {pi(x) : x ∈ {0, 1}ℓ, i = 1, . . . , k},

the sum-check protocol prover applied to g can be implemented in Ok(2
ℓ) time, where the Ok notation hides

a dependence on k that is at most quadratic [Tha13, STW23a].

2.2 Multilinear extensions

It is well-known that for any function f : {0, 1}ℓ → F, there exists a unique ℓ-variate multilinear polynomial

f̃ such that f̃(x) = f(x) for all x ∈ {0, 1}ℓ. We refer to f̃ as the multilinear extension of f .

For a vector a ∈ Fn, where n is a power of 2, we similarly define the multilinear extension ã : Flogn → F as
follows. Interpret a in the natural way as listing all n evaluations of a function with domain {0, 1}logn, and
define ã to be the multilinear extension of this function.

Lagrange basis polynomials. For any S ∈ {0, 1}ℓ, let

χS(x) =

ℓ∏
i=1

(xi · Si + (1− xi) · (1− Si))

denote the S’th multilinear Lagrange basis polynomial. For example, if ℓ = 4 and S = (0, 1, 1, 0), then
χS(x) = (1− xi) · x2 · x3 · (1− x4).

The following lemma is also well-known. Below, we index entries of a ∈ Fn by integers in {0, 1, . . . , n− 1},
and, in the natural way, associate each such integer with a bit vector in {0, 1}logn and vice versa.

Lemma 1 (Multilinear Lagrange interpolation). For any vector a ∈ Fn, ã(r) =
∑n−1

i=0 ai · χi(r).

Let ẽqℓ : Fℓ × Fℓ → F be the following multilinear polynomial:

ẽqℓ(x, y) =
ℓ∏

j=1

(xj · yj + (1− xj) · (1− yj)) .
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ẽqℓ is the unique multilinear polynomial satisfying, for all x, y ∈ {0, 1}ℓ,

ẽqℓ(x, y) =

{
1 if x = y

0 otherwise.

That is, ẽqℓ is the so-called multilinear extension of the equality function over {0, 1}ℓ × {0, 1}ℓ. Note that for
any S ∈ {0, 1}ℓ, ẽqℓ(S, y) = χS(y). We omit the subscript ℓ from ẽqℓ when ℓ is clear from context.

2.3 Customizable constraint systems

The following notion of customizable constraint systems (CCS) is defined in [STW23a]. CCS generalizes
popular constraint systems including Plonkish, R1CS, and AIR without overheads.

Definition 2.1 (CCS). A CCS structure S consists of:

• size bounds m,n,N, ℓ, t, q, d ∈ N where n > ℓ;

• a sequence of matrices M0, . . . ,Mt−1 ∈ Fm×n with at most N = Ω(max(m,n)) non-zero entries in total;

• a sequence of q multisets [S0, . . . , Sq−1], where an element in each multiset is from the domain

{0, . . . , t− 1}

and the cardinality of each multiset is at most d.

• a sequence of q constants [c0, . . . , cq−1], where each constant is from F.

A CCS instance consists of public input x ∈ Fℓ. A CCS witness consists of a vector w ∈ Fn−ℓ−1. A CCS
structure-instance tuple (S, x) is satisfied by a CCS witness w if

q−1∑
i=0

ci ·⃝j∈Si
Mj · z = 0, (2)

where
z = (w, 1, x) ∈ Fn, (3)

Mj · z denotes matrix-vector multiplication, ⃝ denotes the Hadamard product between vectors, and 0 is an
m-sized vector with entries equal to the the additive identity in F.

2.4 Polynomial IOPs and polynomial commitments

Roughly, a polynomial IOP is an interactive protocol where, in one or more rounds, the prover may send to
the verifier a large polynomial g. Because g is so large, one does not wish for the verifier to read a complete
description of g. Instead, in any efficient polynomial IOP, the verifier only “queries” g at one point (or a
handful of points). This means that the only information the verifier needs about g to check that the prover
is behaving honestly is one (or a few) evaluations of g.

In turn, a polynomial commitment scheme enables an untrusted prover to succinctly commit to a polynomial
g, and later provide to the verifier any evaluation g(r) for a point r chosen by the verifier, along with a
proof that the returned value is indeed consistent with the committed polynomial. Essentially, a polynomial
commitment scheme is exactly the cryptographic primitive that one needs to obtain a succinct argument
from a polynomial IOP. Rather than having the prover send a large polynomial g to the verifier as in the
polynomial IOP, the argument system prover instead cryptographically commits to g and later reveals any
evaluations of g required by the verifier to perform its checks.

3



2.5 Indexed lookup arguments

A lookup argument allows an untrusted prover to commit to a vector a ∈ Fm and prove that all entries of a
reside in some predetermined table t ∈ Fn. In an indexed lookup argument, in addition to a commitment
to a ∈ Fm, the verifier is handed a commitment to a second vector b ∈ Fm. The prover claims that for all
i = 1, . . . ,m, ai = tbi . We refer to a as the vector of looked-up values, and b as the vector of indices.

Definition 2.2 (Statement proven in an indexed lookup argument). Given commitment cma and cmb, and a
public array T of N field elements, represented as vector t = (t0, . . . , tN−1) ∈ FN to which the verifier has
(possibly) been provided a commitment cmt, the prover knows an opening a = (a0, . . . , am−1) ∈ Fm of cma

and b = (b0, . . . , bm−1) ∈ Fm of cmb such that for each i = 0, . . . ,m− 1, ai = T [bj ], where T [bj ] is short hand
for the bj’th entry of t.

Lasso [STW23b] gives an indexed lookup argument where the prover commits to a vector of length m, referred
to as “read counts”, and a second vector of length n, referred to as “final counts”. When the prover is honest,
all of the read counts and final counts are in {0, . . . ,m},

3 BabySpartan: Lasso-based SNARK for non-uniform circuits

To describe BabySpartan, it is cleanest to first focus on a popular special case of CCS, namely R1CS. In this
case, the prover commits to a witness vector vector z ∈ Fn and the prover’s goal is to prove that Az ◦Bz = Cz
where A, B, and C are public m× n matrices and ◦ denotes the Hadamard (i.e., entry-wise) vector product.
BabySpartan can be viewed as a simple modification of SuperSpartan to incorporate Lasso.

Let a = Az, b = Bz, and c = Cz. The SuperSpartan prover runs two instances of the sum-check
protocol [LFKN90]. In the first instance, the verifier selects a random τ ∈ Flogm, and applies the sum-check
protocol to the polynomial

g(x) = ẽq(τ, x)
(
ã(x) · b̃(x)− c̃(x)

)
,

using it to confirm that

0 =
∑

x∈{0,1}log m

g(x).

If z satisfies the constraint system then this equality is guaranteed to hold, and if z does not satisfy the
constraint system then this equality will fail to hold with probability at least 1− 2 logm/|F|.

At the end of this first invocation of the sum-check protocol, the verifier has to evaluate ã(r), b̃(r) and c̃(r) at
a random point r ∈ Flogm. Hence, this first instance of the sum-check protocol reduced the task of checking
that z satisfies the constraint system, to the task of evaluating the multilinear extensions of a, b, and c each
at a random point r ∈ Flogm.

Lasso [STW23b] provides a protocol for this task when A,B,C have exactly one non-zero entry per row
and were committed in a pre-processing phase (using any multilinear polynomial commitment scheme).
So, BabySpartan simply invokes Lasso for this task. This completes a description of BabySpartan. For
completeness, in the next section we unpack how Lasso works in this context.

3.1 Details of using Lasso to compute ã(r), b̃(r), and c̃(r)

Background on SuperSpartan. In SuperSpartan [STW23a], the verifier invokes the sum-check protocol

a second time to reduce the task of computing ã(r) to that of evaluating Ã(r, r′) and z̃(r′) for some random

r′ ∈ Flogn, and similarly for B̃ and C̃. z̃(r′) can be obtained from the commitment to z̃, via one evaluation
query at evaluation point r′.

If Ã(r, r′) can be evaluated in (poly)logarithmic time, then the verifier can compute this quantity on its
own and still run in (poly)logarithmic time (this is what we mean above by “uniform” R1CS instances).

But, for general matrices A ∈ Fm×n, the amount of time required to evaluate Ã(r, r′) may be linear in

the number of non-zero entries of A. In this case, SuperSpartan assumes that Ã has been committed in
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pre-processing by an honest party, using a so-called sparse polynomial commitment scheme that it describes,
called Spark [Set20]. Spark provides a procedure to prove an evaluation of Ã(r, r′). Unfortunately, this
procedure requires the prover to commit to many random field elements (the number of committed random
field elements is proportional to the number of non-zero entries of A). Lasso shows how to avoid the prover
needing to commit to random field elements.

Details of Lasso. Lasso is a generalization of Spark. In both Spark and Lasso, the matrix A is committed
with dense vectors in the same way. Specifically, the commitment is to two vectors u and v of length m. The
first vector u has i’th entry equal to index (in {0, . . . , n− 1}) of the unique column with non-zero entry in
row i of A. The second vector v has i’th entry equal to Ai,ui). Note that u and v together completely specify
the matrix A. In the context of a SNARK for R1CS, such a commitment is created by the verifier (or another
trusted party) in a preprocessing step.

The proof of the value of ã(r). Recall that a = Az, where A was committed in a preprocessing phase
by an honest party as per the above paragraph, and z̃ was committed by the prover using any polynomial
commitment scheme.

Lasso uses the following expression for ã:

ã(x) =

m∑
i=1

ẽq(x, i) · vi · zui
. (4)

To see that Equation (4) holds, observe that the right hand side is clearly a multilinear polynomial in x.
Moreover, it agrees with a for all inputs x ∈ {0, 1}logm. This holds because, if Aj denotes the j’th column of
z, then

a = Az =

m−1∑
i=0

Ai,ui · zui .

And so the x’th entry of a equals

m∑
i=1

ẽq(i, x) ·Ai,ui
· zui

=

m∑
i=1

ẽq(i, x) · vi · zui
. (5)

Hence, the right hand side of Equation (4) must equal the unique multilinear extension of a.

Accordingly, to prove what is the value of ã(r), the Lasso prover commits to a vector w ∈ Fm whose i’th
entry is purportedly zui

. Lasso then applies the sum-check protocol to the (logm)-variate polynomial

g(y) = ẽq(r, y) · ṽ(y) · w̃(y)

to confirm that Expression (5) equals the claimed value of ã(r). At the end of the sum-check protocol, the
verifier needs to evaluate g at a random point r′′′. It can evaluate ẽq(r, r′′′) on its own in O(logm) time,
while ṽ(r′′′) and w̃(r′′′) can be obtained from the commitments to ṽ and w̃ respectively.

All that remains is for the verifier to confirm that w̃(x) = zũ(x) for all x ∈ {0, 1}logm. Lasso gives a way to
do this based on a technique called offline memory-checking [BEG+91, SAGL18, Set20, GLS+23].1

Specifically, mapping our setting to the indexed lookup argument in Lasso, z is the lookup table, u is the
indices of the m lookups, and and w is the claimed results of the lookups.

1Spark that underlies SuperSpartan also uses the offline memory checking, but the lookup argument is applied on tables that
contain evaluations of the ẽq polynomial (at certain randomly-chosen inputs), for the purpose of proving sparse polynomial
evaluations. Even if z contains “small” field elements, these tables contain random field elements, so the lookup argument ends
up requiring the prover to commit to random field elements.
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For completeness, we sketch how the lookup argument works. Consider the length-m vector q whose i’th
entry is the number of rows j ≤ i with uj = ui. The prover commits to a length-m vector y whose i’th entry
is zui

(here, z can be thought of as a lookup table), as well as a length-m vector α whose i’th entry is the
number of rows j ≤ i with uj = ui (think of these as read-counts, i.e., the i’th row specifies which cell of
z is read by the i’th read operation, and αi describes how many times the memory cell read at time i has
been read by earlier read operations), followed by a length-n vector β whose j’th entry is the total number of
non-zero entries in column j of A (think of these values as final counts). Using these committed values, Lasso
gives a way to confirm that yi = zui for i = 1, . . . ,m. Roughly speaking, it confirms that the vector of (value,
count) pairs returned by read operations is a permutation of the vector of (value, count) pairs obtained by
combining the “initialization“ (i.e., commitment to) the lookup table z with the (value, count) pairs obtained
by incrementing each read-count by 1.

3.2 The SNARK

In general, our SNARK, BabySpartan, applies to CCS instances in which each constraint matrix M0, . . . ,Mt−1

has exactly one non-zero entry per row. Our prior work [STW23a] described a simple and essentially costless
transformation from Plonkish constraint systems to CCS that is guaranteed to yield CCS constraint matrices
of this form.

Specifically, after the prover commits to the multilinear extension of a purported solution vector z for the CCS
instance,2 SuperSpartan [STW23a] invokes the sum-check protocol once to reduce the task of confirming that
z is a solution, to the task of evaluating ãi(r) for a random r ∈ Flogm, where ai = Mi · z for i = 0, . . . , t− 1.
As explained in Section 3.1, Lasso directly gives a SNARK for computing ãi(r).

Note that multiple invocations of Lasso can be batched via standard techniques to ensure that the proof
length of the various invocations of the sum-check protocol underlying Lasso does not grow with the number
t of constraint matrices.

Pre-processing costs. In pre-processing, for each constraint matrix, an honest party commits to m column
identifiers (i.e., the MLE of the vector u), m values (the MLE of the vector v specifying the non-zero entry in
each row), m read-counts (the MLE of the vector α) and n final-counts (the MLE of the vector β).

Prover costs. The prover commits to (the MLE of) the solution vector z of length n, and for each constraint
matrix it commits to (the MLE of) the length-m vector w of claimed results to the lookups into z.

Note that if the prover is honest, none of the committed vectors have any entries larger than those in z, or
those of the constraint matrices, or the number m and n of rows and columns of the constraint matrices.
This is what we mean when we say the prover only commits to small values. For all of these commitments
(including the ones computed in pre-processing), any multilinear polynomial commitment scheme can be used.

The SNARK prover must evaluate Mi · z for each i = 0, . . . , t− 1. The number of field operations required is
clearly proportional to the number of non-zero entries of the constraint matrices. On top of this, the Lasso
prover performs O(m+ n) field operations for each of the t constraint matrices (this does not asymptotically
increase prover field work beyond what is required simply to evaluate Mi · z).

The prover provides one evaluation proof for each committed polynomial (for many polynomial commitment
schemes, evaluation proofs can be batched, so that both prover and verifier roughly pay for only a single
evaluation proof across all committed polynomials and evaluation points).

Verifier costs. The proof size O(log2(n+m)) field elements, plus the evaluation proof provided for each
committed polynomial (see the remark above on batching these evaluation proofs across all committed
polynomials). The verifier’s runtime is O(log2(n+m)) field operations plus the cost of checking the evaluation
proofs. The former can be reduced to O(log(m+n) log log(m+n)) at the cost of a low-order additive increase
in the number of elements the prover commits to (see [STW23b] for details).

2More precisely, if z = (w, 1, x) for a public vector x, then the prover commits to w̃, and z̃(r) can be evaluated efficiently
with one evaluation query to w̃. See [STW23a] for details.
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4 Discussion

Comparison with Diamond and Posen [DP23]. In a new paper, Diamond and Posen [DP23] give an
alternative SNARK for Plonkish constraint systems, in which, like BabySpartan, the prover only commits
to small values. Their SNARK is based on Hyperplonk [CBBZ23] combined with Lasso. Diamond and
Posen also give an improvement to the Ligero/Brakedown [AHIV17, GLS+23] hashing-based polynomial
commitment scheme, enabling extremely fast commitments to “small” values. Their SNARK for Plonkish is
motivated by ease of integration with their polynomial commitment scheme. In particular, it is convenient
for them to view the witness vector z as itself being decomposed into columns, where each column potentially
satisfies a different size bound. This makes Plonkish constraint systems a natural target, and Hyperplonk a
natural starting point for their SNARK.

We think that BabySpartan is conceptually simpler and may have efficiency benefits when combined with
elliptic-curve-based commitment schemes. We leave a careful comparison of Diamond and Posen’s SNARK to
BabySpartan to near-term future work.

Generalizing BabySpartan to handle arbitrary CCS. BabySpartan proves a particular class of CCS
including the ones that we obtain from transforming Plonkish to CCS. One might wonder if it is possible
to extend BabySpartan to handle general CCS instances in which a row of a CCS matrix might have more
than one non-zero entry. There are some possible extensions, but they all end up having the prover pay
cryptographic commitment costs proportional to the number of non-zero entries in the CCS matrices (i.e.,
there are no “free” additions or linear combinations), and require the prover to commit to intermediate state
of the linear combinations (i.e., commit to ”partial linear combinations”).

One can achieve a similar effect by transforming general CCS instances to Plonkish instances (which
introduces additional addition gates to emulate linear combinations) and then apply BabySpartan. Note that
the generality of CCS still allows lower proving costs when SuperSpartan is applied to uniform instances
of CCS (meaning that the multilinear extensions of the constraint matrices are efficiently evaluable by the
verifier). This is because in this case SuperSpartan itself already has the prover only cryptographically commit
to the witness. That is, the prover’s cryptographic costs are proportional only to the size of the witness and
not the number of non-zero entries (so the linear combinations are effectively “free”).

Disclosures. Justin Thaler is a Research Partner at a16z crypto and is an investor in various blockchain-
based platforms, as well as in the crypto ecosystem more broadly (for general a16z disclosures, see https:

//www.a16z.com/disclosures/.)
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