
Justin Thaler
Georgetown University

Verifiable Computing: Between
Theory and Practice

Talk Outline
1.  The VC Model: Interactive Proofs and Arguments
2.  VC Systems: How They Work
3.  Survey and Comparison of Existing VC Implementations
4.  A Brief History of Interactive Proofs (IPs)
5.  Techniques: IPs vs. Other Approaches

Part 1: Model and Motivation

Interactive Proofs (IPs) and Arguments
�  Prover P and Verifier V.

1.  P solves a problem on a given input.
2.  Tells V the answer.
3.  Then P proves to V that the answer is correct.

�  Requirements:
� Completeness: an honest P can convince V to accept.
� Soundness: V will catch a lying P with high probability.

�  IPs: information-theoretically sound [GMR1985, Babai 1985]

�  Arguments: sound against polynomial time P’s. [BCC 1988]

Cloud	Provider	 Business/Agency/Scien5st	

IPs	and	Arguments	

Data	

Cloud	Provider	 Business/Agency/Scien5st	

IPs	and	Arguments	

Data	

Data	
Summary	

Cloud	Provider	 Business/Agency/Scien5st	

IPs	and	Arguments	

Ques5on	

Data	

Answer	
Data	
Summary	

Cloud	Provider	 Business/Agency/Scien5st	

IPs	and	Arguments	

Ques5on	

Data	

Answer	
Data	
Summary	

• Dropped	Data?		
• Uncorrected	fault?	
• Malicious	cloud?	

Cloud	Provider	 Business/Agency/Scien5st	

IPs	and	Arguments	

Ques5on	

Data	

Answer	

Challenge	

Response	

Data	
Summary	

• Dropped	Data?		
• Uncorrected	fault?	
• Malicious	cloud?	

Cloud	Provider	 Business/Agency/Scien5st	

IPs	and	Arguments	

Ques5on	

Data	

Answer	

• Dropped	Data?		
• Uncorrected	fault?	
• Malicious	cloud?	

Challenge	

Response	

Challenge	

Response	

Data	
Summary	

Cloud	Provider	 Business/Agency/Scien5st	

IPs	and	Arguments	

Ques5on	

Data	

Answer	

• Dropped	Data?		
• Uncorrected	fault?	
• Malicious	cloud?	

Challenge	

Response	

Challenge	

Response	

Accept		
or	

Reject	

Goals of Verifiable Computation
1.  Provide user with guarantee of correctness.

�  Ideally user not do (much) more work than just read the input.
�  Ideally cloud will not do much more than just solve the problem.

2.  Applications:

�  Cloud computing.
�  Weak peripheral devices that lack resources to perform required

functionality (e.g., keycard readers).
�  Hardware manufactured in untrusted foundries.

Zero-Knowledge (ZK)
�  Some IPs and arguments are also zero-knowledge.

� They reveal nothing to V other than the validity of the statement
being proven.

�  This enables many additional applications.
�  E.g., Authentication. I publish a cryptographic hash of my

password, and later prove I know a preimage of the hash, without
revealing anything about the preimage.

�  Enables applications that are otherwise impossible.
� Can justify use of a VC system even if costs are higher than desired.

Zero-Knowledge (ZK)
�  Some IPs and arguments are also zero-knowledge.

� They reveal nothing to V other than the validity of the statement
being proven.

�  This enables many additional applications.
�  E.g., Authentication. I publish a cryptographic hash of my

password, and later prove I know a preimage of the hash, without
revealing anything about the preimage.

�  Enables applications that are otherwise impossible.
� Can justify use of a VC system even if costs are higher than desired.

Part 2: General-Purpose VC
Implementations: How They Work

General-Purpose VC Implementations
�  Start with a computer program written in high-level

programming language (C, Java, etc.)
�  Step 1: Turn the program into an equivalent model

amenable to probabilistic checking.
� Typically some type of arithmetic circuit.
� Called the Front End of the system.

�  Step 2: Run an interactive proof or argument on the circuit.
� Called the Back End of the system.

Front End

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

F2 circuit

P and V run interactive proof or
argument system (back end) on circuit

Sources of Prover Overhead in VC Systems
Source of
Overhead

P Overhead vs. Native
(Crude Estimate)

Slowdown Depends On…

Front End
(overhead due to

using a circuit
representation of
the computation)

(ratio of circuit size to
number of machine steps of

original program)
1x-10,000x

•  How amenable is the high-
level computer program is

to representation via
circuits?

•  What type of circuits can
the back-end handle?

Back-End

(ratio of P time to evaluating
circuit gate-by-gate)

10x-1,000x

•  Varies by back-end and
computation structure
(e.g., data parallel?)

Part 3: Survey and Comparison of Existing
VC Implementations

Overview of Backends
�  Four approaches to general-purpose VC systems have been pursued.

� Approach 1: Arguments based on linear PCPs. [IKO 2007, GGPR 2013, BCIOP13]

�  Interactive variants.
�  Non-interactive variants called SNARKs.

� Approach 2: Based on IPs [LFKN 1990, GKR 2008].

� Approach 3: Arguments based on “short PCPs” [BSGHSV04, BSS05, BCGT13, BSCS16]

� Approach 4: Arguments based on garbled circuits or “MPC in the
head”. [Yao 1982, IKOS 2007, JKO2013]

�  So far, useful only for zero-knowledge applications.

Approach VC Systems
Arguments based on

linear PCPs
[SMBW 2012, SVPBBW 2012, SBVBPW 2013,

BSCGTV 2013, PGHR 2013, BSCGGMTV 2014,
BSCTV 2014a, BSCTV 2014b, BBFR 2015,

CTV 2015, CFHKKNPZ 2015, DLFKP 2016]

IPs [CMT 2012, TRMP 2012, VSBW 2013,
Thaler 2013, WHGSW 2016, WJBSTWW 2017,

 ZGKPP 2017]

Arguments based on
short PCPs

[BSBTCGCHPRSTV 2017]

Arguments based on
garbled circuits or
MPC-in-the-head

[JKO 2013, GMO 2016]

SNARKs vs. IPs: Advantages and
Limitations

Advantages of SNARKs over IPs
1.  Zero-Knowledge.

�  SNARKs are, IPs are not.

2.  Succinctness (i.e., very short proofs).
� Consider the arithmetic CIRCUIT-SAT problem.
� Given: circuit taking two inputs, first input , and (claimed) outputs y .

� Assume that P knows a such that C(x, w)=y
� Goal: confirm this is the case.

� An argument is succinct if the proof length is o(|w|).

�  SNARKs have proof length |y| + O(1) group elements.

�  IPs have proof length |y| + |w| + O(d * log field elements.
�  d is circuit depth and Sis circuit size.

C x y
C(x,w) = y.

o(|w |).
| y |+O(1)

w

| y |+ |w |+O(d ⋅ logS)
d S

Why is Succinctness Important?
1.  Shorter proofs are obviously better.

�  In blockchain applications, proofs must “live on the blockchain” forever.

2.  In some zero-knowledge applications, witness is naturally large.
�  E.g., hospital publishes cryptographic hash of a massive database w of

patient records, later proves it ran a specific analysis on

3.  Enables more efficient front ends.
�  E.g., can turn any computer program running in time T into a

CIRCUIT-SAT instance of size T*polylog(T).
�  But the witness size |w| is
�  So need proof length o(|w|) if we want V to run in time

T
T ⋅poly log(T).

T ⋅poly log(T).|w |
o(T).o(|w |)

w
w.

�  A trace of program M on input x is the list of the (time, configuration)
pairs that arise when running M on x.
�  A configuration specifies the bits in M’s program counter and registers.

�  C takes x as explicit input, and takes an entire trace of M as non-
deterministic input.

�  C then checks the trace for correctness, and if so outputs whatever M
outputs in the trace.

So M accepts x if and only if there is some trace w such that C(x, w)=1.
C must check two properties of the trace.

ime consistency (the claimed state at time t correctly follows from the claimed state at
time t-1).
Memory consistency (whenever M reads a value from a memory location, the value
that is returned is the last value that was written).
Time-consistency is easy to check: represent M’s transition function as a small subcircuit,
apply it to each entry t of the trace and check that it equals entry t+1.
Checking memory consistency is done by “re-sorting the trasncript based on memory
location, with ties broken by time.

x Purported Trace of M’s Execution on x

Circuit C checks if the trace actually
corresponds to M’s executing on x
(This requires T * polylog(T) gates)

Outputs 1 iff trace is correct and ends with M outputting 1.

Sketch of the Transformation
[GS 1989, Robson 1991, BSCGT 2013]

Advantages of IPs over SNARKs
1.  IPs have much faster P.

�  SNARK prover does expensive crypto operations for each gate in
2.  IPs have no public parameters.

�  In applications, SNARK parameter size is close to 1 GB or more.
3.  IPs make no crypto assumptions.

�  SNARKs are based on strong (i.e., non-falsifiable) crypto assumptions.
4.  IPs can avoid expensive pre-processing phase for V.

�  For circuits with “regular” wiring patterns.
5.  IPs have much better space costs for P.
�  SNARK P performs FFTs on vectors of length
�  Limits circuits to ~20 million gates on systems with 32 GB of RAM [WSRBW 2015]

�  SNARK space and pre-processing costs can be asymptotically limited via
“bootstrapping”, but at very high concrete cost [BCCT 2008, BSCTV 2014].

C.

S.

IPs vs. SNARKs: Final Notes
�  Other advantages of IPs: amenable to hardware implementations,
 superior parallelization.

�  SNARKs are publically verifiable and non-interactive.
�  IPs can be made to satisfy these properties in the Random Oracle

Model using the Fiat-Shamir heuristic.

Short PCPs, Garbled Circuits,
and MPC-in-the-head

Short PCPs vs. SNARKs
�  Main advantage short PCPs: they avoid an expensive
 pre-processing phase for V in a general-purpose manner.

�  But concrete costs are currently much higher than SNARKs.

�  And existing implementations of short PCPs are not zero-
knowledge.

Garbled Circuits and MPC-In-The-Head
vs. SNARKs

�  Garbled circuits and MPC-In-The-Head have proof length
Omega (with large hidden constant), where S is circuit size.

�  So they don’t save V time compared to native execution.
�  But are still useful in ZK applications.

�  Advantages over SNARKs:
�  Lack of public parameters.
�  Much faster P for some applications.

Ω(S) S

Part 4: A Brief History of Interactive
Proofs

Interactive Proofs, Pre-2008
�  1985: Introduced by [GMR, Babai].

�  IPs were believed to be just slightly more powerful than classical static
(i.e., NP) proofs.

�  i.e. let IP denote class of problems solvable by an interactive proof with a
poly-time verifier. It was believed that IP ≈ NP.

1990: [LFKN, Shamir] proved that IP=PSPACE.
i.e., IPs with a poly-time verifier can actually solve much more difficult
problems than can classical static proofs.
But IPs were still viewed as impractical.
Main reason: P’s runtime.

hen applying the protocols of [LFKN, Shamir] even to very simple problems, the
honest prover would require superpolynomial time.

Interactive Proofs, Pre-2008
�  1985: Introduced by [GMR, Babai].

�  IPs were believed to be just slightly more powerful than classical static
(i.e., NP) proofs.

�  i.e. let IP denote class of problems solvable by an interactive proof with a
poly-time verifier. It was believed that IP ≈ NP.

�  1990: [LFKN, Shamir] proved that IP=PSPACE.
�  i.e., IPs with a poly-time verifier can actually solve much more difficult

problems than can classical static proofs.
But IPs were still viewed as impractical.
Main reason: P’s runtime.

When applying the protocols of [LFKN, Shamir] even to very simple problems, the
honest prover would require superpolynomial time.

Interactive Proofs, Pre-2008
�  1985: Introduced by [GMR, Babai].

�  IPs were believed to be just slightly more powerful than classical static
(i.e., NP) proofs.

�  i.e. let IP denote class of problems solvable by an interactive proof with a
poly-time verifier. It was believed that IP ≈ NP.

�  1990: [LFKN, Shamir] proved that IP=PSPACE.
�  i.e., IPs with a poly-time verifier can actually solve much more difficult

problems than can classical static proofs.
�  But IPs were still impractical.
� Main reason: P’s runtime.

�  When applying IPs of [LFKN, Shamir] even to very simple problems, the honest
prover would require superpolynomial time.

The GKR Protocol
�  [GKR 2008] addressed P’s runtime.

� They gave an IP for any function computed by an efficient
parallel algorithm.

�  P runs in polynomial time.
�  V runs in (almost) linear time, so outsourcing is useful even

though problems are “easy”.

The GKR Protocol
�  [GKR 2008] addressed P’s runtime.

� They gave an IP for any function computed by an efficient
parallel algorithm.

�  P runs in polynomial time.
�  V runs in (almost) linear time, so outsourcing is useful even

though problems are “easy”.

�  But GKR is not practical out of the box.
�  P still requires a lot of time (quartic blowup in runtime).

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 
P starts the
conversation with
an answer (output).

The GKR Protocol: Overview

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

V sends series of
challenges. P responds
with info about next
circuit level.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

Challenges continue,
layer by layer down
to the the input.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

Finally, P says
something about the
(multilinear extension
of the) input.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

Finally, P says
something about the
(multilinear extension
of the) input.

V sees input directly, so can check
P’s final statement directly.

From Theory to Practice
�  [CMT 2012] implemented the GKR protocol (with

refinements).
�  Demonstrated low concrete costs for V.
�  Brought P’s runtime down from Ω(S3), to O(S log S),

where is circuit size.
� Key insight: use multilinear extension of circuit within

the protocol.
� Causes enormous cancellation in P’s messages, allowing

fast computation.
till not good enough on its own.

P is ~103 times slower than just evaluating the circuit.

Naïve implementation of GKR would take trillions of times
longer.
Both P and V can be sped up 40x-100x using GPUs..

Ω(S4) O(S logS),
S

From Theory to Practice
�  [CMT 2012] implemented the GKR protocol (with

refinements).
�  Demonstrated low concrete costs for V.
�  Brought P’s runtime down from Ω(S3), to O(S log S),

where S is circuit size.
� Key insight: use multilinear extension of circuit within

the protocol.
� Causes enormous cancellation in P’s messages, allowing

fast computation.
�  Still not good enough on its own.

�  P is ~103 times slower than just evaluating the circuit.

� Naïve implementation of GKR would take trillions of
times longer.

.

Ω(S4) O(S logS),
S

From Theory to Practice
�  [CMT 2012] implemented the GKR protocol (with

refinements).
�  Demonstrated low concrete costs for V.
�  Brought P’s runtime down from Ω(S3), to O(S log S),

where S is circuit size.
� Key insight: use multilinear extension of circuit within

the protocol.
� Causes enormous cancellation in P’s messages, allowing

fast computation.
�  Still not good enough on its own.

�  P is ~103 times slower than just evaluating the circuit.

� Naïve implementation of GKR would take trillions of
times longer.

�  . Both P and V can be sped up 40x-100x using GPUs [TRMP12].

Ω(S4) O(S logS),
S

Improvements for “Structured Computation”
�  [Thaler 2013] brought P’s runtime down further for any circuit

that exhibits repeated structure.
�  Includes any data parallel computation.
�  P runs in time O(S log B) where is
 size of the sub-computation.

[WJBSTWW 2017] brings this down
 even further, to O(S + B log B).

For “sufficient levels of data parallelism”, this is O(S).
The hidden constant is ≈10.

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Aggrega1on$

O(S logB), B

Improvements for “Structured Computation”
�  [Thaler 2013] brought P’s runtime down further for any circuit

that exhibits repeated structure.
�  Includes any data parallel computation.
�  P runs in time O(S log B) where is
 size of the sub-computation.

�  [WJBSTWW 2017] brings this down
 even further, to O(S + B log B).

�  For “sufficient levels of data parallelism”, this is O(S).
� The hidden constant is ≈10.

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Aggrega1on$

O(S logB), B

O(S +B ⋅ logB).
O(S).

Verifiable ASICs
�  [WHGSW 2016, WJBSTWW 2017] implement these IPs in hardware.

� Motivation: verifiable ASICS.
�  Produce fast, special-purpose hardware in an (untrusted) country’s

advanced foundry.
� Make the hardware act as P.
�  Implement V using much slower, domestically-manufactured hardware.

Making IPs Succinct
�  [ZGKPP 2017] renders IPs succinct.

�  By combining IPs with a cryptographic primitive called a polynomial
commitment scheme [KGG 2010, PST 2013]

� Reduces proof length for CIRCUIT-SAT from
to

� Applies techniques to database applications.
� Downsides: introduces strong cryptographic assumptions, utilizes public

parameters of size proportional to

| y |+ |w |+O(d ⋅ logS)
| y |+O(log |w |)+O(d ⋅ logS).

|w | .

Open Questions
�  One VC System to rule them all?

�  Endow IPs with zero-knowledge and succinctness without
sacrificing any of IPs’ advantages over SNARKs?

�  Understand the power of IPs in communication complexity.
�  Proving lower bounds on the communication analog of AM is a

notorious open problem.
�  Even open for the communication analogs of NISZK and SZK.

Comparison of Techniques: IPs vs.
Other Approaches

Overview of Argument Systems
� Most arguments work by:

1.  “Starting” with an information-theoretically secure protocol in a
model where P is assumed to behave in a restricted manner.

� E.g., a linear PCP, “short” PCP, etc.
� These models assume P is non-adapative (i.e., P’s answer to

each query from V does not depend on earlier queries).

2.  Then using cryptography to “force” a computationally bounded P
to behave in the restricted manner.

SNARKs, Short PCPs
�  Whereas GKR checks the circuit layer by layer, all other approaches

check the circuit all at once.
�  They crucially exploit non-adaptivity of P to do this.

�  Recall: is arithmetic circuit (over) of size and we want to
check that

C
C(x,w) = y.

SF

SNARKs, Short PCPs, MIPs, etc.
�  Let H be a set of size . Assign each gate in C a label from
�  A transcript W is an assignment of values to each gate.
�  Call W valid if it is consistent with ’s execution on input
�  Let be a low-degree extension of

�  i.e., a low degree polynomial such that

�  Somehow define a polynomial g_ derived from ~ such that:

�  The “proof ” can be regarded as having two parts:
�  Part 1:
�  Part 2: some extra info certifying that

SH H.C
W :H→ F

W C (x,w).
W~

W~gW~
gW (a) = 0 for all a ∈ H⇔W is a valid transcript.~

W.

~

W~

gW (a) = 0 for all a ∈ H.~

W (a) =W (a) for all a ∈ H.

Thank you!

