Parallel Peeling Algorithms

Justin Thaler, Yahoo Labs
Joint Work with:

Michael Mitzenmacher, Harvard University

]iayang]iang

The Peeling Paradigm

® Many important algorithms for a wide variety of problems can be
modeled in the same way.

* Start with a (random) hypergraph G.
® While there exists a node v of degree less than k:

Remove v and all incident edges.
o The remaining graph is called the k-core of G.

® k=2 in most applications.

* Typically, the algorithm “succeeds” if the the k-core is empty.

® To ensure “success”, data structure should be designed large enough

so that the k-core of G is empty w.h.p.

* Typically yields simple, greedy algorithms running in linear time.

The peeling process when k=2

The peeling process when k=2

The peeling process when k=2

The peeling process when k=2

The peeling process when k=2

The peeling process when k=2

The peeling process when k=2

The peeling process when k=2

The peeling process when k=2

Example Algorithms

™~

Example 1: Sparse Recovery Algorithms

® (Consider data streams that insert and delete a lot of items.

* Flows through a router, people entering/leaving a building.
® Sparse Recovery problem: list all items with non-zero frequency.
® Want listing not at all times, but at “reasonable” or “off-peak”

times, when working set size is bounded.

® [f we do N insertions, then N-M deletions, and want a list at the end,

we need to list M items.

* Data structure size should be proportional to M, not to N!

® Proportional to size you want to be able to list, not number of items
your system has to handle.

e (Central primitive used in more complicated streaming algorithms.

® E.g. L, sampling, which is in turn used to solve problems on dynamic
graph streams (see previous talk).

™

Example 1: Sparse Recovery Algorithms

® For simplicity, assume that when listing occurs, no item has

frequency more than 1.

™~

Example 1: Sparse Recovery Algorithms

® Sparse Recovery Algorithm: Invertible Bloom Lookup Tables (IBLTs)
[Goodrich, Mitzenmacher]

. \/\k Each stream item hashed to r cells

| ///7% (using r ditferent hash functions)

L~ Count

\/ KeySum

Insert(x): For each of the j cells that x is hashed to:
Add key to KeySum
Increment Count

Delete(x): For each of the j cells x is hashed to:
Subtract key from keysum

Decrement Count /

Listing Algorithm: Peeling

* Call a cell “pure” it its count equals 1.

e While there exists a pure cell:

® Output x=keySum of the cell.
e Call Delete(x) on the IBLT.

Listing Algorithm: Peeling

* Call a cell “pure” it its count equals 1.

® While there exists a pure cell:
® Output x=keySum of the cell.
e Call Delete(x) on the IBLT.

* To handle frequencies that are larger than 1, add a checksum
tield to each cell (details omitted).

Listing Algorithm: Peeling

* Call a cell “pure” it its count equals 1.

e While there exists a pure cell:

® Output x=keySum of the cell.
e Call Delete(x) on the IBLT.

* To handle frequencies that are larger than 1, add a checksum
tield to each cell (details omitted).

® Listing emmp peeling to 2-core on the hypergraph G where:
e Cells 4w vertices of G.
® [tems in IBLT 4w hyperedges of G.

® G is r-uniform (each edge has r vertices, one for each cell the item

is hashed to).

/

How Many Cells Does an IBLT Need to
Guarantee Successful Listing?

® Consider a random r-uniform hypergraph G with n nodes and m=c*n edges.
® i.e., each edge has r vertices, chosen uniformly at random from [n]
without repetition.
® Known fact: Appearance of a non-empty k-core obeys a sharp threshold.
® For some constant ¢, , when m < ¢_n, the k-core is empty with
probability 1-o(1).
® When m > ¢ n, the k-core of G is non-empty with probability 1-o(1).

® Implication: to successtully list a set of size M with probability 1-o(1),
the IBLT needs roughly M/ ¢, . cells.

* E.g ¢, ,~0.818, ¢, ,20.772, ¢; y~1.553.

How Many Cells Does an IBLT Need to
Guarantee Successful Listing?

® Consider a random r-uniform hypergraph G with n nodes and m=c*n edges.
® i.e., each edge has r vertices, chosen uniformly at random from [n]
without repetition.
® Known fact: Appearance of a non-empty k-core obeys a sharp threshold.
® For some constant ¢, , when m < ¢_n, the k-core is empty with
probability 1-o(1).
® When m > ¢ n, the k-core of G is non-empty with probability 1-o(1).

® Implication: to successtully list a set of size M with probability 1-o(1),
the IBLT needs roughly M/ ¢, . cells.

* E.g ¢, ,~0.818, ¢, ,20.772, ¢; y~1.553.

® In general: B

* . .
Cr,, = MIN

=0 (1 —e X pTg)|

Other Examples of Peeling Algorithms

® Low-Density Parity Check Codes for Erasure Channel.
® [Luby, Mitzenmacher, Shokrollah, Spielman]
* Biff codes (directly use IBLTs).
* [Mitzenmacher and Varghese]
* k-wise independent hash families with O(1) evaluation time.
® [Siegel]
® Sparse FFT algorithms.
® [Hassanieh et al.]

® Cuckoo hashing.
® [Pagh and Rodler]

® Pure literal rule for computing satisfying assighments of random CNPFs.
® [Franco] [Mitzenmacher] [Molloy] [many others].

/

Parallel Peeling Algorithms

™~

Our Goal: Parallelize These Peeling Algorithms

® Recall: the aforementioned algorithms are equivalent to
peeling a random hypergraph G to its k-core.
® There is a brain dead way to parallelize the peeling process.

® For each node v in parallel:
Check if v has degree less than k.

If so, remove v and its incident hyperedges.

* Key question: how many rounds of peeling are required to
find the k-core?

* Algorithm is simple, analysis is tricky.

Main Result

® Two behaviors:

® Parallel peeling completes in O(log log n) rounds if the edge
density c is “below the threshold” ¢ ..

® Parallel peeling requires {)(log n) rounds if the edge density c is
“above the threshold” ¢ .
® This is great!
® Most peeling uses the goal is to be below the threshold.
® So “nature” is helping us by making parallelization fast.
® Implies poly(loglog n) time, O(n poly(loglog n)) work, parallel
algorithms for listing elements in an IBLT, decoding LDPC

codes, etc.

4 N

Precise Upper Bound

Theorem 1. Let k,r > 2 with k+r > 5, and let ¢ be a constant. With probability 1 — o(1), the parallel

peeling process for the k-core in a random hypergraph Gy, ., with edge density ¢ and r-ary edges terminates

after log((k—})(r—l)) loglogn 4+ O(1) rounds when ¢ < Cp -

Theorem 2. Let k,r > 2 with k-+r > 5, and let ¢ be a constant. With probability 1 — o(1), the parallel
peeling process for the k-core in a random hypergraph G, ., with edge density ¢ and r-ary edges requires
1

og(=n=1)) loglogn — O(1) rounds to terminate when ¢ < cy .

Summary: The right factor in front of the loglog nis 1/(log(k-1)(r-1))
(tight up to an additive constant).

4 N

Lower Bound

Theorem 3. Let r >3 and k > 2. With probability 1 —o(1), the peeling process for the k-core in Gyen
terminates after Q(logn) rounds when ¢ > ;. ,

Summary: Q2 (log n) lower bound matches an earlier O(log n) upper bound
due to [Achlioptas and Molloy, 2013].

/ ™
Proof Sketch for Upper Bound

 LetA. denote the probability a given vertex v survives I rounds of peeling.
i P - 1}’ g P g
e Clim: A, =(CA)* """ for some constant C.

* Suggests A, <<1/n after about 1/log((k —1)(r - 1)) *loglogn rounds.
* Arelated argument shows that A, <1/(2C) after O(1) rounds,
and after that point the claim implies that A, falls doubly-exponentially

quickly.

Proof Sketch for Upper Bound

Let)Ll. denote the probability a given vertex v survives I rounds of peeling.

Claim: A, =(CA)"™""™" for some constant C.

Very crude sketch of the Claim’s plausibility:

* Node v survives round i+/ only if it has (at least) k incident edges
€,...€, that survive round 1.

* Fixak-tuple of edges €;...€; incident to v.

* Assume no node other than v appears in more than one of these edges.

* Then there are k(r-1) distinct nodes other than v appearing in these edges.

* The edges all survive round i only if all k(r-1) of these nodes survive round i

* Let’s pretend that the survival of these nodes are independent events.

* Then the probability all nodes survive round i is roughly)Lik(r_l),

* Finally, union bound over all k-tuples of edges incident to v.

Si

mulation Results

c=0.7 c=0.75 c=0.8 c =0.85
n Failed | Rounds | Failed | Rounds | Failed | Rounds | Failed | Rounds
10000 0 12.504 0 | 23.352 1000 17.037 1000 10.773
20000 0 12.594 0 | 23.433 1000 19.028 1000 11.928
40000 0 12.791 0 | 23.343 1000 | 20.961 1000 12.992
80000 0 12.939 0| 23.372 1000 | 22.959 1000 14.104
160000 0 12.983 0| 23.421 1000 | 25.066 1000 15.005
320000 0 13.000 0 [23.491 1000 | 27.089 1000 16.305
640000 0 13.000 0| 23.564 1000 | 29.281 1000 17.334
1280000 0 13.000 0 23.716 1000 | 31.037 1000 18.499
2560000 0 13.000 0| 23.840 1000 | 33.172 1000 19.570

Results from simulations of parallel peeling process on random

4-uniform hypergraphs with n nodes and c*n edges using k = 2.

Averaged over 1000 trials.

Recall that C,, ,~0.772.

/

Refined Result: Mind the Gap

THEOREM 7.1. Let v = |c; , — c| for constant ¢ with ¢ < ci,-

With probability 1 — o(1), peeling in Gy, ., requires ©(\/1/v) +

|0g((k_}) =) loglogn rounds when c is below the threshold den-

sity ¢y -

Summary: below the threshold, the additive term is O/V| gap|).
This can be more important than the log log n term if the edge

density is close to the threshold!

-

beta_i

round i, for values of the edge density c approaching the threshold value of

3.0

25

2.0

1.5

1.0

0.5

0.0

Plots show expected progress of the peeling process as a function of the

Refined Simulations: Mind the Gap

Plot for beta_i, r=4, k=2, c=0.77

beta i

60

70

¢, ~0.772.

Plot for beta_i, r=4, k=2, c=0.772

50 100 150 200

/

Refined Analysis: Mind the Gap

. Analysis shows that peeling process falls into three “stages”.

First stage: the fraction of surviving nodes falls very quickly
as a function of the rounds until it gets close to a certain key

value x*.

Second stage: ©1/V| gap |) rounds are required to go
from “close” to x* to “significantly below” x*.

Third stage: the analysis of the basic upper bound kicks in,
and the fraction of surviving nodes falls doubly-

exponentially quickly.

Implementation Issues

GPU Experimental Results

Table | No. Table % GPU Serial GPU Serial
Load Cells Recovered | Recovery Time | Recovery Time | Insert Time | Insert Time
0.75 | 16.8 million 100% 0.33s 6.37s 0.31s 391s
0.83 | 16.8 million 50.1% 0425 3.645s 0.35s 434 s

Table 3: Results of our parallel and serial IBLT implementations with r = 3 hash functions. The table load
refers to the ratio of the number of items in the IBLT to the number of cells in the IBLT.

™~
Recall: IBLTs

) /k Each stream item hashed to r cells

— | N (using r different hash functions)

%

L~ Count

\/ KeySum

Insert(x): For each of the j cells that x is hashed to:
Add key to KeySum
Increment Count

Delete(x): For each of the j cells x is hashed to:
Subtract key from keysum

Decrement Count

Recall: IBLT Listing Algorithm

* Call a cell “pure” it its count equals 1.

® While there exists a pure cell:

® Output x=keySum of the cell.
e Call Delete(x) on the IBLT.

GPU Implementation

e Each cell gets a thread.

® Each cell checks if it is pure.

® It so, identity the key it contains and remove it from other cells
in the IBLT.

® Do this by subtracting out values in other cells.

® [ssue: repeated deletion.

® Several cells might recover and try to remove the same key in

the same round. So a key gets deleted more than once!

Dealing with Repeated Deletion

* To avoid this: use r subtables, such that the ith hash function only
hashes into subtable i.

® Break the listing algorithm into serial subrounds. In ith subround,
recover only from the ith subtable.

* Avoids repeated deletions, since each item will be hashed to just 1 cell
in each subtable.

® [eads to interesting variation in the analysis.

® Subrounds increase runtime, since they must happen sequentially.
* Naively, they may blow up runtime by a factor of r.
® But we show this does not happen.
Gains in one subround can help later subrounds.
We show runtime only blows up by a factor of about log,(r-1).
® Analysis is similar to Vocking’s d-left scheme.
* Fibonacci numbers show up!

Subround Result

THEOREM B.1. Letr >3andk>?2. Let ¢,_1 =limy_,.. F, s (k)
be the asymptotic growth rate for the Fibonacci sequence of order
r— 1. Let G be a hypergraph over n nodes with cn edges generated
according to the following random process. The vertices of G are
partitioned into r subsets of equal size, and the edges are generated
at random subject to the constraint that each edge contains exactly
one vertex from each set.

With probability 1 — o(1), the peeling process for the k-core in G
that uses r subrounds in each round terminates after

1
Fogd,—Hiog(Ty loglogn + O(1) rounds when ¢ < ¢ .

Summary: use of r subtables increase constant factor in front of the

-

log log n, but by much less than a factor or r.

/

Conclusion

® Peeling gives simple, fast greedy algorithms.

° Usually linear or quasi-linear total work.
© Particularly well suited for parallelization.

° Especially when aiming for an empty k-core.

® Implementation leads to interesting variation in the analysis.

e Subrounds.

® Can analyze dependence on “gap” to the threshold.

Thank you!

e

™

Example 1: LDPC Codes for Erasure Channels

C1CC3C4C5CC7C8CoC10C11C12C13

p—)

Erasure Channel

? 202 ?
ﬂ c,2c;¢,C:2¢,2CyC 0C11C 1

4 N
Example 1: LDPC Codes for Erasure Channels

Erasure Channel ﬂ b o P | 2
C1CC3C4C5CC7C8CoC10C11C12C13 _ C18C3C4C50C74C9C10C11Cpp0

How does an LDPC code encode an 8-bit message m;m,m;m,m,mgm,msg?

4 N
Example 1: LDPC Codes for Erasure Channels

Erasure Channel q b o P | 2
C1CpC3C4C5C6C7C3CC10C11C12C 3 b C14C3C4C5:C70C9C10C11Cyp¢

How does an LDPC code encode an 8-bit message m;m,m;m,m;m,m-mg?

r,=XOR(m,, m, m;)
1,=XOR(m,, mj, m)
r;=XOR(m,, mg, my)
r,=XOR(m,, mg, m;)
r.-=XOR(m,, m,, my)

4 N
Example 1: LDPC Codes for Erasure Channels

Erasure Channel ﬂ b o P | 2
C1CpC3C4C5C6C7C3CC10C11C12C 3 b C14C3C4C5:C70C9C10C11Cyp¢

r

m, ry m, 1
m, r ?

r

I’Il3 2 m3 2
m m

4 r 4 r

m, 3) | Erasure Channel psssssssd m, ’
04

r 2 ?
mg :

e

Example 1: LDPC Codes for Erasure Channels

C1CrC3C64C5C6C7C3C9C190C11€19C3

p—

m, ry
m2 r2
mjy
m

4 I'3
mg
m, r,
my

T
mg

Decoding Algorithm:

Recover the neighbor

While there exists an un-erased a parity—check bit with exactly one un-erased neighbor:

™~

Erasure Channel

2 2~ 9 2
q c,3¢5¢,¢:2C52CC(,C11Cn?

Erasure Channel

/

e

C1CrC3C64C5C6C7C3C9C190C11€19C3

p—

m, ry
m2 r2
mjy
m

4 I'3
mg
m, r,
my

T
mg

Decoding Algorithm:

Recover the neighbor

Example 1: LDPC Codes for Erasure Channels

™~

Erasure Channel

2 2~ 9 2
q c,3¢5¢,¢:2C52CC(,C11Cn?

Erasure Channel

While there exists an un-erased a parity—check bit with exactly one un-erased neighbor:

/

e

C1CrC3C64C5C6C7C3C9C190C11€19C3

p—

m, ry
m2 r2
mjy
m

4 I'3
mg
m, r,
my

T
mg

Decoding Algorithm:

Recover the neighbor

Example 1: LDPC Codes for Erasure Channels

™~

Erasure Channel

2 2~ 9 2
q c,3¢5¢,¢:2C52CC(,C11Cn?

Erasure Channel

While there exists an un-erased a parity—check bit with exactly one un-erased neighbor:

/

e

C1CrC3C64C5C6C7C3C9C190C11€19C3

p—

m, ry
m2 r2
mjy
m

4 I'3
mg
m, r,
m7 -
mg 5

Decoding Algorithm:

Recover the neighbor

Example 1: LDPC Codes for Erasure Channels

™~

Erasure Channel

2 2~ 9 2
q c,3¢5¢,¢:2C52CC(,C11Cn?

Erasure Channel

While there exists an un-erased a parity—check bit with exactly one un-erased neighbor:

/

e

C1CrC3C64C5C6C7C3C9C190C11€19C3

p—

m, ry
m2 r2
mjy
m

4 I'3
mg
m, r,
m7 -
mg 5

Decoding Algorithm:

Recover the neighbor

Example 1: LDPC Codes for Erasure Channels

™~

Erasure Channel

2 2~ 9 2
q c,3¢5¢,¢:2C52CC(,C11Cn?

Erasure Channel

While there exists an un-erased a parity—check bit with exactly one un-erased neighbor:

/

e

C1CrC3C64C5C6C7C3C9C190C11€19C3

p—

m, ry
m2 r2
mjy
m

4 I'3
mg
m, r,
m7 -
mg 5

Decoding Algorithm:

Recover the neighbor

Example 1: LDPC Codes for Erasure Channels

™~

Erasure Channel

2 2~ 9 2
q c,3¢5¢,¢:2C52CC(,C11Cn?

Erasure Channel

While there exists an un-erased a parity—check bit with exactly one un-erased neighbor:

/

e

C1CrC3C64C5C6C7C3C9C190C11€19C3

p—

m, ry
m2 r2
mjy
m

4 I'3
mg
m, r,
m7 -
mg 5

Decoding Algorithm:

Recover the neighbor

Example 1: LDPC Codes for Erasure Channels

™~

Erasure Channel

2 2~ 9 2
q c,3¢5¢,¢:2C52CC(,C11Cn?

Erasure Channel

While there exists an un-erased a parity—check bit with exactly one un-erased neighbor:

/

4 N
Example 1: LDPC Codes for Erasure Channels

Erasure Channel q b o P | 2
C1C;C3C4C5C6C7C8C9C10C11C£C13 ~ Cl.C3C4_C5.C7.C9C10C11C12.

r
ml 1
m2 rz
my
m
4 r
m 3 s | Erasure Channel p—)
5
m7 -
5
Mg

* Decoding 4mmp peeling to 2-core on the hypergraph G where:
* Parity-check bits 4mmsp vertices of G,
* FErased message bits ¢ hyperedges of G.

* Yields capacity-achieving codes with linear encoding and decoding time [Luby,

_ Mitzenmacher, Shokrollahi, Spielman]

