
Justin Thaler
Harvard University à Simons Institute for the

Theory of Computing

Time-Optimal Interactive Proofs for
Circuit Evaluation

Outsourcing
�  Many applications require outsourcing computation to

untrusted service providers.
� Main motivation: commercial cloud computing services.
� Also, weak peripheral devices; fast but faulty co-processors.
� Volunteer Computing (SETI@home,World Community

Grid, etc.)

�  User requires a guarantee that the cloud performed the
computation correctly.

AWS Customer Agreement
WE… MAKE NO REPRESENTATIONS OF ANY
KIND … THAT THE SERVICE OR THIRD PARTY
CONTENT WILL BE UNINTERRUPTED, ERROR
FREE OR FREE OF HARMFUL COMPONENTS,
OR THAT ANY CONTENT … WILL BE SECURE
OR NOT OTHERWISE LOST OR DAMAGED.

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Data	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Data	

Data	
Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Ques5on	

Data	

Answer	
Data	
Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Ques5on	

Data	

Answer	

Challenge	

Response	

Data	
Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Ques5on	

Data	

Answer	

Challenge	

Response	

Challenge	

Response	

Data	
Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Ques5on	

Data	

Answer	

Challenge	

Response	

Challenge	

Response	

Accept	 	
or	

Reject	

Interactive Proofs
�  Prover P and Verifier V.

�  P solves problem, tells V the answer.
� Then P and V have a conversation.
�  P’s goal: convince V the answer is correct.

�  Requirements:
�  1. Completeness: an honest P can convince V

to accept.
�  2. Soundness: V will catch a lying P with high

probability (secure even if P is computationally
unbounded).

Prior Work: [GKR08, CMT12]

The GKR Protocol
�  Interactive Proofs for Muggles [GKR 08] gives a

highly efficient protocol for problems in NC.
� Allows V to run very quickly, so outsourcing is

useful even though problems are “easy”.
�  P needs “only” polynomially more time to prove

correctness than she does to just solve the problem!

The GKR Protocol
�  Why does GKR not yield a practical protocol out

of the box?
�  P has to do a lot of extra bookkeeping (cubic

blowup in runtime).

!"# !$# !%# !&#

'# '# '# '#

(# (#

(#

The GKR Protocol: Overview

F2 circuit

!"# !$# !%# !&#

'# '# '# '#

(# (#

(#

F2 circuit

P starts the
conversation with
an answer (output).

The GKR Protocol: Overview

!"# !$# !%# !&#

'# '# '# '#

(# (#

(#

The GKR Protocol: Overview

F2 circuit

V sends series of
challenges. P responds
with info about next
circuit level.

!"# !$# !%# !&#

'# '# '# '#

(# (#

(#

The GKR Protocol: Overview

F2 circuit

Challenges continue,
layer by layer down
to the the input.

!"# !$# !%# !&#

'# '# '# '#

(# (#

(#

The GKR Protocol: Overview

F2 circuit

Finally, P says
something about the
(multilinear extension
of the) input.

!"# !$# !%# !&#

'# '# '# '#

(# (#

(#

The GKR Protocol: Overview

F2 circuit

Finally, P says
something about the
(multilinear extension
of the) input.

V sees input directly, so can check
P’s final statement directly.

Overview of [CMT12]
�  Implemented the GKR protocol (with refinements).
�  Demonstrated very low concrete costs for V.
�  Brought P’s runtime down from Ω(S3), to O(S log S), where

S is circuit size.
� Key insight: use multilinear extension of circuit within the

protocol.
� Causes enormous cancellation in P’s messages, allowing fast

computation.

Practically speaking, still not good enough on its own.
256 x 256 matrix multiplication takes P 27 minutes.
Naïve implementation of GKR would take trillions of times
longer.

Overview of [CMT12]
�  Implemented the GKR protocol (with refinements).
�  Demonstrated very low concrete costs for V.
�  Brought P’s runtime down from Ω(S3), to O(S log S), where

S is circuit size.
� Key insight: use multilinear extension of circuit within the

protocol.
� Causes enormous cancellation in P’s messages, allowing fast

computation.

�  Still not good enough on its own.
�  P is ~103 times slower than just evaluating the circuit.

� Naïve implementation of GKR would take trillions of times
longer.

This Work: Slashing Costs for
Structured Computation

Reducing Overhead Further
�  Downsides to [CMT12] implementation:

�  For “regular” circuits: log S factor runtime overhead for P.
�  For “irregular” circuits: log S factor runtime overhead for P, and

expensive pre-processing phase for V.

Solution for “regular” circuits: Reduce P’s runtime to O(S).
Key idea: use a new arithmetization of the circuit, allowing P to
reuse work across rounds.
Experimental results: 250x speedup over [CMT12].
P less than 10x slower than a C++ program that just evaluates the
circuit.
Example applications: MatMult, DISTINCT, F2, Pattern Matching,
FFTs.

Result 1: Regular Circuits

Reducing Overhead Further
�  For “regular” circuits: Reduce P’s runtime from O(S log S) to O(S).

� Key idea: use new arithmetization of the circuit,
allowing P to reuse work across rounds.

�  Experimental results: 250x speedup over [CMT12].
�  P less than 10x slower than a C++ program that just evaluates

the circuit.
�  Example applications: MatMult, DISTINCT, F2, Pattern

Matching, FFTs.

Problem! P time
[CMT12]!

P time
[T13]!

Circuit Eval
Time

Rounds!
[T13]!

Protocol
Comm [T13]!

!

V time!
[Both]!

DISTINCT!
(n=220)!

56.6
minutes!

17.2 s! 1.88 s! 236! 40.7 KB! .2 s!

MatMult!
(512 x 512)!

2.7 !
hours!

37.8 s! 6.07 s! 1361! 5.4 KB! .1 s!

Results for Regular Circuits

Result 2: Data Parallel Computation

Dealing with Irregular Circuits
�  No magic bullet for dealing with irregular wiring patterns.

� Need some assumption about the computation being outsourced.
�  Is there structure in real-world computations?

�  Yes: Data Parallel computation.
� Any setting where a sub-computation C is applied to many pieces

of data.
� Make no assumptions about C itself.
� These are the sort of problems getting outsourced!

Data

Sub-
Comp

C

Data

Sub-
Comp

C

Data

Sub-
Comp

C

Data

Sub-
Comp

C

Data

Sub-
Comp

C

Data

Sub-
Comp

C

Aggregation

Leveraging Parallelism
�  Directly applying existing results to data parallel computations

has big overhead.
� Costs depend on number of data pieces.

�  Our approach: take advantage of parallelism.
� Reduce V's effort to proportional to size of C.
� Reduce P's overhead to log size of C.
� No dependence on number of data pieces.

�  Key insight: C may be irregular internally, but the
computation is maximally regular between copies of
C.

Result 3: Matrix Multiplication

A Final Result: n x n MatMult
�  P simply sends V the “right answer”, and then P does O(n2)

extra work to prove its correctness.
�  Doesn’t matter how P obtains the right answer!
�  Optimal runtime up to leading constant assuming no O(n2)

time algorithm for MatMult.

A Final Result: n x n MatMult
�  P simply sends V the “right answer”, and then P does O(n2)

extra work to prove its correctness.
�  Doesn’t matter how P obtains the right answer!
�  Optimal runtime up to leading constant assuming no O(n2)

time algorithm for MatMult.
Problem

Size!
Naïve

MatMult
Time

Additional
P time!

V Time! Rounds!
!

Protocol
Comm!

1024 x 1024! 2.17 s! 0.03 s! 0.67 s! 11! 264 bytes!

2048 x 2048! 18.23 s! 0.13 s! 2.89 s! 12! 288 bytes!

Comparison to Freivalds’ Algorithm
�  Freivalds (MFCS, 1979) gave the following protocol for

MatMult. To check AB=C:
� V picks random vector x.
� Accepts if A*(Bx) = Cx.
� No extra work for P, O(n2) time for V.

�  Our big win: verifying algorithms that invoke MatMult, but
aren’t really interested in matrices.
�  E.g. Best-known graph diameter algorithms square the adjacency

matrix, but are only interested in a single number.
� Total communication for us is O(log2 n), Freivalds’ is Ω(n2).

Summary
�  [CMT12] gives a general-purpose interactive proof protocol

with near-practical costs for verifying any small-depth
computation.

�  We slash costs for more structured computations (regular
circuits, data parallel, matrix multiplication)

�  Major message: the more structure in computation, the faster
it can be verified.
� And this structure exists in real-world computations!

Our Results in Context: Related Work

Work on Argument Systems
�  Substantial body of recent work implements argument

systems with pre-processing for circuit evaluation.
�  [SMBW12, SVP+12, B-SCGT13, GGPR13, SVB+13, PHGR13,

BFR+13, B-SCGT+13]

�  Advantages of our approach:
�  Secure against computationally unbounded provers.
� No or minimal pre-processing for large classes of computation.
� Unmatched prover efficiency when applicable.

�  Disadvantages of our approach:
� Only applicable to small-depth circuits.
� No support for “non-deterministic circuits” (see next talk).
�  Logarithmically many rounds of interaction.

Other Work on Argument Systems
�  [B-SCGT13a, B-SCGTb] develops argument systems based on

short PCPs.
� This approach never requires pre-processing for verifier.
�  But likely introduces substantial additional concrete overhead for

prover.

Future Directions
1.  Identify IPs that avoid circuit representation for a

larger class of computational primitives.

2.  Upcoming work [TVWB13]: a two-prover MIP
implementation extending GKR techniques.

�  High-level message: disadvantages of GKR approach (no deep
circuits, no non-deterministic circuits) go away in two-prover
setting!

�  In turn, MIPs can be compiled into single-prover argument
systems [BC12]

�  Disclaimer: current transformations are based on impractical
primitives (FHE).

Thank you!

Sum-Check Protocol
�  Given: a d-variate polynomial g over field F
�  Sum-check protocol computes the quantity:

�  Costs:
� # of rounds: d
� Time cost for V: d + [time to evaluate g at a point]
� Time cost for P: at most O(2d) * [time to evaluate g at a point]

g(x1,..., xd)
x!{0,1}d
"

Set-Up
�  Given input matrices A, B over field F, interpret A and

B as functions mapping to F via:

�  Let , : denote the multilinear
extensions of the functions A and B.

�  Let C=A*B. Then the multilinear extension of C satisfies:

n!n
{0, 1}log n !{0, 1}log n

A(i1,..., ilogn, j1,..., jlogn) = A(i, j)

B
~

A
~

Flog n !Flog n " F

C
~
(i1,..., ilogn, j1,..., jlogn) = A

~
(i1,..., ilogn,k1,...,klogn)*B

~
(k1,...,klogn, j1,..., jlogn)

k!{0,1}logn
"

Matrix Multiplication Protocol
�  P sends a matrix claimed to equal A*B.
�  V evaluates at a random point
�  Schwartz-Zippel lemma implies that it is safe for V to believe

that equals the correct answer C as long as

�  So V applies the sum-check protocol to compute:

where

D
~

(r1,..., rlogn, r '1,..., r 'logn)! F
2 logn

D
~
(r1,..., rlogn, r '1,..., r 'logn) =C

~
(r1,..., rlogn, r '1,..., r 'logn)

g(k1,...,klogn)
k!{0,1}logn
" ,

g(k1,...,klogn) = A
~
(r1,..., rlogn,k1,...,klogn)*B

~
(k1,...,klogn, r '1,..., r 'logn)

D

D

Matrix Multiplication Protocol
�  In final round of sum-check protocol, V must evaluate g at a

random point
�  Crucial observation: V can do this in time O(n2) by evaluating
 and and using
the identity:

�  Using our “reuse of work” technique, P has to do O(n2) work

on top of finding the right answer C in order to run the sum-
check protocol.

g(r ''1,..., r ''logn) = A
~
(r1,..., rlogn, r ''1,..., r ''logn)*B

~
(r ''1,..., r ''logn, r '1,..., r 'logn)

(r ''1,..., r ''logn)! F
logn.

A
~
(r1,..., rlogn, r ''1,..., r ''logn) B

~
(r ''1,..., r ''logn, r '1,..., r 'logn)

Goals of Verifiable Computation
�  Provide user with correctness guarantee, without requiring

her to perform full computation herself.
�  Ideally user will not even maintain a local copy of the data (all

of our protocols allow verifier to make single streaming pass
over input).

�  Minimize extra effort required for cloud to provide
correctness guarantee.

�  Achieve protocols secure against malicious clouds, but
lightweight for use in benign settings.

Independent Results
�  Recent efforts to build practical argument systems.

�  Setty, McPherson, Blumberg, Vu, Braun, Parno, Walfish
(NDSS12, Security12, EuroSys13)

�  Vu et al. (Oakland13) build a system that:
1.  Starts with a high-level programming language.
2.  Automatically compiles any program in the language into an

arithmetic circuit.
3.  Decides whether GKR implementation from [CMT12] (plus

refinements) or state-of-the-art argument system is more
efficient, and runs the better of the two.

�  Experimental comparison in [Oakland13] shows [CMT12]
significantly faster except for programs with complicated
control flow or that are highly sequential.

More Independent Results
�  Other argument systems that avoid short PCPs [PGHR13].
�  Work towards practical (short) PCPs [B-SCGT13a, B-

SCGT13b].
�  Refereed games and arguments [CRR11].

More Independent Results
Approach Pros/Cons

Interactive Proofs (this talk) Pros: Most efficient when applicable (no crypto, minimal
pre-processing for V, least overhead for P).
Cons: Applies only to parallel computation, does not support
‘non-deterministic reductions’ to circuits – important for
sorting, comparisons, etc.

Argument Systems avoiding
short PCPs [Setty et al., Parno
et al.]

Pros: General. Public verifiability/zero-knowledge properties.
Cons: Big pre-preprocessing costs, more overhead for P
(crypto expensive)

Argument Systems based on
short PCPs [Ben-Sasson et al.]

Pros: General. No pre-preprocessing costs.
Cons: Much more overhead for P.

What About “Sparse” Streams? [CCGT13]
�  Many streams are over enormous domain sizes (e.g. IPv6 flows)

�  Existing results depend explicitly (though optimally) on n.
� Want costs to depend on number of data items m, not domain

size n.
�  Idea: Domain reduction.

� Ask P to provide ‘perfect’ hash function g mapping huge domain
to small one.

� Challenges: ensuring that collisions in remapping do not cause
errors (need a way for V to ‘detect’ collisions under g).

�  New protocols that allow P to ‘correct’ collisions online.
�  Bottom line [CCGT13, to be submitted]: near-optimal

tradeoffs in terms of m for frequency moments, graph
problems, etc.

References
�  Cormode, Mitzenmacher, T. (ESA 2010)
�  Cormode, T., Yi (VLDB 2012)
�  Cormode, Mitzenmacher, T. (ITCS 2012)
�  T., Roberts, Mitzenmacher, Pfister (HotCloud 2012)
�  Chakrabarti, Cormode, McGregor, T. (ICALP 2009, in submission 2012)

�  T. (in submission, 2013)
�  Chakrabarti, Cormode, Goyal, T. (ongoing, 2013)

Further Leveraging Parallelism [TRMP12, T13]
�  In our protocols, P and V themselves can be parallelized

(although V runs quickly even without parallelization).
�  Using a GPU, achieved 40x-100x speedups for P, 100x

speedups for V.

