Time-Optimal Interactive Proofs for

Circuit Evaluation

Justin Thaler

Harvard University — Simons Institute for the
Theory of Computing

Outsourcing

® Many applications require outsourcing computation to
untrusted service providers.
Main motivation: commercial cloud computing services.
Also, weak peripheral devices; fast but faulty co-processors.

Volunteer Computing (SETI(@home, World Community
Grid, etc.)

* User requires a guarantee that the cloud performed the

computation correctly.

AWS Customer Agreement

WE... MAKE NO REPRESENTATIONS OF ANY
KIND ... THAT THE SERVICE OR THIRD PARTY
CONTENT WILL BE UNINTERRUPTED, ERROR
FREE OR FREE OF HARMFUL COMPONENTS,
ORTHAT ANY CONTENT ... WILL BE SECURE
OR NOT OTHERWISE LOST OR DAMAGED.

amazon
webservices™

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Cloud Provider Business/Agency/Scientist

‘

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

® Prover P and Verifier V.

® P solves problem, tellsV the answer.
® Then P and V have a conversation.

e P’s goal: convince V the answer is correct.

° Requirements:

° 1. Completeness: an honest P can convince V

to accept.

® 2. Soundness: V will catch a lying P with high
probability (secure even if P is computationally

unbounded).

Prior Work: [GKROS, CMT12]

e

The GKR Protocol

* Interactive Proofs for Muggles [GKR 08] gives a
hjghly efficient protocol for problems in NC.

® AllowsV to run very quickly, so outsourcing is

useful even though problems are “easy”.

® P needs “only” polynomially more time to prove

correctness than she does to just solve the problem!

4 ™
The GKR Protocol

° Why does GKR not yield a practical protocol out
of the box?

® P has to do a lot of extra bookkeeping (cubic

blowup in runtime).

The GKR Protocol: Overview

F2 circuit

The GKR Protocol: Overview

G P starts the
conversation with

an answer (output).

F2 circuit

The GKR Protocol: Overview

V sends series of
challenges. P responds
with info about next

circuit level.

F2 circuit

The GKR Protocol: Overview

Challenges continue,
layer by layer down
to the the input.

F2 circuit

The GKR Protocol: Overview

Finally, P says

something about the
(multilinear extension

of the) input.

F2 circuit

The GKR Protocol: Overview

Finally, P says
something about the

(multilinear extension

of the) input.

F2 circuit

V sees input directly, so can check

P’s final statement directly.

/

Overview of [CMT12]

* Implemented the GKR protocol (with refinements).
® Demonstrated very low concrete costs for V.

® Brought P’s runtime down from Q2 (S?), to O(S log S), where

S is circuit size.

* Key insight: use multilinear extension of circuit within the

protocol.

® Causes enormous cancellation in P’s messages, allowing fast

computation.

Overview of [CMT12]

* Implemented the GKR protocol (with refinements).

® Demonstrated very low concrete costs for V.

® Brought P’s runtime down from Q2 (S?), to O(S log S), where
S is circuit size.

* Key insight: use multilinear extension of circuit within the

protocol.
® Causes enormous cancellation in P’s messages, allowing fast
computation.
e Still not good enough on its own.
® Pis ~10° times slower than just evaluating the circuit.

® Naive implementation of GKR would take trillions of times

longer.

This Work: Slashing Costs for

Structured Computation

Reducing Overhead Further

® Downsides to [CMT12] implementation:
® For “regular” circuits: log S factor runtime overhead for P.

® For “irregular” circuits: log S factor runtime overhead for P, and
expensive pre—processing phase for V.

Result 1: Regular Circuits

Reducing Overhead Further

® For “regular” circuits: Reduce P’s runtime from O(S log S) to O(S).

* Key idea: use new arithmetization of the circuit,
allowing P to reuse work across rounds.

® Experimental results: 250x speedup over [CMT12].
® P less than 10x slower than a C++ program that just evaluates

the circuit.

® Example applications: MatMult, DISTINCT, F,, Pattern
Matching, FFTs.

Results for Regular Circuits

Problem P time Ptime Circuit Eval Rounds Protocol V time

[CMT12] [T13] Time [T13] Comm [T13] [Both]
DISTINCT 56.6 172 s 1.88s 236 40.7 KB 28s
(n=2%) minutes
MatMult 2.7 37.8s 6.07 s 1361 5.4 KB ds

(512 x512) hours

Result 2: Data Parallel Computation

Dealing with Irregular Circuits

* No magic bullet for dealing with irregular wiring patterns.
® Need some assumption about the computation being outsourced.

® [s there structure in real-world computations?

® Yes: Data Parallel computation.

* Any setting where a sub-computation C is applied to many pieces
of data.

® Make no assumptions about C itself.

® These are the sort of problems getting outsourced!

Aggregation

™~

Leveraging Parallelism

® Directly applying existing results to data parallel computations
has big overhead.

® Costs depend on number of data pieces.

® Our approach: take advantage of parallelism.
® Reduce V's effort to proportional to size of C.
® Reduce P's overhead to log size of C.

® No dependence on number of data pieces.

* Key insight: C may be irregular internally, but the
computation 1S maximally regular between copies of

C.

Result 3: Matrix Multiplication

A Final Result: n x n MatMult

* P simply sendsV the “right answer”, and then P does O(n?)

extra work to prove 1ts correctness.
® Doesn’t matter how P obtains the right answer !

® Optimal runtime up to leading constant assuming no O(nz)
time algorithm for MatMult.

A Final Result: n x n MatMult

* P simply sendsV the “right answer”, and then P does O(n?)

extra work to prove 1ts correctness.
® Doesn’t matter how P obtains the right answer !

* Optimal runtime up to leading constant assuming no O(n?)
time algorithm for MatMult.
Problem Naive Additional V Time Rounds Protocol

Size MatMult P time Comm
Time
1024 x 1024 217 s 0.03s 0.67 s 11 264 bytes

2048x2048 18.23s 0.13s 2.89 s 12 288 bytes

Comparison to Freivalds’ Algorithm

® Freivalds (MFCS, 1979) gave the following protocol for
MatMult. To check AB=C:

® V picks random vector x.
® Accepts it A*(Bx) = Cx.
® No extra work for P, O(n?) time for V.
® Our big win: veritying algorithms that invoke MatMult, but
aren 't really interested in matrices.

°Eg Best-known graph diameter algorithms square the adjacency

matrix, but are only interested in a single number.

® Total communication for us is O(log” n), Freivalds’ is Q2 (n?).

Summary

® [CMT12] gives a general-purpose interactive proot protocol
with near-practical costs for Verifying any small-depth

computation.

® We slash costs for more structured computations (regular

circuits, data parallel, matrix multiplication)

® Major message: the more structure in computation, the faster

it can be verified.

® And this structure exists in real-world computations!

Our Results in Context: Related Work

Work on Argument Systems

e Substantial body of recent work implements argument
systems with pre-processing for circuit evaluation.
e [SMBW12, SVP+12, B-SCGT13, GGPR13, SVB+13, PHGR13,

BFR+13, B-SCGT+13]
* Advantages of our approach:
® Secure against computationally unbounded provers.
® No or minimal pre-processing for large classes of computation.
® Unmatched prover efficiency when applicable.
* Disadvantages of our approach:
® Only applicable to small-depth circuits.

* No support for “non-deterministic circuits” (see next talk).

° Logarithmically many rounds of interaction.

-

Other Work on Argument Systems

* [B-SCGT13a, B-SCGTb] develops argument systems based on
short PCPs.
® This approach never requires pre-processing for verifier.

® But likely introduces substantial additional concrete overhead for

pI'OVGI'.

Future Directions

1. Identify [Ps that avoid circuit representation for a

larger class of computational primitives.

2. Upcoming work [TVWB13]: a two-prover MIP
implementation extending GKR techniques.

® High-level message: disadvantages of GKR approach (no deep
circuits, no non-deterministic circuits) go away in two-prover
setting!

® In turn, MIPs can be compiled into single-prover argument

systems [BC12]

e Disclaimer: current transformations are based on impractical

primitives (FHE).

Thank you!

Sum-Check Protocol

® @Given: a d-variate polynomial g over field F

® Sum-check protocol computes the quantity:

E g(x,..0rx,)

¢ Costs:
® # of rounds: d
® Time cost for V: d + [time to evaluate g at a point]

® Time cost for P: at most O(29) * [time to evaluate g at a point]

Set-Up

® Given 7 Xn input matrices A, B over field F, interpret A and
B as functions mapping {0, 1}'**" x{0, 1}'**" to F via:

A(i19°°°9i10gn9jl""’jlogn) = A(Z’J)

o Let A, B: F¢" xF"*" = F denote the multilinear

extensions of the functions A and B.

e [Let C=A*B.Then the multilinear extension of C satisfies:

C(ll’ llogn’]l’ ’]logn)_ E A(ll’ llogn’k logn)*B(kl’ logn’]l’ ’jlogn)

kE{0,1}°8"

/

-

Matrix Multiplication Protocol

* P sends a matrix D claimed to equal A*B.
® V evaluates 1) at a random point (,....5,, 7' seeesT g,) EF

® Schwartz-Zippel lemma implies that it is safe for V to believe

that D equals the correct answer C as long as

!

! ' _ 1
D1 oo 15eeesT 1ogn) = C(Hseeis Fog st 1seees T o)

® SoV applies the sum-check protocol to compute:

E 8(ks.. s Kypg,,):

kE{0,11108"

where

g(k logn) A(rl’ rlogn’k logn)*B(kl’ logn’r'l"“’r'logn)

Matrix Multiplication Protocol

® In final round of sum-check protocol, V must evaluate g at a

random point (r",....7",,) EF*".

* Crucial observation: V can do this in time O(n’) by evaluating

A(seeis T "1oeeesT '1ogn) and B(r" sees 7 ogns T reees logn) and using
the identity:
" n _ n n %k " " | |
8 seis 7 ogn) = Al sees g T s) S B s s e T)

* Using our “reuse of work” technique, P has to do O(n”) work
on top of finding the right answer C in order to run the sum-

check protocol.

Goals of Verifiable Computation

® Provide user with correctness guarantee, without requiring

her to perform full computation herself.

® Ideally user will not even maintain a local copy of the data (all
of our protocols allow verifier to make single streaming pass

over input).

® Minimize extra effort required for cloud to provide

correctness guarantee.

® Achieve protocols secure against malicious clouds, but

lightweight for use in benign settings.

Independent Results

® Recent efforts to build practical argument systems.
® Setty, McPherson, Blumberg, Vu, Braun, Parno, Waltish
(NDSS12, Security12, EuroSys13)
® Vuetal. (Oakland13) build a system that:
1. Starts with a high-level programming language.

2. Automatically compiles any program in the language into an

arithmetic circuit.

3. Decides whether GKR implementation from [CMT12] (plus
refinements) or state-of-the-art argument system is more

efficient, and runs the better of the two.

® Experimental comparison in [Oakland13] shows [CMT12]
significantly faster except for programs with complicated

control flow or that are highly sequential.

More Independent Results

® Other argument systems that avoid short PCPs [PGHR13].

® Work towards practical (short) PCPs [B-SCGT13a, B-
SCGT13b].

* Refereed games and arguments [CRR11].

More Independent Results

Approach Pros/Cons

Interactive Proofs (this talk) Pros: Most efficient when applicable (no crypto, minimal
pre-processing forV, least overhead for P).
Cons: Applies only to parallel computation, does not support
‘non-deterministic reductions’ to circuits — important for

sorting, comparisons, etc.

Argument Systems avoiding Pros: General. Public Verifiability/ zero—knowledge properties.
short PCPs [Setty et al., Parno Cons: Big pre-preprocessing costs, more overhead for P
et al.] (crypto expensive)

Argument Systems based on Pros: General. No pre—preprocessing costs.

short PCPs [Ben-Sasson et al.] ~ Cons: Much more overhead for P.

-

What About “Sparse” Streams? [CCGT13]

® Many streams are over enormous domain sizes (e.g, [Pv6 flows)
* Existing results depend explicitly (though optimally) on n.
® Want costs to depend on number of data items m, not domain
size n.
® Idea: Domain reduction.

® Ask P to provide ‘perfect’ hash function g mapping huge domain
to small one.

° Challenges: ensuring that collisions in remapping do not cause
errors (need a way for V to “detect’ collisions under g).

® New protocols that allow P to ‘correct’ collisions online.
® Bottom line [CCGT13, to be submitted]: near-optimal

tradeofts in terms of m for frequency moments, graph
problems, etc.

References

* Cormode, Mitzenmacher, T. (ESA 2010)

® Cormode,T.,Yi (VLDB 2012)

* Cormode, Mitzenmacher, T. (ITCS 2012)

e T., Roberts, Mitzenmacher, Pfister (HotCloud 2012)

® Chakrabarti, Cormode, McGregor, T. ICALP 2009, in submission 2012)
® T. (in submission, 2013)

® Chakrabarti, Cormode, Goyal, T. (ongoing, 2013)

Further Leveraging Parallelism [TRMP12, T13]

® In our protocols, P and V themselves can be parallelized

(although V runs quickly even without parallelization).

* Using a GPU, achieved 40x-100x speedups for P, 100x
speedups for V.

