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Outsourcing 
�  Many applications require outsourcing computation to 

untrusted service providers. 
� Main motivation: commercial cloud computing services. 
� Also, weak peripheral devices; fast but faulty co-processors. 
� Volunteer Computing (SETI@home,World Community 

Grid, etc.) 

�  User requires a guarantee that the cloud performed the 
computation correctly.  



AWS Customer Agreement 
WE… MAKE NO REPRESENTATIONS OF ANY 
KIND … THAT THE SERVICE OR THIRD PARTY 
CONTENT WILL BE UNINTERRUPTED, ERROR 
FREE OR FREE OF HARMFUL COMPONENTS, 
OR THAT ANY CONTENT … WILL BE SECURE 
OR NOT OTHERWISE LOST OR DAMAGED. 
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Interactive Proofs 
�  Prover P and Verifier V. 

�  P solves problem, tells V the answer. 
� Then P and  V have a conversation. 
�  P’s goal: convince V the answer is correct. 

�  Requirements:  
�  1. Completeness: an honest P can convince V 

to accept. 
�  2. Soundness: V will catch a lying P with high 

probability (secure even if P is computationally 
unbounded). 



Prior Work: [GKR08, CMT12] 



The GKR Protocol 
�  Interactive Proofs for Muggles [GKR 08] gives a 

highly efficient protocol for problems in NC. 
� Allows V to run very quickly, so outsourcing is 

useful even though problems are “easy”. 
�   P needs “only” polynomially more time to prove 

correctness than she does to just solve the problem!  
 



The GKR Protocol 
�  Why does GKR not yield a practical protocol out 

of the box? 
�  P  has to do a lot of extra bookkeeping (cubic 

blowup in runtime). 



!"# !$# !%# !&#

'# '# '# '#

(# (#

(#

The GKR Protocol: Overview 

F2 circuit 



!"# !$# !%# !&#

'# '# '# '#

(# (#

(#

F2 circuit 

P starts the 
conversation with  
an answer (output). 

The GKR Protocol: Overview 
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F2 circuit 

V sends series of  
challenges. P responds 
with info about next 
circuit level.  
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F2 circuit 

Challenges continue, 
layer by layer down 
to the the input.  
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something about the 
(multilinear extension 
of the) input.  
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The GKR Protocol: Overview 

F2 circuit 

Finally, P says 
something about the 
(multilinear extension 
of the) input.  

V sees input directly, so can check  
P’s final statement directly.   



Overview of [CMT12] 
�  Implemented the GKR protocol (with refinements). 
�  Demonstrated very low concrete costs for V.  
�  Brought P’s runtime down from Ω(S3), to O(S log S), where 

S is circuit size. 
� Key insight: use multilinear extension of circuit within the 

protocol. 
� Causes enormous cancellation in P’s messages, allowing fast 

computation.  

Practically speaking, still not good enough on its own.  
256 x 256 matrix multiplication takes P 27 minutes. 
Naïve implementation of GKR would take trillions of times 
longer. 



Overview of [CMT12] 
�  Implemented the GKR protocol (with refinements). 
�  Demonstrated very low concrete costs for V.  
�  Brought P’s runtime down from Ω(S3), to O(S log S), where 

S is circuit size. 
� Key insight: use multilinear extension of circuit within the 

protocol. 
� Causes enormous cancellation in P’s messages, allowing fast 

computation.  

�  Still not good enough on its own.  
�  P is ~103 times slower than just evaluating the circuit. 

� Naïve implementation of GKR would take trillions of times 
longer. 



This Work: Slashing Costs for 
Structured Computation 



Reducing Overhead Further 
�  Downsides to [CMT12] implementation: 

�  For “regular” circuits: log S factor runtime overhead for P. 
�  For “irregular” circuits: log S factor runtime overhead for P, and 

expensive pre-processing phase for V. 

Solution for “regular” circuits: Reduce P’s runtime to O(S). 
Key idea: use a new arithmetization of the circuit, allowing  P to 
reuse work across rounds. 
Experimental results: 250x speedup over [CMT12].  
P less than 10x slower than a C++ program that just evaluates the 
circuit. 
Example applications: MatMult, DISTINCT, F2, Pattern Matching, 
FFTs. 
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Reducing Overhead Further 
�  For “regular” circuits: Reduce P’s runtime from O(S log S) to O(S). 

� Key idea: use new arithmetization of the circuit, 
allowing  P to reuse work across rounds. 

�  Experimental results: 250x speedup over [CMT12].  
�  P less than 10x slower than a C++ program that just evaluates 

the circuit. 
�  Example applications: MatMult, DISTINCT, F2, Pattern 

Matching, FFTs. 



Problem! P time 
[CMT12]!

P time 
[T13]!

Circuit Eval 
Time  

Rounds!
[T13]!

Protocol  
Comm [T13]!

!

V time!
[Both]!

 

DISTINCT!
(n=220)!

56.6 
minutes!

17.2 s! 1.88 s! 236! 40.7 KB! .2 s!

MatMult!
(512 x 512)!

2.7 !
hours!

37.8 s! 6.07 s! 1361! 5.4 KB! .1 s!

Results for Regular Circuits 



Result 2: Data Parallel Computation 



Dealing with Irregular Circuits 
�  No magic bullet for dealing with irregular wiring patterns. 

� Need some assumption about the computation being outsourced. 
�  Is there structure in real-world computations? 

�  Yes: Data Parallel computation. 
� Any setting where a sub-computation C is applied to many pieces 

of data.  
� Make no assumptions about C itself. 
� These are the sort of problems getting outsourced! 
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Leveraging Parallelism 
�  Directly applying existing results to data parallel computations 

has big overhead. 
� Costs depend on number of data pieces. 

�   Our approach: take advantage of parallelism. 
� Reduce V's effort to proportional to size of C. 
� Reduce P's overhead to log size of C. 
� No dependence on number of data pieces. 

�  Key insight: C may be irregular internally, but the 
computation is maximally regular between copies of 
C. 



Result 3: Matrix Multiplication 



A Final Result: n x n MatMult 
�  P simply sends V the “right answer”, and then P does O(n2) 

extra work to prove its correctness. 
�  Doesn’t matter how P obtains the right answer! 
�  Optimal runtime up to leading constant assuming no O(n2) 

time algorithm for MatMult. 
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�  P simply sends V the “right answer”, and then P does O(n2) 

extra work to prove its correctness. 
�  Doesn’t matter how P obtains the right answer! 
�  Optimal runtime up to leading constant assuming no O(n2) 

time algorithm for MatMult. 
Problem 

Size!
Naïve 

MatMult 
Time 

Additional 
P time!

V Time! Rounds!
!

Protocol  
Comm!

1024 x 1024! 2.17 s! 0.03 s! 0.67 s! 11! 264 bytes!

2048 x 2048! 18.23 s! 0.13 s! 2.89 s! 12! 288 bytes!



Comparison to Freivalds’ Algorithm 
�  Freivalds (MFCS, 1979) gave the following protocol for 

MatMult. To check AB=C: 
� V picks random vector x. 
� Accepts if A*(Bx) = Cx. 
� No extra work for P, O(n2) time for V. 

�  Our big win: verifying algorithms that invoke MatMult, but 
aren’t really interested in matrices. 
�  E.g. Best-known graph diameter algorithms square the adjacency 

matrix, but are only interested in a single number. 
� Total communication for us is O(log2 n), Freivalds’ is Ω(n2). 



Summary 
�  [CMT12] gives a general-purpose interactive proof protocol 

with near-practical costs for verifying any small-depth 
computation. 

�  We slash costs for more structured computations (regular 
circuits, data parallel, matrix multiplication) 

�  Major message: the more structure in computation, the faster 
it can be verified. 
� And this structure exists in real-world computations! 



Our Results in Context: Related Work 



Work on Argument Systems 
�  Substantial body of recent work implements argument 

systems with pre-processing for circuit evaluation.  
�  [SMBW12, SVP+12, B-SCGT13, GGPR13, SVB+13, PHGR13, 

BFR+13, B-SCGT+13] 

�  Advantages of our approach: 
�  Secure against computationally unbounded provers. 
� No or minimal pre-processing for large classes of computation. 
� Unmatched prover efficiency when applicable. 

�  Disadvantages of our approach: 
� Only applicable to small-depth circuits. 
� No support for “non-deterministic circuits” (see next talk). 
�  Logarithmically many rounds of interaction. 



Other Work on Argument Systems 
�  [B-SCGT13a, B-SCGTb] develops argument systems based on 

short PCPs. 
� This approach never requires pre-processing for verifier. 
�  But likely introduces substantial additional concrete overhead for 

prover. 



Future Directions 
1.  Identify IPs that avoid circuit representation for a 

larger class of computational primitives. 

2.  Upcoming work [TVWB13]: a two-prover MIP 
implementation extending GKR techniques. 

�  High-level message: disadvantages of GKR approach (no deep 
circuits, no non-deterministic circuits) go away in two-prover 
setting! 

�  In turn, MIPs can be compiled into single-prover argument 
systems [BC12] 

�  Disclaimer: current transformations are based on impractical 
primitives (FHE). 

 



 
Thank you! 



Sum-Check Protocol 
�  Given: a d-variate polynomial g over field F 
�  Sum-check protocol computes the quantity: 

�  Costs: 
� # of rounds: d 
� Time cost for V: d + [time to evaluate g at a point] 
� Time cost for P: at most O(2d) * [time to evaluate g at a point] 

g(x1,..., xd )
x!{0,1}d
"



Set-Up 
�  Given           input matrices A, B over field F, interpret A and 

B as functions mapping                                      to F via: 

�  Let    ,   :                               denote the multilinear 
extensions of the functions A and B. 

�  Let C=A*B. Then the multilinear extension of C satisfies: 

n!n
{0, 1}log n  !{0, 1}log n

A(i1,..., ilogn, j1,..., jlogn ) = A(i, j)

B
~

A
~

Flog n  !Flog n " F

C
~
(i1,..., ilogn, j1,..., jlogn ) = A

~
(i1,..., ilogn,k1,...,klogn )*B

~
(k1,...,klogn, j1,..., jlogn )

k!{0,1}logn
"



Matrix Multiplication Protocol 
�  P sends a matrix      claimed to equal A*B. 
�  V evaluates      at a random point 
�  Schwartz-Zippel lemma implies that it is safe for V to believe 

that       equals the correct answer C as long as  
    

�  So V applies the sum-check protocol to compute: 

where  

D
~

(r1,..., rlogn, r '1,..., r 'logn )! F
2 logn

D
~
(r1,..., rlogn, r '1,..., r 'logn ) =C

~
(r1,..., rlogn, r '1,..., r 'logn )

g(k1,...,klogn )
k!{0,1}logn
" ,

g(k1,...,klogn ) = A
~
(r1,..., rlogn,k1,...,klogn )*B

~
(k1,...,klogn, r '1,..., r 'logn )

D

D



Matrix Multiplication Protocol 
�  In final round of sum-check protocol, V must evaluate g at a 

random point 
�  Crucial observation: V can do this in time O(n2) by evaluating 
                                     and                                       and using 
the identity: 
 
 
�  Using our “reuse of work” technique, P has to do O(n2) work 

on top of finding the right answer C in order to run the sum-
check protocol.  

 
 
 

g(r ''1,..., r ''logn ) = A
~
(r1,..., rlogn, r ''1,..., r ''logn )*B

~
(r ''1,..., r ''logn, r '1,..., r 'logn )

(r ''1,..., r ''logn )! F
logn.

A
~
(r1,..., rlogn, r ''1,..., r ''logn ) B

~
(r ''1,..., r ''logn, r '1,..., r 'logn )



Goals of Verifiable Computation 
�  Provide user with correctness guarantee, without requiring 

her to perform full computation herself. 
�  Ideally user will not even maintain a local copy of the data (all 

of our protocols allow verifier to make single streaming pass 
over input). 

�  Minimize extra effort required for cloud to provide 
correctness guarantee. 

�  Achieve protocols secure against malicious clouds, but  
lightweight for use in benign settings. 



Independent Results 
�  Recent efforts to build practical argument systems. 

�  Setty, McPherson, Blumberg, Vu, Braun, Parno, Walfish 
(NDSS12, Security12, EuroSys13) 

�  Vu et al. (Oakland13) build a system that: 
1.  Starts with a high-level programming language. 
2.  Automatically compiles any program in the language into an 

arithmetic circuit.  
3.  Decides whether GKR implementation from [CMT12] (plus 

refinements) or state-of-the-art argument system is more 
efficient, and runs the better of the two. 

�  Experimental comparison in [Oakland13] shows [CMT12] 
significantly faster except for programs with complicated 
control flow or that are highly sequential. 



More Independent Results 
�  Other argument systems that avoid short PCPs [PGHR13]. 
�  Work towards practical (short) PCPs [B-SCGT13a, B-

SCGT13b].  
�  Refereed games and arguments [CRR11]. 
 



More Independent Results 
Approach Pros/Cons 

Interactive Proofs (this talk) Pros: Most efficient when applicable (no crypto, minimal 
pre-processing for V, least overhead for P). 
Cons: Applies only to parallel computation, does not support 
‘non-deterministic reductions’ to circuits – important for 
sorting, comparisons, etc. 

Argument Systems avoiding 
short PCPs [Setty et al., Parno 
et al.] 

Pros: General. Public verifiability/zero-knowledge properties. 
Cons: Big pre-preprocessing costs, more overhead for P 
(crypto expensive) 

Argument Systems based on 
short PCPs [Ben-Sasson et al.] 

Pros: General. No pre-preprocessing costs. 
Cons: Much more overhead for P. 



What About “Sparse” Streams? [CCGT13] 
�  Many streams are over enormous domain sizes (e.g. IPv6 flows) 

�  Existing results depend explicitly (though optimally) on n. 
� Want costs to depend on number of data items m, not domain 

size n.   
�  Idea: Domain reduction.  

� Ask P to provide ‘perfect’ hash function g mapping huge domain 
to small one.  

� Challenges: ensuring that collisions in remapping do not cause 
errors (need a way for V to ‘detect’ collisions under g). 

�   New protocols that allow P to ‘correct’ collisions online. 
�  Bottom line [CCGT13, to be submitted]: near-optimal 

tradeoffs in terms of m for frequency moments, graph 
problems, etc. 
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Further Leveraging Parallelism [TRMP12, T13] 
�  In our protocols, P and V themselves can be parallelized

(although V runs quickly even without parallelization). 
�  Using a GPU, achieved 40x-100x speedups for P, 100x 

speedups for V. 


