A Crash Course on Fast Interactive Proofs

Justin Thaler Georgetown University

Interactive Proofs

- Prover **P** and Verifier **V**.
- P solves problem, tells V the answer.
 - Then P and V have a conversation.
 - P's goal: convince V the answer is correct.
- Requirements:
 - 1. Completeness: an honest P can convince V to accept.
 - 2. Soundness: V will catch a lying P with high probability.

Interactive Proofs

- Prover **P** and Verifier **V**.
- P solves problem, tells V the answer.
 - Then **P** and **V** have a conversation.
 - P's goal: convince V the answer is correct.
- Requirements:
 - 1. Completeness: an honest P can convince V to accept.
 - 2. Soundness: V will catch a lying P with high probability.
 - This must hold even if P is computationally unbounded and trying to trick V into accepting the incorrect answer.

Interactive Proof Techniques: Preliminaries

Schwartz-Zippel Lemma

• Recall **FACT:** Let $p \neq q$ be univariate polynomials over field *F*, of degree at most *d*. Then $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{d}{|F|}$.

Schwartz-Zippel Lemma

- Recall **FACT:** Let $p \neq q$ be univariate polynomials over field *F*, of degree at most *d*. Then $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{d}{|F|}$.
- The **Schwartz-Zippel lemma** is a multivariate generalization:
 - Let $p \neq q$ be ℓ -variate polynomials over field F of total degree at most d. Then $\Pr_{r \in F^{\ell}}[p(r) = q(r)] \leq \frac{d}{|F|}$.

Schwartz-Zippel Lemma

- Recall **FACT:** Let $p \neq q$ be univariate polynomials over field **F**, of degree at most d. Then $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{d}{|F|}$.
- The **Schwartz-Zippel lemma** is a multivariate generalization:
 - Let $p \neq q$ be ℓ -variate polynomials over field F of total degree at most d. Then $\Pr_{r \in F^{\ell}}[p(r) = q(r)] \leq \frac{d}{|F|}$.
 - "Total degree" refers to the maximum sum of degrees of all variables in any term. E.g., $x_1^2x_2 + x_1x_2$ has total degree 3.

- Definition [Extensions]. Given a function f: {0,1}^ℓ → F, a ℓ-variate polynomial g over F is said to extend f if f(x) = g(x) for all x ∈ {0,1}^ℓ.
- Definition [Multilinear Extensions]. Any function $f: \{0,1\}^{\ell} \rightarrow F$ has a unique multilinear extension (MLE), denoted \tilde{f} .

- Definition [Extensions]. Given a function $f: \{0,1\}^{\ell} \to F$, a ℓ -variate polynomial g over F is said to extend f if f(x) = g(x) for all $x \in \{0,1\}^{\ell}$.
- Definition [Multilinear Extensions]. Any function $f: \{0,1\}^{\ell} \to F$ has a unique multilinear extension (MLE), denoted \tilde{f} .
 - Multilinear means the polynomial has degree at most 1 in each variable.
 - $(1 x_1)(1 x_2)$ is multilinear, $x_1^2 x_2$ is not.

 $f: \{0,1\}^2 \to \mathbf{F}$

- Fact [VSBW13]: Given as input all 2^ℓ evaluations of a function f: {0,1}^ℓ → F, for any point r ∈ F^ℓ there is an O(2^ℓ)-time algorithm for evaluating f̃(r).
 - Assuming field addition and multiplication operations take one time step.

- Fact [VSBW13]: Given as input all 2^{ℓ} evaluations of a function $f: \{0,1\}^{\ell} \to F$, for any point $r \in F^{\ell}$ there is an $O(2^{\ell})$ -time algorithm for evaluating $\tilde{f}(r)$.
- The following slides prove a slightly weaker $O(\ell \cdot 2^{\ell})$ time bound.

• Fact 1: For any $z \in \{0,1\}^{\ell}$, $f(z) = \sum_{w \in \{0,1\}^{\ell}} f(w) \cdot \delta_w(z)$.

• Fact 1: For any $z \in \{0,1\}^{\ell}$, $f(z) = \sum_{w \in \{0,1\}^{\ell}} f(w) \cdot \delta_w(z)$.

- Lemma (Lagrange Interpolation): Let $f: \{0,1\}^{\ell} \to F$. Then as formal polynomials, $\tilde{f}(x) = \sum_{w \in \{0,1\}^{\ell}} f(w) \cdot \tilde{\delta}_{w}(x)$.
- Proof: The RHS is multilinear. The lemma then follows from Fact 1 and uniqueness of the MLE.

• Fact 1: For any $z \in \{0,1\}^{\ell}$, $f(z) = \sum_{w \in \{0,1\}^{\ell}} f(w) \cdot \delta_w(z)$.

- Lemma (Lagrange Interpolation): Let $f: \{0,1\}^{\ell} \to F$. Then as formal polynomials, $\tilde{f}(x) = \sum_{w \in \{0,1\}^{\ell}} f(w) \cdot \tilde{\delta}_{w}(x)$.
- Proof: The RHS is multilinear. The lemma then follows from Fact 1 and uniqueness of the MLE.
- Fact 2: (Explicit Expression for Lagrange Basis Polynomials) $\tilde{\delta}_w(x) = \prod_{i=1}^{\ell} (x_i w_i + (1 - x_i)(1 - w_i)).$

• Fact [VSBW13]: Given as input all 2^{ℓ} evaluations of a function $f: \{0,1\}^{\ell} \to F$, for any point $r \in F^{\ell}$ there is an $O(2^{\ell})$ -time algorithm for evaluating $\tilde{f}(r)$.

- Fact [VSBW13]: Given as input all 2^{ℓ} evaluations of a function $f: \{0,1\}^{\ell} \to F$, for any point $r \in F^{\ell}$ there is an $O(2^{\ell})$ -time algorithm for evaluating $\tilde{f}(r)$.
- Proof of slightly weaker $O(\ell \cdot 2^{\ell})$ time bound:

- Fact [VSBW13]: Given as input all 2^ℓ evaluations of a function f: {0,1}^ℓ → F, for any point r ∈ F^ℓ there is an O(2^ℓ)-time algorithm for evaluating f̃(r).
- Proof of slightly weaker O(ℓ · 2^ℓ) time bound:
 Recall f̃(r) = Σ_{w∈{0,1}ℓ} f(w) · δ̃_w(r).

- Fact [VSBW13]: Given as input all 2^ℓ evaluations of a function f: {0,1}^ℓ → F, for any point r ∈ F^ℓ there is an O(2^ℓ)-time algorithm for evaluating f̃(r).
- Proof of slightly weaker $O(\ell \cdot 2^{\ell})$ time bound:
 - Recall $\tilde{f}(r) = \sum_{w \in \{0,1\}^{\ell}} f(w) \cdot \tilde{\delta}_w(r)$.
 - For each $w \in \{0,1\}^{\ell}$, $\tilde{\delta}_w(r)$ can be computed with $O(\ell)$ field operations.
 - $\tilde{\delta}_w(r) = \prod_{i=1}^{\ell} (r_i w_i + (1 r_i)(1 w_i)).$

- Fact [VSBW13]: Given as input all 2^ℓ evaluations of a function f: {0,1}^ℓ → F, for any point r ∈ F^ℓ there is an O(2^ℓ)-time algorithm for evaluating f̃(r).
- Proof of slightly weaker $O(\ell \cdot 2^{\ell})$ time bound:
 - Recall $\tilde{f}(r) = \sum_{w \in \{0,1\}^{\ell}} f(w) \cdot \tilde{\delta}_w(r)$.
 - For each $w \in \{0,1\}^{\ell}$, $\tilde{\delta}_w(r)$ can be computed with $O(\ell)$ field operations.

•
$$\tilde{\delta}_w(r) = \prod_{i=1}^{\ell} (r_i w_i + (1 - r_i)(1 - w_i)).$$

• Can reduce to time $O(2^{\ell})$ via dynamic programming.

The Sum-Check Protocol [LFKN90]

Sum-Check Protocol [LFKN90]

- Input: V given oracle access to a ℓ -variate polynomial g over field F.
- Goal: compute the quantity:

$$\sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$\sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

• **Round 1**: P sends **univariate** polynomial $S_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

• V checks that $C_1 = s_1(0) + s_1(1)$.

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

• **Round 1**: P sends **univariate** polynomial $S_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

• V checks that $C_1 = s_1(0) + s_1(1)$.

- If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1 = H_1$.
- How to check this? Just check that s_1 and H_1 agree at a random point r_1 .

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

• **Round 1**: P sends **univariate** polynomial $S_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

• V checks that $C_1 = s_1(0) + s_1(1)$.

- If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1 = H_1$.
- How to check this? Just check that s_1 and H_1 agree at a random point r_1 .
- V can compute $S_1(r_1)$ directly from P's first message, but not $H_1(r_1)$.

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r_1 at random from F and sends r_1 to P.
- **Round 2**: They recursively check that $s_1(r_1) = H_1(r_1)$.

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r_1 at random from F and sends r_1 to P.
- Round 2: They recursively check that $s_1(r_1) = H_1(r_1)$. i.e., that $s_1(r_1) = \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(r_1, b_2, \dots, b_\ell)$.

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r_1 at random from F and sends r_1 to P.
- Round 2: They recursively check that $s_1(r_1) = H_1(r_1)$. i.e., that $s_1(r_1) = \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(r_1, b_2, \dots, b_\ell)$.
- Round ℓ (Final round): P sends univariate polynomial $S_{\ell}(X_{\ell})$ claimed to equal $H_{\ell} := g(r_1, ..., r_{\ell-1}, X_{\ell}).$
- V checks that $s_{\ell-1}(r_{\ell-1}) = s_{\ell}(0) + s_{\ell}(1)$.
- V picks r_{ℓ} at random, and needs to check that $s_{\ell}(r_{\ell}) = g(r_1, ..., r_{\ell})$.
 - No need for more rounds. V can perform this check with one oracle query.

Analysis of the Sum-Check Protocol

Completeness and Soundness

• Completeness holds by design: If **P** sends the prescribed messages, then all of **V**'s checks will pass.

Completeness and Soundness

- Completeness holds by design: If P sends the prescribed messages, then all of V's checks will pass.
- Soundness: If P does not send the prescribed messages, then V rejects with probability at least $1 - \frac{\ell \cdot d}{|F|}$, where d is the maximum degree of g in any variable.
- Proof is by induction on the number of variables ℓ .
Costs of the Sum-Check Protocol

- Total communication is $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell 1$ messages, each consisting of one field element.

Costs of the Sum-Check Protocol

- Total communication is $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell 1$ messages, each consisting of one field element.
- V's runtime is:

 $O(d\ell + [time required to evaluate g at one point]).$

Costs of the Sum-Check Protocol

- Total communication is $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell 1$ messages, each consisting of one field element.
- V's runtime is:

 $O(d\ell + [time required to evaluate g at one point]).$

• P's runtime is at most:

 $O(d \cdot 2^{\ell} \cdot [time required to evaluate g at one point]).$

An Application of the Sum-Check Protocol

A Doubly-Efficient Interactive Proof for Matrix Multiplication

[Thaler13]: Optimal IP For n x n MatMult

• Goal: Given $n \times n$ input matrices A, B over field F, compute $C = A \cdot B$.

[Thaler13]: Optimal IP For n x n MatMult

- Goal: Given $n \times n$ input matrices A, B over field F, compute $C = A \cdot B$.
- P simply determines the "right answer", and then P does $O(n^2)$ extra work to prove its correctness.
- Optimal runtime up to leading constant assuming no $O(n^2)$ time algorithm for MatMult.
- V runs in linear time (which is also optimal).

[Thaler13]: Optimal IP For n x n MatMult

- Goal: Given $n \times n$ input matrices A, B over field F, compute $C = A \cdot B$.
- P simply determines the "right answer", and then P does $O(n^2)$ extra work to prove its correctness.
- Optimal runtime up to leading constant assuming no $O(n^2)$ time algorithm for MatMult.
- V runs in linear time (which is also optimal).

Problem Size	Naïve MatMult Time	Additional P time	V Time	Rounds	Protocol Comm
1024 x 1024	2.17 s	0.03 s	0.09 s	11	264 bytes
2048 x 2048	18.23 s	0.13 s	0.30 s	12	288 bytes

Comparison to Freivalds' Algorithm

- Freivalds (MFCS, 1979) gave the following protocol for MatMult. To check $A \cdot B = D$:
 - V picks random vector *x*.
 - Accepts if $A \cdot (Bx) = Dx$.
 - No extra work for P, $O(n^2)$ time for V.

Comparison to Freivalds' Algorithm

- Freivalds (MFCS, 1979) gave the following protocol for MatMult. To check $A \cdot B = D$:
 - V picks random vector \boldsymbol{x} .
 - Accepts if $A \cdot (Bx) = Dx$.
 - No extra work for P, $O(n^2)$ time for V.
- Our big win: verifying algorithms that invoke MatMult, but aren't really interested in matrices.
 - E.g., Best-known subgraph-counting algorithms square the adjacency matrix, but are only interested in a single number.
 - Total communication for us is $O(\log n)$, Freivalds' is $\Omega(n^2)$.

MatMult Protocol: Technical Details

Notation

- Given $n \times n$ input matrices A, B over field F, interpret Aand B as functions mapping $\{0,1\}^{\log n} \times \{0,1\}^{\log n}$ to Fvia $A(i_1, \dots, i_{\log n}, j_1, \dots, j_{\log n}) = A_{ij}$.
- Let $C = A \cdot B$ denote the true answer.
- Let \tilde{A} , \tilde{B} denote the multilinear extensions of the functions A and B.

• P sends a matrix D claimed to equal $C = A \cdot B$.

- P sends a matrix D claimed to equal $C = A \cdot B$.
- V evaluates \widetilde{D} at a random point $(r_1, r_2) \in F^{\log n} \times F^{\log n}$.

- P sends a matrix D claimed to equal $C = A \cdot B$.
- V evaluates \widetilde{D} at a random point $(r_1, r_2) \in F^{\log n} \times F^{\log n}$.
- By Schwartz-Zippel: it is safe for V to believe that D equals the correct answer C as long as $\tilde{D}(r_1, r_2) = \tilde{C}(r_1, r_2)$.

- P sends a matrix D claimed to equal $C = A \cdot B$.
- V evaluates \widetilde{D} at a random point $(r_1, r_2) \in F^{\log n} \times F^{\log n}$.
- By Schwartz-Zippel: it is safe for V to believe that D equals the correct answer C as long as $\widetilde{D}(r_1, r_2) = \widetilde{C}(r_1, r_2)$.
- Goal becomes: compute $\tilde{\mathcal{C}}(r_1, r_2)$

• Goal: Compute $\tilde{C}(r_1, r_2)$.

- Goal: Compute $\tilde{C}(r_1, r_2)$.
- For Boolean vectors $(\mathbf{i}, \mathbf{j}) \in \{0, 1\}^{\log n}$, clearly: $C(\mathbf{i}, \mathbf{j}) = \sum_{\mathbf{k} \in \{0, 1\}^{\log n}} A(\mathbf{i}, \mathbf{k}) B(\mathbf{k}, \mathbf{j})$

- Goal: Compute $\tilde{C}(r_1, r_2)$.
- For Boolean vectors $(\mathbf{i}, \mathbf{j}) \in \{0, 1\}^{\log n}$, clearly: $C(\mathbf{i}, \mathbf{j}) = \sum_{\mathbf{k} \in \{0, 1\}^{\log n}} A(\mathbf{i}, \mathbf{k}) B(\mathbf{k}, \mathbf{j})$
- This implies the following **polynomial** identity: $\tilde{a}(t, t) = \tilde{b}(t, t)$

$$\tilde{C}(\boldsymbol{i},\boldsymbol{j}) = \sum_{\boldsymbol{k}\in\{0,1\}}\log n \ \tilde{A}(\boldsymbol{i},\boldsymbol{k})\tilde{B}(\boldsymbol{k},\boldsymbol{j}).$$

- Goal: Compute $\tilde{C}(r_1, r_2)$.
- For Boolean vectors $(\mathbf{i}, \mathbf{j}) \in \{0, 1\}^{\log n}$, clearly: $C(\mathbf{i}, \mathbf{j}) = \sum_{\mathbf{k} \in \{0, 1\}^{\log n}} A(\mathbf{i}, \mathbf{k}) B(\mathbf{k}, \mathbf{j})$
- This implies the following **polynomial** identity:

$$\tilde{C}(\boldsymbol{i},\boldsymbol{j}) = \sum_{\boldsymbol{k}\in\{0,1\}^{\log n}} \tilde{A}(\boldsymbol{i},\boldsymbol{k})\tilde{B}(\boldsymbol{k},\boldsymbol{j}).$$

• So V applies sum-check protocol to compute

$$\tilde{C}(\boldsymbol{r_1}, \boldsymbol{r_2}) = \sum_{b_1 \in \{0,1\}} \dots \sum_{b_{\log n} \in \{0,1\}} g(b_1, \dots, b_{\log n}),$$

where:
$$g(\boldsymbol{z}) := \tilde{A}(\boldsymbol{r_1}, \boldsymbol{z}) \ \tilde{B}(\boldsymbol{z}, \boldsymbol{r_2}).$$

Making V Fast

• At end of sum-check, V must evaluate

$$g(\boldsymbol{r_3}) = \tilde{A}(\boldsymbol{r_1}, \boldsymbol{r_3}) \ \tilde{B}(\boldsymbol{r_3}, \boldsymbol{r_2}).$$

• Suffices to evaluate $\tilde{A}(r_1, r_3)$ and $\tilde{B}(r_3, r_2)$.

Making V Fast

• At end of sum-check, V must evaluate

 $g(\boldsymbol{r_3}) = \tilde{A}(\boldsymbol{r_1}, \boldsymbol{r_3}) \ \tilde{B}(\boldsymbol{r_3}, \boldsymbol{r_2}).$

- Suffices to evaluate $\tilde{A}(r_1, r_3)$ and $\tilde{B}(r_3, r_2)$.
- Can be done in $O(n^2)$ time by "Fast Evaluation of MLE" lemma in preliminaries.

- Recall: we're using sum-check to compute $\sum_{b_1 \in \{0,1\}} \dots \sum_{b_{\log n} \in \{0,1\}} g(b_1, \dots, b_{\log n}).$
- Round *i*: P sends quadratic polynomial S_i(X_i) claimed to equal: ∑_{bi+1∈{0,1}} ... ∑_{blog n∈{0,1}} g(r_{3,1}, ..., r_{3,i-1}, X_i, b_{i+1}, ..., b_{log n})
 Suffices for P to specify s_i(0), s_i(1), s_i(2)

- Recall: we're using sum-check to compute $\sum_{b_1 \in \{0,1\}} \dots \sum_{b_{\log n} \in \{0,1\}} g(b_1, \dots, b_{\log n}).$
- Round *i*: P sends quadratic polynomial S_i(X_i) claimed to equal: ∑_{b_{i+1}∈{0,1}} ... ∑_{b_{log n}∈{0,1}} g(r_{3,1}, ..., r_{3,i-1}, X_i, b_{i+1}, ..., b_{log n})
 Suffices for P to specify s_i(0), s_i(1), s_i(2)
 - Thus: Enough for P to evaluate g at all points of the form $(r_{3,1}, ..., r_{3,i-1}, \{0,1,2\}, b_{i+1}, ..., b_{\log n})$: $b_{i+1}, ..., b_{\log n} \in \{0,1\}^{\log n - i}$

- Recall: we're using sum-check to compute $\sum_{b_1 \in \{0,1\}} \dots \sum_{b_{\log n} \in \{0,1\}} g(b_1, \dots, b_{\log n}).$
- Round *i*: P sends quadratic polynomial S_i(X_i) claimed to equal: ∑_{b_{i+1}∈{0,1}} ... ∑_{b_{log n}∈{0,1}} g(r_{3,1}, ..., r_{3,i-1}, X_i, b_{i+1}, ..., b_{log n})
 Suffices for P to specify s_i(0), s_i(1), s_i(2)
 - Thus: Enough for P to evaluate g at all points of the form

 (r_{3,1},...,r_{3,i-1}, {0,1,2}, b_{i+1},..., b_{log n}): b_{i+1},..., b_{log n} ∈ {0,1}^{log n -i}

 This is O(ⁿ/_{2ⁱ}) points.

- Recall: we're using sum-check to compute $\sum_{b_1 \in \{0,1\}} \dots \sum_{b_{\log n} \in \{0,1\}} g(b_1, \dots, b_{\log n}).$
- Round *i*: P sends quadratic polynomial S_i(X_i) claimed to equal: ∑_{b_{i+1}∈{0,1}} ... ∑_{b_{log n}∈{0,1}} g(r_{3,1}, ..., r_{3,i-1}, X_i, b_{i+1}, ..., b_{log n})
 Suffices for P to specify s_i(0), s_i(1), s_i(2)
 - Thus: Enough for P to evaluate g at all points of the form
 (r_{3,1}, ..., r_{3,i-1}, {0,1,2}, b_{i+1}, ..., b_{log n}): b_{i+1}, ..., b_{log n} ∈ {0,1}^{log n -i}

 This is O(ⁿ/_{2i}) points.
 - Recall \tilde{A} and \tilde{B} can each be evaluated at any input in $O(n^2)$ time, and hence so can g.

• So P can compute
$$S_i$$
 in $O\left(\frac{n}{2^i} \cdot n^2\right) = O\left(n^3/2^i\right)$ time.

- Recall: we're using sum-check to compute $\sum_{b_1 \in \{0,1\}} \dots \sum_{b_{\log n} \in \{0,1\}} g(b_1, \dots, b_{\log n}).$
- Round *i*: P sends quadratic polynomial S_i(X_i) claimed to equal: ∑_{b_{i+1}∈{0,1}} ... ∑_{b_{log n}∈{0,1}} g(r_{3,1}, ..., r_{3,i-1}, X_i, b_{i+1}, ..., b_{log n})
 Suffices for P to specify s_i(0), s_i(1), s_i(2)
 - Thus: Enough for P to evaluate g at all points of the form $(r_{3,1}, ..., r_{3,i-1}, \{0,1,2\}, b_{i+1}, ..., b_{\log n})$: $b_{i+1}, ..., b_{\log n} \in \{0,1\}^{\log n-i}$
 - This is $O(\frac{n}{2^i})$ points.
 - Recall \tilde{A} and \tilde{B} can each be evaluated at any input in $O(n^2)$ time, and hence so can g.
- Over all rounds, this is $O(\sum_i n^3/2^i) = O(n^3)$ total time.

- Recall: Enough to evaluate *g* at all points of the form: $z = (r_{3,1}, ..., r_{3,i-1}, \{0,1,2\}, b_{i+1}, ..., b_{\log n}): b_{i+1}, ..., b_{\log n} \in \{0,1\}^{\log n-i}$
- Already showed: how to do this in $O(n^3/2^i)$ time.
- Can we improve this to $O(n^2)$ time?

- Recall: Enough to evaluate g at all points of the form: $z = (r_{3,1}, ..., r_{3,i-1}, \{0,1,2\}, b_{i+1}, ..., b_{\log n}): b_{i+1}, ..., b_{\log n} \in \{0,1\}^{\log n-i}$
- Already showed: how to do this in $O(n^3/2^i)$ time.
- Can we improve this to $O(n^2)$ time?
- Key observation each entry A_{ij} contributes to $\tilde{A}(r_1, z)$ for less than 3 tuples z of the above form.
 - Similarly entry B_{ij} contributes to $\tilde{B}(\boldsymbol{z}, \boldsymbol{r_2})$ for less than 3 tuples \boldsymbol{z} of the above form.

- Recall: Enough to evaluate g at all points of the form: $z = (r_{3,1}, ..., r_{3,i-1}, \{0,1,2\}, b_{i+1}, ..., b_{\log n}): b_{i+1}, ..., b_{\log n} \in \{0,1\}^{\log n-i}$
- Already showed: how to do this in $O(n^3/2^i)$ time.
- Can we improve this to $O(n^2)$ time?
- Key observation each entry A_{ij} contributes to $\tilde{A}(r_1, z)$ for less than 3 tuples z of the above form.
 - Similarly entry B_{ij} contributes to $\tilde{B}(\mathbf{z}, \mathbf{r_2})$ for less than 3 tuples \mathbf{z} of the above form.
 - Recall: $\tilde{A}(\boldsymbol{r_1}, \boldsymbol{z}) = \sum_{(i,j) \in \{0,1\}^2 \log n} A(i,j) \cdot \tilde{\delta}_{(i,j)}(\boldsymbol{r_1}, \boldsymbol{z})$, where $\tilde{\delta}_{(i,j)}(\boldsymbol{r_1}, \boldsymbol{z}) = \tilde{\delta}_i(\boldsymbol{r_1}) \tilde{\delta}_j(\boldsymbol{z}) = \tilde{\delta}_i(\boldsymbol{r_1}) \cdot \prod_{t=1}^{\ell} (j_t z_t + (1-j_t)(1-z_t)).$

- Recall: Enough to evaluate g at all points of the form: $z = (r_{3,1}, ..., r_{3,i-1}, \{0,1,2\}, b_{i+1}, ..., b_{\log n}): b_{i+1}, ..., b_{\log n} \in \{0,1\}^{\log n-i}$
- Already showed: how to do this in $O(n^3/2^i)$ time.
- Can we improve this to $O(n^2)$ time?
- Key observation each entry A_{ij} contributes to $\tilde{A}(r_1, z)$ for less than 3 tuples z of the above form.
 - Similarly entry B_{ij} contributes to $\tilde{B}(\mathbf{z}, \mathbf{r}_2)$ for less than 3 tuples \mathbf{z} of the above form.

• Recall: $\tilde{A}(\boldsymbol{r_1}, \boldsymbol{z}) = \sum_{(i,j) \in \{0,1\}^2 \log n} A(i,j) \cdot \tilde{\delta}_{(i,j)}(\boldsymbol{r_1}, \boldsymbol{z})$, where $\tilde{\delta}_{(i,j)}(\boldsymbol{r_1}, \boldsymbol{z}) = \tilde{\delta}_i(\boldsymbol{r_1}) \tilde{\delta}_j(\boldsymbol{z}) = \tilde{\delta}_i(\boldsymbol{r_1}) \cdot \prod_{t=1}^{\ell} (j_t z_t + (1-j_t)(1-z_t)).$

- For $t \ge i + 1$, the *t*'th entry of *z* is $b_t \in \{0,1\}$.
- If $b_t \neq j_t$, then $\tilde{\delta}_j(\mathbf{z}) = 0$, so $\tilde{\delta}_{(i,j)}(\mathbf{r_1}, \mathbf{z}) = 0$.

- Recall: Enough to evaluate g at all points of the form: $z = (r_{3,1}, ..., r_{3,i-1}, \{0,1,2\}, b_{i+1}, ..., b_{\log n}): b_{i+1}, ..., b_{\log n} \in \{0,1\}^{\log n-i}$
- Already showed: how to do this in $O(n^3/2^i)$ time.
- Can we improve this to $O(n^2)$ time?
- Key observation each entry A_{ij} contributes to $\tilde{A}(r_1, z)$ for less than 3 tuples z of the above form.
 - Similarly entry B_{ij} contributes to $\tilde{B}(\boldsymbol{z}, \boldsymbol{r_2})$ for less than 3 tuples \boldsymbol{z} of the above form.

• Recall: $\tilde{A}(\boldsymbol{r_1}, \boldsymbol{z}) = \sum_{(i,j) \in \{0,1\}^2 \log n} A(i,j) \cdot \tilde{\delta}_{(i,j)}(\boldsymbol{r_1}, \boldsymbol{z})$, where $\tilde{\delta}_{(i,j)}(\boldsymbol{r_1}, \boldsymbol{z}) = \tilde{\delta}_i(\boldsymbol{r_1}) \tilde{\delta}_j(\boldsymbol{z}) = \tilde{\delta}_i(\boldsymbol{r_1}) \cdot \prod_{t=1}^{\ell} (j_t z_t + (1-j_t)(1-z_t)).$

- For $t \ge i + 1$, the *t*'th entry of *z* is $b_t \in \{0,1\}$.
- If $b_t \neq j_t$, then $\tilde{\delta}_j(\mathbf{z}) = 0$, so $\tilde{\delta}_{(i,j)}(\mathbf{r_1}, \mathbf{z}) = 0$.

• i.e., A(i, j) only contributes to $\tilde{A}(\mathbf{r_1}, \mathbf{z})$ if $(j_{i+1}, \dots, j_{\log n}) = (b_{i+1}, \dots, b_{\log n})$

- Summary: In round i, P must evaluate g at $O(\frac{n}{2^i})$ points of a special form (trailing entries are **Boolean**).
- Each matrix entry A_{ij} , B_{ij} contributes to only **at most three** of these evaluations.
- So P can run in $O(n^2)$ time per round, or $O(n^2 \log n)$ time across all $O(\log n)$ rounds.

Making P Fast: Third Attempt

- With care: can bring P's time down to $O(n^2)$ across **all** rounds.
- Key idea: **Reuse work** across rounds.
 - If two matrix index pairs (i, j) and (i', j') in $\{0,1\}^{\log n} \times \{0,1\}^{\log n}$ agree in their last k bits, then A_{ij} and $A_{i'j'}$ contribute to the **same** points \mathbf{z} in rounds k and up.
 - Can treat (i, j) and (i', j') as a single entity thereafter.
 - Only $O(n/2^k)$, entities of interest in round k.
 - Total work across all rounds is proportional to

$$\sum_{\leq k \leq \log n} n / 2^k = 2n$$

• $\tilde{A}(x_1, x_2) = \sum_{(i,j) \in \{0,1\}^2 \log n} A(i,j) \cdot \tilde{\delta}_{(i,j)}(x_1, x_2)$ where $\tilde{\delta}_w(r) = \prod_{i=1}^{\ell} (r_i w_i + (1 - r_i)(1 - w_i)).$

Details of Third Attempt

- $\tilde{A}(x_1, x_2) = \sum_{(i,j) \in \{0,1\}^2 \log n} A(i,j) \cdot \tilde{\delta}_{(i,j)}(x_1, x_2)$ where $\tilde{\delta}_w(r) = \prod_{i=1}^{\ell} (r_i w_i + (1 - r_i)(1 - w_i)).$
- Consider two indices (i, j) and (i', j') that differ in only their first bit, e.g., (i, j) = 00...0 and (i', j') = 10...0.

Details of Third Attempt

•
$$\tilde{A}(\mathbf{x_1}, \mathbf{x_2}) = \sum_{(i,j) \in \{0,1\}^2 \log n} A(i,j) \cdot \tilde{\delta}_{(i,j)}(\mathbf{x_1}, \mathbf{x_2})$$

where $\tilde{\delta}_w(r) = \prod_{i=1}^{\ell} (r_i w_i + (1 - r_i)(1 - w_i)).$

- Consider two indices (*i*, *j*) and (*i*', *j*') that differ in only their first bit, e.g., (*i*, *j*) = 00...0 and (*i*', *j*')=10...0.
- Then the products defining $\tilde{\delta}_{(i,j)}$ and $\tilde{\delta}_{(i',j')}$ are the same except for the first term.
 - For $\tilde{\delta}_{(i,j)}(x_1, x_2)$ the first term is $x_{1,1} \cdot 0 + (1 x_{1,1}) \cdot 1 = (1 x_{1,1})$.
 - For $\tilde{\delta}_{(i',j')}(x_1, x_2)$ the first term is $x_{1,1} \cdot 1 + (1 x_{1,1}) \cdot 0 = x_{1,1}$.
Details of Third Attempt

•
$$\tilde{A}(\mathbf{x_1}, \mathbf{x_2}) = \sum_{(i,j) \in \{0,1\}^2 \log n} A(i,j) \cdot \tilde{\delta}_{(i,j)}(\mathbf{x_1}, \mathbf{x_2})$$

where $\tilde{\delta}_w(r) = \prod_{i=1}^{\ell} (r_i w_i + (1 - r_i)(1 - w_i)).$

- Consider two indices (*i*, *j*) and (*i*', *j*') that differ in only their first bit, e.g., (*i*, *j*) = 00...0 and (*i*', *j*')=10...0.
- Then the products defining $\tilde{\delta}_{(i,j)}$ and $\tilde{\delta}_{(i',j')}$ are the same except for the first term.
 - For $\tilde{\delta}_{(i,j)}(x_1, x_2)$ the first term is $x_{1,1} \cdot 0 + (1 x_{1,1}) \cdot 1 = (1 x_{1,1})$.
 - For $\tilde{\delta}_{(i',j')}(x_1, x_2)$ the first term is $x_{1,1} \cdot 1 + (1 x_{1,1}) \cdot 0 = x_{1,1}$.
- Once the **first variable** $x_{1,1}$ is bound to a fixed value $r_{1,1}$ by the MatMult protocol, this difference is fixed.
 - i.e., no need for **P** to remember both A(i, j) and A(i', j').
 - Suffices just to remember $(1 r_{1,1})A(i, j) + r_{1,1}A(i', j')$.

A Second Application of the Sum-Check Protocol

A Doubly-Efficient Interactive Proof for Counting Triangles

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\frac{1}{6} \cdot \sum_{(i,j,k) \in [n]^3} A_{ij} A_{jk} A_{ki}$
 - $= \frac{1}{6} \cdot \sum_{(i,j) \in [n]^2} (A^2)_{ij} \cdot A_{ij}.$

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\frac{1}{6} \cdot \sum_{(i,j,k) \in [n]^3} A_{ij} A_{jk} A_{ki}$ $= \frac{1}{6} \cdot \sum_{(i,j) \in [n]^2} (A^2)_{ij} \cdot A_{ij}.$
- View A and A^2 as functions mapping $\{0,1\}^{\log n} \times \{0,1\}^{\log n}$ to **F**.
- Define the polynomial $h(X, Y) = (\widetilde{A^2})(X, Y) \tilde{A}(X, Y)$.

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\frac{1}{6} \cdot \sum_{(i,j,k) \in [n]^3} A_{ij} A_{jk} A_{ki}$ $= \frac{1}{6} \cdot \sum_{(i,j) \in [n]^2} (A^2)_{ij} \cdot A_{ij}.$
- View A and A^2 as functions mapping $\{0,1\}^{\log n} \times \{0,1\}^{\log n}$ to **F**.
- Define the polynomial $h(X, Y) = \widetilde{(A^2)}(X, Y) \widetilde{A}(X, Y)$.
- The Protocol:
 - Apply the sum-check protocol to *h*.

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\frac{1}{6} \cdot \sum_{(i,j,k) \in [n]^3} A_{ij} A_{jk} A_{ki}$ $= \frac{1}{6} \cdot \sum_{(i,j) \in [n]^2} (A^2)_{ij} \cdot A_{ij}.$
- View A and A^2 as functions mapping $\{0,1\}^{\log n} \times \{0,1\}^{\log n}$ to **F**.
- Define the polynomial $h(X, Y) = \widetilde{(A^2)}(X, Y) \widetilde{A}(X, Y)$.
- The Protocol:
 - Apply the sum-check protocol to *h*.
 - At the end of the protocol, V needs to evaluate: $h(r_1, r_2) = \widetilde{(A^2)}(r_1, r_2) \widetilde{A}(r_1, r_2).$
 - V can evaluate $\tilde{A}(r_1, r_2)$ on its own in $O(n^2)$ time. V uses the MatMult protocol to force P to compute $\widetilde{(A^2)}(r_1, r_2)$ for her.

The GKR Protocol

A General-Purpose Doubly-Efficient Interactive Proof

The GKR Protocol: Overview

F₂ circuit

Notation

- Assume layers i and i + 1 of C have S gates each.
 - Assign each gate a binary label ($\log S$ bits).
- Let $W_i(\boldsymbol{a}): \{0,1\}^{\log S} \to \boldsymbol{F}$ output the value of gate \boldsymbol{a} at layer \boldsymbol{i} .

Notation

- Assume layers i and i + 1 of C have S gates each.
 - Assign each gate a binary label (log *S* bits).
- Let $W_i(\boldsymbol{a}): \{0,1\}^{\log S} \to \boldsymbol{F}$ output the value of gate \boldsymbol{a} at layer \boldsymbol{i} .
- Let $\operatorname{add}_i(a, b, c): \{0, 1\}^{3 \log S} \to F$ output 1 iff $(b, c) = (\operatorname{in}_1(a), \operatorname{in}_2(a))$ and gate a at layer i is an addition gate.

Notation

- Assume layers i and i + 1 of C have S gates each.
 - Assign each gate a binary label ($\log S$ bits).
- Let $W_i(\boldsymbol{a}): \{0,1\}^{\log S} \to \boldsymbol{F}$ output the value of gate \boldsymbol{a} at layer \boldsymbol{i} .
- Let $\operatorname{add}_i(a, b, c): \{0, 1\}^{3 \log S} \to F$ output 1 iff $(b, c) = (\operatorname{in}_1(a), \operatorname{in}_2(a))$ and gate a at layer i is an addition gate.
- Let $\operatorname{mult}_i(a, b, c)$: $\{0,1\}^{3 \log S} \to F$ output 1 iff $(b, c) = (\operatorname{in}_1(a), \operatorname{in}_2(a))$ and gate a at layer i is a multiplication gate.

- Iteration i starts with a claim from P about $\widetilde{W}_i(r_1)$ for a random point $r_1 \in F^{\log S}$.
- Goal: Reduce this to a claim about $\widetilde{W}_{i+1}(r_2)$ for a random point $r_2 \in F^{\log S}$.

- Iteration i starts with a claim from P about $\widetilde{W}_i(r_1)$ for a random point $r_1 \in F^{\log S}$.
- Goal: Reduce this to a claim about $\widetilde{W}_{i+1}(r_2)$ for a random point $r_2 \in F^{\log S}$.
- Observation: $W_i(a) =$

 $\sum_{b,c \in \{0,1\}^{\log S}} [add_i(a, b, c)(W_{i+1}(b) + W_{i+1}(c)) +$ $mult_i(a, b, c)(W_{i+1}(b) \cdot W_{i+1}(c))]$

- Iteration i starts with a claim from P about $\widetilde{W}_i(r_1)$ for a random point $r_1 \in F^{\log S}$.
- Goal: Reduce this to a claim about $\widetilde{W}_{i+1}(r_2)$ for a random point $r_2 \in F^{\log S}$.
- Observation: $W_i(a) =$

 $\sum_{b,c \in \{0,1\}^{\log S}} [add_i(a, b, c)(W_{i+1}(b) + W_{i+1}(c)) +$ $mult_i(a, b, c)(W_{i+1}(b) \cdot W_{i+1}(c))]$

• Hence, the following equality holds as formal polynomials: $\widetilde{W}_i(a) =$

 $\sum_{\boldsymbol{b},\boldsymbol{c}\in\{0,1\}^{\log S}} [\widetilde{\mathrm{add}}_{i}(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b})+\widetilde{W}_{i+1}(\boldsymbol{c}))+ \widetilde{\mathrm{mult}}_{i}(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b})\cdot\widetilde{W}_{i+1}(\boldsymbol{c}))]$

• So V applies sum-check protocol to compute

•
$$\widetilde{W}_{i}(\boldsymbol{r}_{1}) = \sum_{\boldsymbol{b},\boldsymbol{c}\in\{0,1\}^{\log S}} g(\boldsymbol{b},\boldsymbol{c})$$
, where:
 $g(\boldsymbol{b},\boldsymbol{c}) = \widetilde{\mathrm{add}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$
 $+ \widetilde{\mathrm{mult}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) \cdot \widetilde{W}_{i+1}(\boldsymbol{c}))$

• So V applies sum-check protocol to compute

•
$$\widetilde{W}_{i}(\boldsymbol{r}_{1}) = \sum_{\boldsymbol{b},\boldsymbol{c}\in\{0,1\}^{\log S}} g(\boldsymbol{b},\boldsymbol{c})$$
, where:
 $g(\boldsymbol{b},\boldsymbol{c}) = \widetilde{\mathrm{add}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$
 $+ \widetilde{\mathrm{mult}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) \cdot \widetilde{W}_{i+1}(\boldsymbol{c}))$

• At end of sum-check protocol, V must evaluate $g(r_2, r_3)$.

• So V applies sum-check protocol to compute

•
$$\widetilde{W}_{i}(\boldsymbol{r}_{1}) = \sum_{\boldsymbol{b},\boldsymbol{c}\in\{0,1\}^{\log S}} g(\boldsymbol{b},\boldsymbol{c})$$
, where:
 $g(\boldsymbol{b},\boldsymbol{c}) = \widetilde{\mathrm{add}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$
 $+ \widetilde{\mathrm{mult}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) \cdot \widetilde{W}_{i+1}(\boldsymbol{c}))$

- At end of sum-check protocol, V must evaluate $g(r_2, r_3)$.
- Let us assume V can compute $\widetilde{add}_i(r_1, r_2, r_3)$ and $\widetilde{mult}_i(r_1, r_2, r_3)$ unaided in time $\operatorname{polylog}(n)$.
- Then V only needs to know $\widetilde{W}_{i+1}(r_2)$ and $\widetilde{W}_{i+1}(r_3)$ to complete this check.

• So V applies sum-check protocol to compute

•
$$\widetilde{W}_{i}(\boldsymbol{r}_{1}) = \sum_{\boldsymbol{b},\boldsymbol{c}\in\{0,1\}^{\log S}} g(\boldsymbol{b},\boldsymbol{c})$$
, where:
 $g(\boldsymbol{b},\boldsymbol{c}) = \widetilde{\mathrm{add}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$
 $+ \widetilde{\mathrm{mult}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b})\cdot\widetilde{W}_{i+1}(\boldsymbol{c}))$

- At end of sum-check protocol, V must evaluate $g(r_2, r_3)$.
- Let us assume V can compute $\widetilde{add}_i(r_1, r_2, r_3)$ and $\widetilde{mult}_i(r_1, r_2, r_3)$ unaided in time $\operatorname{polylog}(n)$.
- Then V only needs to know $\widetilde{W}_{i+1}(r_2)$ and $\widetilde{W}_{i+1}(r_3)$ to complete this check.
- Iteration i + 1 is devoted to computing these values.

- There is one remaining problem: we don't want to have to separately verify both $\widetilde{W}_{i+1}(\mathbf{r}_2)$ and $\widetilde{W}_{i+1}(\mathbf{r}_3)$ in iteration i + 1.
- Solution: Reduce verifying both of the above values to verifying $\widetilde{W}_{i+1}(\mathbf{r}_4)$ for a single point $\mathbf{r}_4 \in \mathbf{F}^{\log S}$.

- There is one remaining problem: we don't want to have to separately verify both $\widetilde{W}_{i+1}(\mathbf{r}_2)$ and $\widetilde{W}_{i+1}(\mathbf{r}_3)$ in iteration i + 1.
- Solution: Reduce verifying both of the above values to verifying $\widetilde{W}_{i+1}(\mathbf{r}_4)$ for a single point $\mathbf{r}_4 \in \mathbf{F}^{\log S}$. \widetilde{W}_{i+1}

- There is one remaining problem: we don't want to have to separately verify both $\widetilde{W}_{i+1}(\mathbf{r}_2)$ and $\widetilde{W}_{i+1}(\mathbf{r}_3)$ in iteration i + 1.
- Solution: Reduce verifying both of the above values to verifying $\widetilde{W}_{i+1}(\mathbf{r}_4)$ for a single point $\mathbf{r}_4 \in \mathbf{F}^{\log S}$. \widetilde{W}_{i+1}

- There is one remaining problem: we don't want to have to separately verify both $\widetilde{W}_{i+1}(\mathbf{r}_2)$ and $\widetilde{W}_{i+1}(\mathbf{r}_3)$ in iteration i + 1.
- Solution: Reduce verifying both of the above values to verifying $\widetilde{W}_{i+1}(\mathbf{r}_4)$ for a single point $\mathbf{r}_4 \in \mathbf{F}^{\log S}$.

- There is one remaining problem: we don't want to have to separately verify both $\widetilde{W}_{i+1}(\mathbf{r}_2)$ and $\widetilde{W}_{i+1}(\mathbf{r}_3)$ in iteration i + 1.
- Solution: Reduce verifying both of the above values to verifying $\widetilde{W}_{i+1}(\mathbf{r}_4)$ for a single point $\mathbf{r}_4 \in \mathbf{F}^{\log S}$.

Costs of the GKR protocol

- V time is $O(n + D \log S)$ where *n* is input size, *D* is circuit depth, and *S* is circuit size.
 - Assumes V can compute $\widetilde{add}_i(r_1, r_2, r_3)$ and $\widetilde{mult}_i(r_1, r_2, r_3)$ unaided in time polylog(*n*)

• Communication cost is $O(D \log S)$.

Costs of the GKR protocol

- V time is $O(n + D \log S)$ where n is input size, D is circuit depth, and S is circuit size.
 - Assumes V can compute $\widetilde{\text{add}}_i(r_1, r_2, r_3)$ and $\widetilde{\text{mult}}_i(r_1, r_2, r_3)$ unaided in time $\operatorname{polylog}(n)$

• Communication cost is $O(D \log S)$.

- P time is O(S).
 - A naïve implementation of P takes $\Omega(S^3)$ time, where S is circuit size.
 - A sequence of works has brought this down to O(S), for arbitrary circuits [CMT12, Thaler13, WJBSTWW17, XZZPS19]

- A naïve implementation of P takes $\Omega(S^3)$ time, where S is circuit size.
 - Same idea as "Approach 1" from the MatMult protocol.
 - i.e., P evaluates g in each round of sum-check at all $O(S^2/2^i)$ necessary points Z, taking O(S) time per point.

- A naïve implementation of P takes $\Omega(S^3)$ time, where S is circuit size.
 - Same idea as "Approach 1" from the MatMult protocol.
 - i.e., P evaluates g in each round of sum-check at all $O(S^2/2^i)$ necessary points Z, taking O(S) time per point.
- [CMT12]: P time is $O(S \log S)$.
 - Achieved via "Approach 2" from the MatMult protocol: each gate of C contributes to g(z) for O(1) relevant points z in each round.

- A naïve implementation of P takes $\Omega(S^3)$ time, where S is circuit size.
 - Same idea as "Approach 1" from the MatMult protocol.
 - i.e., P evaluates g in each round of sum-check at all $O(S^2/2^i)$ necessary points Z, taking O(S) time per point.
- [CMT12]: P time is $O(S \log S)$.
 - Achieved via "Approach 2" from the MatMult protocol: each gate of C contributes to g(z) for O(1) relevant points z in each round.
- All subsequent works seek to bring "Approach 3" to bear on the GKR protocol, letting P reuse work across rounds.

- [Thaler13]:
 - 1. P time O(S) for circuits with "nice" wiring patterns.
 - 2. P time $O(S \log S')$ for data parallel circuits
 - i.e., that apply the same subcomputation (of size S') independently to different pieces of data

- [Thaler13]:
 - 1. P time O(S) for circuits with "nice" wiring patterns.
 - 2. P time $O(S \log S')$ for data parallel circuits
 - i.e., that apply the same subcomputation (of size S') independently to different pieces of data
- [WJBSTWW17] improved the data parallel time to $O(S + S' \log S')$.
GKR Prover Runtime: Details

- [Thaler13]:
 - 1. P time O(S) for circuits with "nice" wiring patterns.
 - 2. P time $O(S \log S')$ for data parallel circuits
 - i.e., that apply the same subcomputation (of size S') independently to different pieces of data
- [WJBSTWW17] improved the data parallel time to $O(S + S' \log S')$.
- [ZGKPP18] extends to data parallel computations where each subcomputation may not be the same.

GKR Prover Runtime: Details

- [Thaler13]:
 - 1. P time O(S) for circuits with "nice" wiring patterns.
 - 2. P time $O(S \log S')$ for data parallel circuits
 - i.e., that apply the same subcomputation (of size S') independently to different pieces of data
- [WJBSTWW17] improved the data parallel time to $O(S + S' \log S')$.
- [ZGKPP18] extends to data parallel computations where each subcomputation may not be the same.
- [XZZPS19] achieved O(S) time for general circuits.

Rumination on Generality Vs. Efficiency

Generality vs. Efficiency

- The GKR protocol for circuit evaluation has now been rendered optimally efficient for P (up to constant factors).
- Any computation can be represented as a circuit evaluation (or satisfiability) problem.
 - But this can introduce tremendous overheads.
 - The GKR protocol **forces** the prover to compute the output in a prescribed manner, which may be far from optimal (gate-by-gate evaluation of a circuit).
- To achieve scalability, the gold standard is really something like the counting triangles protocol.
 - i.e., P computed the right answer directly using the fastest known algorithm, and did a low-order amount of extra work to prove correctness

Succinct ZK Arguments for Circuit-SAT from Interactive Proofs

Succinctness for Circuit-SAT

- The GKR protocol solves arithmetic circuit **evaluation**.
- Applications often require solving circuit **satisfiability**, i.e., given a circuit *C* and public in put *X*, prove there exists a "witness" *W* such that C(x, w) = y.
- Naïve approach: have P send W to V and then apply the GKR protocol to check that C(x, w) = y.

• Downside: Proof length is |w|.

• [ZGKPP17]: Can decrease the proof length by having the prover **cryptographically commit** to *W*, without sending *W* in full to V.

Known Cryptographic Commitment Schemes for Multilinear Polynomials

- 1. [KZG 2010, PST 2013, ZGKPP17]: Simple, based on bilinear maps, requires trusted setup (SRS of size |W|), not quantum secure.
- [Groth09, BG12, BCCGP16, BG18, BBBPWM18, WSTTW18]: Based on homomorphic commitments. Transparent but not quantum secure.
- 3. [BSBHR18, BSGKS19]: IOP-based commitment scheme for **univariate** polynomials. Transparent and secure in quantum Random Oracle model. [ZXZS19] combines this with Aurora to handle **multilinear** polynomials.

Known Cryptographic Commitment Schemes for Multilinear Polynomials

- 1. [KZG 2010, PST 2013, ZGKPP17]: Simple, based on bilinear maps, requires trusted setup (SRS of size |W|), not quantum secure.
- [Groth09, BG12, BCCGP16, BG18, BBBPWM18, WSTTW18]: Based on homomorphic commitments. Transparent but not quantum secure.
- 3. [BSBHR18, BSGKS19]: IOP-based commitment scheme for **univariate** polynomials. Transparent and secure in quantum Random Oracle model. [ZXZS19] combines this with Aurora to handle **multilinear** polynomials.
- P complexity in 1) and 2): O(|w|) public-key crypto operations.
- P complexity in 3): O(|w| log |w|) field operations and O(|w|) private-key crypto operations.
- Not discussed: V time, restrictions on the field size, etc.

Succinctness for Circuit-SAT

- Assume for simplicity that |x| = |w| = n.
- When applying the GKR protocol to check that C(x, w) = y, V views the input z: = (x, w) as a function mapping {0,1}×{0,1}^{log n} to F.
 - And the only information V needs to know about z is $\tilde{z}(r)$ for a random input $r = (r_1, r') \in \{0, 1\} \times \{0, 1\}^{\log n}$.
 - Fact: $\tilde{z}(\boldsymbol{r}) = (1 r_1) \, \tilde{x}(\boldsymbol{r}') + r_1 \, \tilde{w}(\boldsymbol{r}').$

Succinctness for Circuit-SAT

- Assume for simplicity that |x| = |w| = n.
- When applying the GKR protocol to check that C(x,w) = y, V views the input z: = (x, w) as a function mapping {0,1}×{0,1}^{log n} to F.
 - And the only information V needs to know about z is $\tilde{z}(r)$ for a random input $r = (r_1, r') \in \{0, 1\} \times \{0, 1\}^{\log n}$.
 - Fact: $\tilde{z}(r) = (1 r_1) \, \tilde{x}(r') + r_1 \, \tilde{w}(r').$
- The Argument for CIRCUIT-SAT:
 - 1. P cryptographically commits to the multilinear polynomial \widetilde{W} .
 - 2. V and P apply to GKR protocol to the claim C(x, w) = y.
 - 3. To perform V's final check in the protocol (which requires knowing $\tilde{z}(r)$), V makes P reveal $\tilde{w}(r')$, and derives $\tilde{z}(r)$ using Fact.

Zero Knowledge for Circuit-SAT

- Two practical techniques:
 - [WsTTW18, ZGKPP18]: Efficient implementation of Cramer-Damgård transformation (based on homomorphic commitments).
 - 2. [CFS17, XZZPS19] IOP-based transformation.
 - Both transparent. Only 2) is quantum secure.

THANK YOU!

MIPs and Succinct Arguments Derived Thereof

Arithmetic Circuit Satisfiability

- Given: An arithmetic circuit C over **F** of size S with explicit input x and non-deterministic input w, and claimed output(s) y.
- Goal: Determine if there exists a w such that C(x, w)=y.

Arithmetic Circuit Satisfiability

- Given: An arithmetic circuit C over **F** of size S with explicit input x and non-deterministic input w, and claimed output(s) y.
- Goal: Determine if there exists a w such that C(x, w)=y.
- Assign each gate in C a (log S)-bit label.
- Call a function $W : \{0,1\}^{\log S} \rightarrow \mathbf{F}$ a *transcript* for C.
 - Say that *W* is *correct* on x if it satisfies the following properties:
 - The values W assigns to the explicit input gates equal x.
 - The value W assigns to the output gates is y.
 - The values W assigns to the intermediate gates correspond to the correct operation of the gates.
 - Clearly there is a w such that C(x, w)=1 iff there is a correct transcript for C.

Sketch of 2-Prover MIP for Arithmetic Circuit SAT [Blumberg, Thaler, Vu, Walfish, 2014]

- Protocol Sketch:
 - P_1 and P_2 claim to hold an extension *Z* of a correct transcript W for C.
 - Identify a polynomial $g_{x,Z} : \{0,1\}^{3\log S} \to \mathbf{F}$ (that depends on x and Z) such that: Z extends a correct transcript $\iff g_{x,Z}(a,b,c) = 0 \ \forall \ (a,b,c) \in \{0,1\}^{3\log S}$

Sketch of 2-Prover MIP for Arithmetic Circuit SAT [Blumberg, Thaler, Vu, Walfish, 2014]

- Protocol Sketch:
 - P_1 and P_2 claim to hold an extension *Z* of a correct transcript W for C.
 - Identify a polynomial $g_{x,Z} : \{0,1\}^{3\log S} \to \mathbf{F}$ (that depends on x and Z) such that: Z extends a correct transcript $\iff g_{x,Z}(a,b,c) = 0 \ \forall \ (a,b,c) \in \{0,1\}^{3\log S}$.
 - V checks this by running sum-check protocol with P_1 to compute

$$0 \stackrel{?}{=} \sum_{(a,b,c) \in \{0,1\}^{3\log S}} g^2_{x,Z}(a,b,c).$$

Sketch of 2-Prover MIP for Arithmetic Circuit SAT [Blumberg, Thaler, Vu, Walfish, 2014]

- Protocol Sketch:
 - P_1 and P_2 claim to hold an extension *Z* of a correct transcript W for C.
 - Identify a polynomial $g_{x,Z} : \{0,1\}^{3\log S} \to \mathbf{F}$ (that depends on x and Z) such that: Z extends a correct transcript $\iff g_{x,Z}(a,b,c) = 0 \ \forall \ (a,b,c) \in \{0,1\}^{3\log S}$.
 - V checks this by running sum-check protocol with P_1 to compute

$$0 \stackrel{?}{=} \sum_{(a,b,c) \in \{0,1\}^{3\log \delta}} g_{x,Z}^2(a,b,c).$$

- To perform final check in sum-check protocol, V needs to evaluate $g_{x,Z}^2$ at a random point. But this requires evaluating Z at a random point, and Z only "exists" in P₁'s head.
 - So V asks P_2 for the evaluation of Z.
 - Soundness analysis of sum-check is valid as long as P₂'s claim about Z is consistent with a low-degree polynomial. So V also runs a low-degree test with P₁ and P₂.

• Identify a polynomial $g_{x,Z} : \{0,1\}^{3\log S} \to \mathbf{F}$ (that depends on x and Z) such that: Z extends a correct transcript $\iff g_{x,Z}(a,b,c) = 0 \ \forall \ (a,b,c) \in \{0,1\}^{3\log S}$.

- Identify a polynomial $g_{x,Z} : \{0,1\}^{3\log S} \to \mathbf{F}$ (that depends on x and Z) such that: *Z* extends a correct transcript $\iff g_{x,Z}(a,b,c) = 0 \ \forall \ (a,b,c) \in \{0,1\}^{3\log S}$.
- Let add(a,b,c) output 1 iff $(b,c)=(in_1(a), in_2(a))$ and gate a is an addition gate.
- Let $mult(\mathbf{a}, \mathbf{b}, \mathbf{c})$ output 1 iff $(\mathbf{b}, \mathbf{c}) = (in_1(\mathbf{a}), in_2(\mathbf{a}))$ and gate \mathbf{a} is a mult gate.
- Let io(a,b,c) output 1 iff gate a is in the explicit input x and (b,c)=(0,0), or if a is an output gate and b and c are in-neighbors of a.
- Let $I_x(\mathbf{a})$ output $x_{\mathbf{a}}$ if \mathbf{a} is an input gate, $y_{\mathbf{a}}$ if \mathbf{a} is an output gate, and 0 otherwise.

- Identify a polynomial $g_{x,Z} : \{0,1\}^{3\log S} \to \mathbf{F}$ (that depends on x and Z) such that: *Z* extends a correct transcript $\iff g_{x,Z}(a,b,c) = 0 \ \forall \ (a,b,c) \in \{0,1\}^{3\log S}$.
- Let add(a,b,c) output 1 iff $(b,c)=(in_1(a), in_2(a))$ and gate a is an addition gate.
- Let $mult(\mathbf{a},\mathbf{b},\mathbf{c})$ output 1 iff $(\mathbf{b},\mathbf{c})=(in_1(\mathbf{a}), in_2(\mathbf{a}))$ and gate \mathbf{a} is a mult gate.
- Let io(a,b,c) output 1 iff gate a is in the explicit input x and (b,c)=(0,0), or if a is an output gate and b and c are in-neighbors of a.
- Let $I_x(\mathbf{a})$ output $x_{\mathbf{a}}$ if \mathbf{a} is an input gate, $y_{\mathbf{a}}$ if \mathbf{a} is an output gate, and 0 otherwise.
- Key Lemma: For $G_{x,W}: \{0,1\}^{3\log S} \to \mathbf{F}$ defined below, W is a correct transcript on x iff $G_{x,W}(\mathbf{a},\mathbf{b},\mathbf{c}) = 0$ for all $(\mathbf{a},\mathbf{b},\mathbf{c})$ in $\{0,1\}^{3\log S}$.

 $G_{x,W}(\mathbf{a},\mathbf{b},\mathbf{c}) \coloneqq \mathrm{io}(\mathbf{a},\mathbf{b},\mathbf{c}) \bullet (\mathbf{I}_x(\mathbf{a}) - \mathbf{W}(\mathbf{a})) + \mathrm{add}(\mathbf{a},\mathbf{b},\mathbf{c})(\mathbf{W}(\mathbf{a}) - (\mathbf{W}(\mathbf{b}) + \mathbf{W}(\mathbf{c})) + \mathrm{mult}(\mathbf{a},\mathbf{b},\mathbf{c}) \bullet (\mathbf{W}(\mathbf{a}) - \mathbf{W}(\mathbf{b}) \bullet \mathbf{W}(\mathbf{c}))$

- Identify a polynomial $g_{x,Z} : \{0,1\}^{3\log S} \to \mathbf{F}$ (that depends on x and Z) such that: *Z* extends a correct transcript $\iff g_{x,Z}(a,b,c) = 0 \ \forall \ (a,b,c) \in \{0,1\}^{3\log S}$.
- Let add(a,b,c) output 1 iff $(b,c)=(in_1(a), in_2(a))$ and gate **a** is an addition gate.
- Let $mult(\mathbf{a},\mathbf{b},\mathbf{c})$ output 1 iff $(\mathbf{b},\mathbf{c})=(in_1(\mathbf{a}), in_2(\mathbf{a}))$ and gate \mathbf{a} is a mult gate.
- Let io(a,b,c) output 1 iff gate a is in the explicit input x and (b,c)=(0,0), or if a is an output gate and b and c are in-neighbors of a.
- Let $I_x(\mathbf{a})$ output $x_{\mathbf{a}}$ if \mathbf{a} is an input gate, $y_{\mathbf{a}}$ if \mathbf{a} is an output gate, and 0 otherwise.
- Key Lemma: For $G_{x,W}: \{0,1\}^{3\log S} \to \mathbf{F}$ defined below, W is a correct transcript on x iff $G_{x,W}(\mathbf{a},\mathbf{b},\mathbf{c}) = 0$ for all $(\mathbf{a},\mathbf{b},\mathbf{c})$ in $\{0,1\}^{3\log S}$.

 $G_{x,W}(\mathbf{a},\mathbf{b},\mathbf{c}) \coloneqq \mathrm{io}(\mathbf{a},\mathbf{b},\mathbf{c}) \bullet (\mathrm{I}_{x}(\mathbf{a})-\mathrm{W}(\mathbf{a})) + \mathrm{add}(\mathbf{a},\mathbf{b},\mathbf{c})(\mathrm{W}(\mathbf{a})-(\mathrm{W}(\mathbf{b})+\mathrm{W}(\mathbf{c})) + \mathrm{mult}(\mathbf{a},\mathbf{b},\mathbf{c}) \bullet (\mathrm{W}(\mathbf{a})-\mathrm{W}(\mathbf{b})\bullet\mathrm{W}(\mathbf{c}))$

• So we define:

 $g_{x,Z}(\mathbf{a},\mathbf{b},\mathbf{c}) = \widetilde{\mathrm{io}}(\mathbf{a},\mathbf{b},\mathbf{c}) \bullet (\widetilde{\mathrm{I}}_{x}(\mathbf{a})-Z(\mathbf{a})) + \widetilde{\mathrm{add}}(\mathbf{a},\mathbf{b},\mathbf{c})(Z(\mathbf{a})-(Z(\mathbf{b})+Z(\mathbf{c})) + \widetilde{\mathrm{mult}}(\mathbf{a},\mathbf{b},\mathbf{c}) \bullet (Z(\mathbf{a})-Z(\mathbf{b}) \bullet Z(\mathbf{c}))$

Costs of the 2-Prover MIP for Non-Deterministic Circuit Evaluation

Rounds	VTime	P ₁ Time	P ₂ Time
log S	$O(n + \log^2 S)$	O(S)	O(S log S)

[RRR16] and Open Questions

Another General-Purpose Doubly-Efficient Interactive Proof

- In the cloud computing scenario at the start of the talk, we really wanted the following:
 - 1. V asks P to run some computer program on her data.
 - 2. **P** proves that she correctly ran the program on the data.
- V should not do much more work than read the input.
- P should not do much more work than run the program.

- In the cloud computing scenario at the start of the talk, we really wanted the following:
 - 1. V asks P to run some computer program on her data.
 - 2. **P** proves that she correctly ran the program on the data.
- V should not do much more work than read the input.
- P should not do much more work than run the program.
 - If the program runs in time T, and space s, then P should run in time O(T) and space O(s).

- In the cloud computing scenario at the start of the talk, we really wanted the following:
 - 1. V asks P to run some computer program on her data.
 - 2. **P** proves that she correctly ran the program on the data.
- V should not do much more work than read the input.
- P should not do much more work than run the program.
 - If the program runs in time T, and space s, then P should run in time O(T) and space O(s).
- The GKR protocol only achieves a linear-time for V parallelizable programs.

- In the cloud computing scenario at the start of the talk, we really wanted the following:
 - 1. V asks P to run some computer program on her data.
 - 2. **P** proves that she correctly ran the program on the data.
- V should not do much more work than read the input.
- P should not do much more work than run the program.
 - If the program runs in time T, and space s, then P should run in time O(T) and space O(s).
- Unfortunately, we **cannot** hope for V to run in time O(n) for space-intensive computations.
 - If f has an **interactive proof** with V runtime c, then f can be solved in space $\tilde{O}(c)$.
 - So we can only hope to achieve a linear-time verifier for problems solvable in quadratic space.

- In the cloud computing scenario at the start of the talk, we really wanted the following:
 - 1. V asks P to run some computer program on her data.
 - 2. **P** proves that she correctly ran the program on the data.
- V should not do much more work than read the input.
- P should not do much more work than run the program.
 - If the program runs in time T, and space s, then P should run in time O(T) and space O(s).
- Unfortunately, we **cannot** hope for V to run in time O(n) for space-intensive computations.
 - If f has an **interactive proof** with V runtime c, then f can be solved in space $\tilde{O}(c)$.
 - So we can only hope to achieve a linear-time verifier for problems solvable in quadratic space.
 - [RRR16] come close to achieving the best we can hope for.

[RRR16]

- Let f be a problem solvable in time T and space s. Then for any constant $\varepsilon > 0$, f has an interactive proof where:
 - V runs in time $\tilde{O}(n + T^{\varepsilon} \cdot \text{poly}(s))$.
 - Pruns in time $\tilde{O}(T^{1+\varepsilon} \cdot \operatorname{poly}(s))$.

[RRR16]

- Let f be a problem solvable in time T and space s. Then for any constant $\epsilon > 0$, f has an interactive proof where:
 - V runs in time $\tilde{O}(n + T^{\varepsilon} \cdot \text{poly}(s))$.
 - Pruns in time $\tilde{O}(T^{1+\varepsilon} \cdot \operatorname{poly}(s))$.
- In particular, if T = poly(n) and S is a small enough polynomial in n, then this is a doubly-efficient interactive proof system.

[RRR16]

- Let f be a problem solvable in time T and space s. Then for any constant $\varepsilon > 0$, f has an interactive proof where:
 - V runs in time $\tilde{O}(n + T^{\varepsilon} \cdot \text{poly}(s))$.
 - Pruns in time $\tilde{O}(T^{1+\varepsilon} \cdot \operatorname{poly}(s))$.
- In particular, if T = poly(n) and S is a small enough polynomial in n, then this is a doubly-efficient interactive proof system.
- The number of rounds is **constant**.
 - More precisely, it is $\exp\left(\frac{1}{\varepsilon}\right)$.

Open Questions (Theory)

- Improve V's runtime in [RRR16] from $\tilde{O}(n + T^{\varepsilon} \cdot \text{poly}(s))$ to $\tilde{O}(n + \text{poly}(s, \log T))$? Maybe even $\tilde{O}(n + s \cdot \log T)$)?
- Improve the round complexity from $\exp\left(\frac{1}{\epsilon}\right)$ to $\operatorname{poly}\left(\frac{1}{\epsilon}\right)$?

Open Questions (Theory)

- Improve V's runtime in [RRR16] from $\tilde{O}(n + T^{\varepsilon} \cdot \text{poly}(s))$ to $\tilde{O}(n + \text{poly}(s, \log T))$? Maybe even $\tilde{O}(n + s \cdot \log T)$?
- Improve the round complexity from $\exp\left(\frac{1}{\epsilon}\right)$ to $\operatorname{poly}\left(\frac{1}{\epsilon}\right)$?
- Give an interactive proof for **batch-verification of NP statements**?
 - Under standard complexity assumptions, interactive proofs cannot be **succinct** [GH98, GVW01].
 - I.e., for a general **NP** relation, cannot do much better than just having the prover send the **NP** witness to the verifier.

Open Questions (Theory)

- Improve V's runtime in [RRR16] from $\tilde{O}(n + T^{\varepsilon} \cdot \text{poly}(s))$ to $\tilde{O}(n + \text{poly}(s, \log T))$? Maybe even $\tilde{O}(n + s \cdot \log T)$?
- Improve the round complexity from $\exp\left(\frac{1}{\epsilon}\right)$ to $\operatorname{poly}\left(\frac{1}{\epsilon}\right)$?
- Give an interactive proof for **batch-verification of NP statements**?
 - Under standard complexity assumptions, interactive proofs cannot be **succinct** [GH98, GVW01].
 - I.e., for a general **NP** relation, cannot do much better than just having the prover send the **NP** witness to the verifier.
 - Open: given *k* instances of the same **NP** problem, is there an interactive proof for verifying that the answer to all *k* instances is YES, with communication that grows sublinearly with *k*?

A Parting Remark

- We've seen some fundamental limitations of interactive proofs.
 - V can't run in linear time for space-intensive problems.
 - They cannot be succinct.
 - They are interactive.
 - They are not publicly verifiable.
A Parting Remark

- We've seen some fundamental limitations of interactive proofs.
 - V can't run in linear time for space-intensive problems.
 - They cannot be succinct.
 - They are interactive.
 - They are not publicly verifiable.
- All of these limitations can be addressed by combining interactive proofs with cryptography.
 - This yields succinct non-interactive arguments.
 - See tomorrow's talks.
- There are many practically-relevant open questions about the best way to combine interactive proofs with cryptography.

THANK YOU!

A Simple Triangles Protocol with Sub-Optimal Prover Time

Counting Triangles

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\frac{1}{6} \cdot \sum_{(i,j,k) \in [n]^3} A_{ij} A_{jk} A_{ik}$.
- Fastest known algorithm runs in matrix-multiplication time, currently about $n^{2.37}$.

Counting Triangles

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\frac{1}{6} \cdot \sum_{(i,j,k) \in [n]^3} A_{ij} A_{jk} A_{ik}$.
- The Protocol:
 - View *A* as a function mapping $\{0,1\}^{\log n} \times \{0,1\}^{\log n}$ to *F*.
 - Recall that \tilde{A} denotes the multilinear extension of A.
 - Define the polynomial $g(X, Y, Z) = \tilde{A}(X, Y) \tilde{A}(Y, Z) \tilde{A}(X, Z)$
 - Apply the sum-check protocol to *g* to compute:

$$\sum_{(a,b,c) \in \{0,1\}^{3\log n}} g(a,b,c)$$

Counting Triangles

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\frac{1}{6} \cdot \sum_{(i,j,k) \in [n]^3} A_{ij} A_{jk} A_{ik}$.
- The Protocol:
 - View *A* as a function mapping $\{0,1\}^{\log n} \times \{0,1\}^{\log n}$ to *F*.
 - Recall that \tilde{A} denotes the multilinear extension of A.
 - Define the polynomial $g(X, Y, Z) = \tilde{A}(X, Y) \tilde{A}(Y, Z) \tilde{A}(X, Z)$
 - Apply the sum-check protocol to *g* to compute:

$$\sum_{(a,b,c)\in\{0,1\}^{3\log n}}g(a,b,c$$

- Costs:
 - Total communication is $O(\log n)$, V runtime is $O(n^2)$, P runtime is $O(n^3)$.
 - V's runtime dominated by evaluating: $g(r_1, r_2, r_3) = \tilde{A}(r_1, r_2) \tilde{A}(r_2, r_3) \tilde{A}(r_1, r_3).$