A Crash Course on Fast Interactive

Proofs

Justin Thaler

Georgetown University

Interactive Proofs

® Prover P and Verifier V.

® P solves problem, tellsV the answer.
® Then P and V have a conversation.

e P’s goal: convince V the answer is correct.

° Requirements:

o 1. Completeness: an honest P can convinceV

to accept.

® 7. Soundness:V will catch a lying P with high
probability.

Interactive Proofs

® Prover P and Verifier V.

® P solves problem, tellsV the answer.
® Then P and V have a conversation.

e P’s goal: convince V the answer is correct.

° Requirements:

o 1. Completeness: an honest P can convinceV

to accept.

®). Soundness:V will catch a lying P with high
probability.
® This must hold even if P is computationally

unbounded and trying to trickV into accepting the
incorrect answer. /

Interactive Proof Techniques:

HEINEEHES

Schwartz-Zippel Lemma

® Recall FACT: Let p # q be univariate polynomials over field

F, of degree at most d. Then Pr.cp [p (r) = CI(T‘)]

d
_lFl.

Schwartz-Zippel Lemma

® Recall FACT: Let p # q be univariate polynomials over field
d

F, of degree at most d.Then Pr¢f [p(r) = q(r)] < IF|"

e The SChwartZ—Zippel lemma is a multivariate

generalization:

® Let p # q be €-variate polynomials over field F of total degree at

most d. Then PrreFe[(7") — q(T)] |F|

Schwartz-Zippel Lemma

® Recall FACT: Let p # q be univariate polynomials over field

d
F, of degree at most d. Then Pr.cp [p (r) = CI(T')] < |F| :
® The Schwartz-Zippel lemma is a multivariate
generalization:
® Let p # q be £-variate polynomials over field F of total degree at
d
most d.Then Pr___pe[p(r) = q(r)] < Tk

® “Total degree refers to the maximum sum of degrees of all

variables in any term. E.g., x12x2 + X1X5 has total degree 3.

Low-Degree and Multilinear Extensions

* Definition [Extensions]. Given a function f: {0,1}£—> F,
a ¥-variate polynomial g over F is said to extend f if f(x) =
g(x) forall x € {O,l}f.

® Definition [Multilinear Extensions]. Any function
f: {0,1}€—> F has a unique multilinear extension (MLE),

denoted f :

Low-Degree and Multilinear Extensions

* Definition [Extensions]. Given a function f: {0,1}£—> F,
a ¥-variate polynomial g over F is said to extend f if f(x) =
g(x) forall x € {0,1}8.

® Definition [Multilinear Extensions]. Any function
f: {0,1}€—> F has a unique multilinear extension (MLE),

denoted f :

e Multilinear means the polynomial has degree at most 1 in each

variable.

e (1 —x9)(1 — x5) is multilinear, x12 X is not.

f:F*—>F

@
@
@

N o N o NN NN
o0 [-) (@\ \O o0
— o <t LN \O
\O >~ o0 (@) -
— @V oN <t \O
<t <t <t <t <t
— N o <+ LN
@\ — - (@) o0
— @\ o on <t
- o0 \O <t @\
— — eV oN <t

LN @\ (@) \O
oo — A~ N o
— @\ oN <t LN

Low-Degree and Multilinear Extensions

® Fact [VSBW13]: Given as input all 2¢ evaluations of a function
f: {0,1}€—> F, for any point 1 € F? there is an 0(2£)—time
algorithm for evaluating f (1).

* Assuming field addition and multiplication operations take one

time step.

Low-Degree and Multilinear Extensions
® Fact [VSBW13]: Given as input all 2¢ evaluations of a function
f: {0,1}€—> F, for any point 1 € F? there is an 0(2£)—time

algorithm for evaluating f (1).

* The following slides prove a slightly weaker O (£ - 2£) time
bound.

A Useful Expression for the MLE

® Forany W € {O,l}f, define 0y, {0,1}£—> F via:
S,(w)=1and §,(y) = 0forall y # w.

A Useful Expression for the MLE

® Forany W € {O,l}f, define 0y, {0,1}£—> F via:
S,(w)=1and §,(y) = 0forall y # w.

e Fact 1: For any z € {0,1}, f(2) = Zwe{o,m’ fw)-é6,(2).

A Useful Expression for the MLE

® Forany W € {0,1}3, define 0y, {0,1}£—> F via:
5,(w) =1and §,,(y) =0 forally # w.

e Fact 1: For any z € {0,1}, f(2) = Zwe{o,1}{’ fw)-é6,(2).

* Lemma (Lagrange Interpolation): Let f: {0,1}*> F. Then
as formal polynomials, f(x) = ZWE{O 1} fw) - SW (x).

® Proof: The RHS is multilinear. The lemma then follows from Fact

1 and uniqueness of the MLE.

A Useful Expression for the MLE

For any w € {O,l}f, define 0y, {0,1}£—> F via:
5,(w) =1and §,,(y) =0 forally # w.

Fact 1: For any z € {0,1}!, f(2) = Zwe{o,1}{’ fw)-é6,(2).

Lemma (Lagrange Interpolation): Let f: {0,1}*> F. Then
as formal polynomials, f(x) = ZWE{O 1} fw) - SW (x).

Proof: The RHS is multilinear. The lemma then follows from Fact
1 and uniqueness of the MLE.

Fact 2: (Explicit Expression for Lagrange Basis Polynomials)
N £
Ow(x) = [li=1Cw; + (1 — x)(1 — wy)).

4 N
Evaluating The MLE At Any Point, Efficiently

® Fact [VSBW13]: Given as input all 2*¢ evaluations of a function
f: {0,1}£—> F, for any point 1 € F? there is an 0(23)—tirne
algorithm for evaluating f ().

™
Evaluating The MLE At Any Point, Efficiently

® Fact [VSBW13]: Given as input all 2*¢ evaluations of a function
f: {0,1}£—> F, for any point 1 € F? there is an 0(23)—tirne
algorithm for evaluating f ().

® Proof of slightly weaker O (f . 23) time bound:

4 N
Evaluating The MLE At Any Point, Efficiently

® Fact [VSBW13]: Given as input all 2*¢ evaluations of a function
f: {0,1}£—> F, for any point 1 € F? there is an 0(23)—tirne
algorithm for evaluating f ().

® Proof of slightly weaker O (£ - 23) time bound:
® Recall f(?") = ZWE{O,1}£ fw) - Sw(r)-

™

Evaluating The MLE At Any Point, Efficiently

® Fact [VSBW13]: Given as input all 2*¢ evaluations of a function
f: {0,1}£—> F, for any point 1 € F? there is an 0(2€)—time
algorithm for evaluating f ().

® Proof of slightly weaker O (f . 23) time bound:

® Recall f(?") = ZWE{O,1}£ fw) - Sw(r)-
® For eachw € {0,1}{), SW (1) can be computed with O (£) field

operations.

S () = Tlica (v + (1 — 1) (1 — wy)).

™

Evaluating The MLE At Any Point, Efficiently

® Fact [VSBW13]: Given as input all 2*¢ evaluations of a function
f: {0,1}£—> F, for any point 1 € F? there is an 0(2€)—time
algorithm for evaluating f ().

® Proof of slightly weaker O (f . 23) time bound:

® Recall f(?") = ZWE{O,1}£ fw) - Sw(r)-
® For eachw € {0,1}{), SW (1) can be computed with O (£) field

operations.

S () = Tlica (v + (1 — 1) (1 — wy)).

® Can reduce to time 0 (23) via dynamic programming,

| QUIET
WAIT! NALL.

HAMMER

Sum-Check Protocol [LFKN9O]

* Input:V given oracle access to a £-variate polynomial g

over field F .
® Goal: compute the quantity:

2 z 2 g(by, ., bp).

ble{O,l} b2 E{O,l} ng{O,l}

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

2 z 9(X:, by, ., by)

b,€{0,1} b,€{0,1}

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} b,€{0,1}

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
® V checks that C; = s;(0) + s;(1).

Start: P sends claimed answer C; . The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

Round 1: P sends univariate polynomial 51 (X1) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
V checks that C; = s;1(0) + s;(1).

If this check passes, it is safe for V to believe that C; is the correct answer, so long
asV believes that ;= H.

How to check this? Just check that §; and H; agree at a random point 77.

Start: P sends claimed answer C; . The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

Round 1: P sends univariate polynomial 51 (X1) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
V checks that C; = s;1(0) + s;(1).

If this check passes, it is safe for V to believe that C; is the correct answer, so long
asV believes that ;= H.

How to check this? Just check that $; and H; agree at a random point 77 .

V can compute S; (77) directly from P’s first message, but not Hy (7).

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
® V checks that C; = s;(0) + s;(1).
® V picks 17 at random from F and sends 17 to P.
* Round 2:They recursively check that §; (ry) = Hy{(ry).

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
® V checks that C; = s;(0) + s;(1).

® V picks 17 at random from F and sends 17 to P.
e Round 2: They recursively check that s1(17) = Hy(17).

l.e., that S1 (7"1) = ZDZE{O,l} bee{o’l}g(rl, bz, cee b,g)

-

Start: P sends claimed answer C; . The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

Round 1: P sends univariate polynomial 51 (X1) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} by€{0,1}

V checks that C; = s1(0) + s4(1).
V picks 77 at random from F and sends 17 to P
Round 2: They recursively check that 51(17) = Hy(17).

i.e., that S;(1y) = sze{o,1} Zb{;e{o,l}g(rl' b,, ..., by).
Round ¢ (Final round): P sends univariate polynomial Sp(X,) claimed to equal

Hp = g(ry, ..., Tp—1, Xp).

V checks that Sp_1 (1p_1) = 5,(0) + s,(1).
V picks 7y at random, and needs to check that S,(17) = g (7, ..., 7).

® No need for more rounds. V can perform this check with one oracle query.

Analysis of the Sum-Check Protocol

Completeness and Soundness
® Completeness holds by design: If P sends the prescribed

messages, then all of Vs checks will pass.

Completeness and Soundness
® Completeness holds by design: If P sends the prescribed

messages, then all of Vs checks will pass.

® Soundness: If P does not send the prescribed messages,
£-d
then V rejects with probability at least 1- m , where d is

the maximum degree of g in any variable.

® Proofis by induction on the number of variables £.

Costs of the Sum-Check Protocol

* Total communication is O (d¥) field elements.

® P sends ¥ messages, each a univariate polynomial of degree at
most d.V sends £ — 1 messages, each consisting of one field

element.

Costs of the Sum-Check Protocol

* Total communication is O (d¥) field elements.

® P sends € messages, each a univariate polynomial of degree at

most d.V sends £ — 1 messages, each consisting of one field

element.
® V’s runtime is:

O(d? + [time required to evaluate g at one point]).

Costs of the Sum-Check Protocol

* Total communication is O (d¥) field elements.

® P sends € messages, each a univariate polynomial of degree at

most d.V sends £ — 1 messages, each consisting of one field

element.
® V’s runtime is:

O(d? + [time required to evaluate g at one point]).

® P’s runtime is at most:

O(d . 2¢ . [time required to evaluate g at one point]).

/

An Application of the Sum-Check Protocol

A Doubly—Efficient Interactive Proof for
Matrix Multiplication

[Thaler13]: Optimal IP For n x n MatMult

* Goal: Given n XN input matrices 4, B over field F, compute
C=A-B.

™

™
[Thaler13]: Optimal IP For n x n MatMult

* Goal: Given n XN input matrices 4, B over field F, compute
C=A-B.
* P simply determines the “right answer”, and then P does

0, (le) extra work to prove its correctness.

* Optimal runtime up to leading constant assuming no 0, (nz)
time algorithm for MatMult.

® V runs in linear time (which is also optimal).

[Thalerl3]: Optimal IP For n x n MatMult

* Goal: Given n XN input matrices 4, B over field F, compute

C =A-B.

e P simply determines the “richt answer”. and then P does
Pty g)

0, (le) extra work to prove its correctness.

* Optimal runtime up to leading constant assuming no 0, (nz)

time algorithm for MatMult.

® V runs in linear time (which is also optimal).

Problem Naive Additional P

Size MatMult time
Time

1024 x 1024 217 s 0.03s

2048 x 2048 18.23 s 013s

V Time Rounds
0.09s 11
0.30s 12

Protocol
Comm

264 bytes

288 bytes

™

Comparison to Freivalds’ Algorithm

® Freivalds (MFCS, 1979) gave the following protocol for
MatMult. To check A - B = D
® V picks random vector X.
® Acceptsif 4 - (Bx) = Dx.
e No extra work for P, 0(n?) time for V.

Comparison to Freivalds’ Algorithm

® Freivalds (MFCS, 1979) gave the following protocol for
MatMult. To check A - B = D:
® V picks random vector X.
® Acceptsif 4 - (Bx) = Dx.
e No extra work for P, 0(n?) time for V.

® Our big win: veritying algorithms that invoke MatMult, but
aren 't really interested in matrices.

* E.g., Best-known subgraph-counting algorithms square the
adjacency matrix, but are only interested in a single number.

e Total communication for us is O (log n), Freivalds’ is Q(n?).

MatMult Protocol: Technical Detalls

Notation

* Given N XN input matrices 4, B over field F, interpret A
and B as functions mapping {O,l}log X {O,l}log "toF

Via A(il, rar ilogn,jl’ nnn ,jlog n) — Aij-
e Let C = A - B denote the true answer.

e Let A, B denote the multilinear extensions of the functions A

and B.

MatMult Protocol

® P sends a matrix D claimed to equal C =A-B.

MatMult Protocol

® P sends a matrix D claimed to equal C =A-B.

o V evaluates D at a random point (r1,7;) € Flogn x Flogn

MatMult Protocol

® P sends a matrix D claimed to equal C =A-B.

o V evaluates D at a random point (r1,7;) € Flogn x Flogn

* By Schwartz-Zippel: it is safe for V to believe that D equals the
correct answer C as long as 5(1‘1, 1"2): C~(T1, Tz).

MatMult Protocol

® P sends a matrix D claimed to equal C =A-B.

o V evaluates D at a random point (r1,7;) € Flogn x Flogn

* By Schwartz-Zippel: it is safe for V to believe that D equals the
correct answer C as long as 5(1‘1, 1"2): C~(T1, Tz).

® Goal becomes: compute C~(T1, ry)

MatMult Protocol

® Goal: Compute C~(T1,).

MatMult Protocol

® Goal: Compute C~(T1,).
* For Boolean vectors (i, j) € {0’1}10g ", clearly:

C(l;]) = Zke{o,l}log n A(L, k)B(k'])

MatMult Protocol

* Goal: Compute C (11, 73).
® For Boolean vectors (i, j) € {0,1}1°8™ clearly:
C(L,J) = Lyeoyosn AL K)B(k, J)
e This implies the following polynomial identity:
C(iL,j) = 2. ke0,1)108 A(i, k)B(k,j).

MatMult Protocol

® Goal: Compute C~(1‘1, ry).
* For Boolean vectors (i, j) € {0,1}10g ", clearly:
C(l;]) — Zke{o,l}log n A(l; k)B(k'])
® This implies the following polynomial identity:
é(l,]) — Zke{O,l}log n A(l; k)g(k'])
® SoV applies sum-check protocol to compute
C(r1,72) = Lp,e(0,1) ~ Lbiog nef0,13 I (D1r - biogn),

where:

9(z):=A(ry, z) B(z,13).

Making V Fast

® At end of sum-check, V must evaluate

g(r3) = A(ry,13) B(rs, 12).
e Suffices to evaluate A(Tl, r3) and B (ra3,7ry).

Making V Fast

® At end of sum-check,V must evaluate
g(r3) = A(ry,1r3) B(r3, r3).
® Suffices to evaluate A(Tl, r3) and B (ra3,7ry).
e Can be done in 0(n?) time by “Fast Evaluation of MLE”

lemma in preliminaries.

Making P Fast: A First Attempt

® Recall: we're using sum-check to compute
Zble{o,l} Zblog n€{0,1} g(bl: e blog n)-
® Round i: P sends quadratic polynomial S; (X i) claimed to equal:

2ibi41€{01) * Dibiog (0,13 I (73,0 s 73,i-1, X3y Dy, o) Plog 1)
e Suffices for P to specify s5;(0), s;(1), s;(2)

Making P Fast: A First Attempt

e Recall: we're using sum-check to compute
Zble{o,l} Zblog n€{0,1} g(bl: e blog n)-
® Round i: P sends quadratic polynomial S; (X i) claimed to equal:

2ibi41€{01) * Dibiog (0,13 I (73,0 s 73,i-1, X3y Dy, o) Plog 1)
e Suffices for P to specify s5;(0), s;(1), s;(2)
* Thus: Enough for P to evaluate g at all points of the form

(73,0) T3,i-1, {0,1,2}, bi11, .-, blog n)t Dig1y s blogn = {O,l}logn L

Making P Fast: A First Attempt

* Recall: we're using sum-check to compute
Zble{o,l} Zblog n€{0,1} g(bl: e blog n)-
® Round i: P sends quadratic polynomial S; (X;) claimed to equal:
Zbi+1e{o,1} Zblog L€{0,1} 9 (73,1, > 13,i-1, Xis bix1, -+, Dlog n)
e Suffices for P to specify s5;(0), s;(1), s;(2)
* Thus: Enough for P to evaluate g at all points of the form
(13,1, +:73,i-1,{0,1,2}, b1, s biog) Dig1, s Brogn € {0,1}108™

® This is 0(%) points.

Making P Fast: A First Attempt

* Recall: we're using sum-check to compute
Zble{o,l} Zblog n€{0,1} g(bl: e blog n)-
® Round i: P sends quadratic polynomial S; (X;) claimed to equal:
Zbi+1e{o,1} Zblog L€{0,1} 9 (73,1, > 13,i-1, Xis bix1, -+, Dlog n)
e Suffices for P to specify s5;(0), s;(1), s;(2)
* Thus: Enough for P to evaluate g at all points of the form
(13,1, +:73,i-1,{0,1,2}, b1, s biog) Dig1, s Brogn € {0,1}108™
* This is O (57) points.

e Recall A and B can each be evaluated at any input in 0 (n?) time, and

hence so can g.

® So P can compute S; in 0 (% . le) — 0(n3/2i) time.

-

Making P Fast: A First Attempt

e Recall: we're using sum-check to compute
Zble{o,l} Zblog n€{0,1} g(bl: e blog n)-
® Round i: P sends quadratic polynomial S; (X i) claimed to equal:

2ibi41€{01) * Dibiog (0,13 I (73,0 s 73,i-1, X3y Dy, o) Plog 1)
e Suffices for P to specify s5;(0), s;(1), s;(2)
* Thus: Enough for P to evaluate g at all points of the form

(73,0) T3,i-1, {0,1,2}, bi11, .-, blog n)t Dig1y s blogn = {O,l}logn L

® This is 0(%) points.

e Recall A and B can each be evaluated at any input in 0 (n?) time, and

hence so can g.

* Over all rounds, this is O (Zl Tl3/ Zi) = 0(713) total time.

/

Making P Fast: Second Attempt

* Recall: Enough to evaluate g at all points of the form:
z=(r31,..,73;-1,{0,1,2}, bi41, ..., biogn): bis1, -» Biogn € {0,1}108™
¢ Already showed: how to do this in 0 (n3 / Zi) time.

* Can we improve this to O (n?) time?

Making P Fast: Second Attempt

Recall: Enough to evaluate g at all points of the form:
z=(r31,..,73;-1,{0,1,2}, bi41, ..., biogn): bis1, -» Biogn € {0,1}108™
Already showed: how to do this in O(n3/2!) time.

Can we improve this to O (n?) time?

Key observation each entry A;; contributes to A(14, 2) for less than 3 tuples Z of

the above form.

® Similarly entry B;; contributes to B(z, 1) for less than 3 tuples Z of the above form.

Making P Fast: Second Attempt

Recall: Enough to evaluate g at all points of the form:
z=(r31,..,73;-1,{0,1,2}, bi41, ..., biogn): bis1, -» Biogn € {0,1}108™
Already showed: how to do this in O(n3/2!) time.

Can we improve this to O (n?) time?

Key observation each entry A;; contributes to A(14, 2) for less than 3 tuples Z of
the above form.
® Similarly entry B;; contributes to B(z, 1) for less than 3 tuples Z of the above form.

® Recall: A(Tl, Z) = Z A(l,]) . S(l,j) (7'1, Z), where

(i,j)€{0,1}2 log n

1
5.2 = §ir08@ = §ir0) - | [Geze + = j 0 -2
t=1

Making P Fast: Second Attempt

Recall: Enough to evaluate g at all points of the form:
z=(r31,..,73;-1,{0,1,2}, bi41, ..., biogn): bis1, -» Biogn € {0,1}108™
Already showed: how to do this in O(n3/2!) time.

Can we improve this to 0 (n?) time?

Key observation each entry A4; j contributes to A(Tl, Z) for less than 3 tuples Z of

the above form.

® Similarly entry B;; contributes to B(z, 1) for less than 3 tuples Z of the above form.

e Recall: A(rl, Z) = Z(i,j)E{O,l}z log n A(l,]) . S(l,j) (1'1, Z), where

1
5.2 = §ir08@ = §ir0) - | [Geze + = j 0 -2
t=1

® Fort = i + 1, the t’th entry of Z is by €{0,1}.
® Ifbt ijt,then S](Z) =0, so S(i,j)(rl,Z) = 0.

Making P Fast: Second Attempt

Recall: Enough to evaluate g at all points of the form:
z=(r31,..,73;-1,{0,1,2}, bi41, ..., biogn): bis1, -» Biogn € {0,1}108™
Already showed: how to do this in O(n3/2!) time.

Can we improve this to 0 (n?) time?

Key observation each entry A4; j contributes to A(Tl, Z) for less than 3 tuples Z of

the above form.

® Similarly entry B;; contributes to B(z, 1) for less than 3 tuples Z of the above form.

® Recall: A(Tl, Z) = Z A(l,]) . S(l,j) (7'1, Z), where

(i,j)E{O,l}z logn
'
Sipru?) = §i08@ = §ia0 - | [Geze + A - joa -z
t=1

® Fort =i+ 1,the t’thentry of Zis by €{0,1}.
® Ifbt :th, then S](Z) =0, so S(i,j)(rl,Z) = 0.
e i.c., A(i,]) only contributes to A(ry,z) if (ji+1» ---»jlogn) = (bit1) - » brogn) /

Making P Fast: Second Attempt

* Summary: In round I, P must evaluate g at O (%) points of a

special form (trailing entries are Boolean).
* Each matrix entry A; j» B; j contributes to only at most three
of these evaluations.

® So P can run in 0(n2) time per round, or 0(712 logn) time
across all 0(logn) rounds.

Making P Fast: Third Attempt

 With care: can bring P’s time down to 0 (le) across all rounds.

* Key idea: Reuse work across rounds.
* If two matrix index pairs (i,j) and (i',j") in {O,l}log"x
{0,1}10g " agree in their last k bits, then 4 ij and Ay, contribute to
the same points Z in rounds K and up.

e Can treat (i,j) and (i’,j') asa single entity thereafter.

® Only O(Tl / 2K) , entities of interest in round k.

e Total work across all rounds is proportional to

E n/2"=2n.

I<k=<logn

Details of Third Attempt

° A(xlle) — Z(i,j)E{O,l}Z lognA(i;j)) S(l,]) (xlixZ)
where 8,,(1) = [Ti=; (riw; + (1 = 1) (1 = wy)).

Details of Third Attempt

° A(xlle) — Z(i,j)E{O,l}z lognA(i;j)) S(l,]) (xlixZ)
where 8, () = [T, (riw; + (1 — 1) (1 — wy)).

e Consider two indices (i, j) and (i, j) that differ in only their
first bit, e.g., (i, j) = 00...0 and (i, j')=10...0.

Details of Third Attempt

° A(xlle) — Z(i,j)E{O,l}z lognA(i;j)) S(l,j) (xl’xZ)

where 8, (r) = [Ti=1 (riw; + (1 = 1) (1 — wy)).

e Consider two indices (i, j) and (i, j) that differ in only their
first bit, e.g., ({,j) = 00...0and (i', j')=10...0.

® Then the products defining S(i,j) and S(i,,j,) are the same except
for the first term.
® For S(i,j) (x1,%x2) the first termis Xy ; 0+ (1 —xy 1) -1 = (1 — lel).
® For S(i,,]-,)(xl,xz) the first termisxy 1 -1+ (1 —x11) - 0 =x ;.

Details of Third Attempt

¢ A(xli xZ) — Z(i,j)E{O,l}z logn A(l;])) 5(l,]) (xll xZ)
N 4

where 5W(7”) — i=1(TiWi + (1 — Ti)(l — Wi))-

e Consider two indices (i, j) and (i, j) that differ in only their
first bit, e.g., (i, j) = 00...0 and (i, j')=10...0.

® Then the products defining S(i,j) and S(i,,j,) are the same except
for the first term.
® For S(i,j) (x1,%x2) the first termisxy ; 0+ (1 —xy 1) -1 = (1 — xl’l).
® For S(i,,]-,)(xl,xz) the first termisxy 1 -1+ (1 —x11) - 0 =x ;.

® Once the first variable X, ;1 is bound to a fixed value 7y 1 by the
MatMult protocol, this difference is fixed.
¢ i.e., no need for P to remember both A(i, j) and A(i', j').

® Suffices just to remember(l — 7‘1,1)14(1',]') + Tl,lA(i’,]").

/

4 I
Details of Third Attempt
A(0,0,0) [A(0,0,1) | A(0,1,0) | A(0,1,1) | A(1,0,0) | A(1,0,1) | A(1,1,0) | A(1,1,1)
(1—-1r1)A0,0,0) | (1 —77)A©,0,1) | (1 —17)A0,1,0) | (1 —17)A(0,1,1)
+ 11A(1,0,0) + 1r1A(1,0,1) + 11A(1,1,0) + 11 A(1,1,1)
:= B(0,0) := B(0,1) := B(1,0) := B(1,1)
(1 —ry,) B(0,0) + r,B(1,0) (1 —1ry) B(0,1) + r,B(1,1)
:=C(0) = C(1)
_ (1 —13) C(0) + 13C(1))

A Second Application of the Sum-Check

Protocol

A Doubly—Efficient Interactive Proof for

Counting Triangles

Counting Triangles

 Input: A € {0,1}""*", representing the adjacency matrix of a graph.

. 1
® Desired Output: P . Z(i,j,k)e[n]3 AijAjkAki

1
— % Z(i,j)e[n]Z(Az)ij) Aij~

Counting Triangles

Input: A € {0,1}*", representing the adjacency matrix of a graph.
, 1
Desired Output: P : Z(i,j,k)e[n]3 AijAjkAki
1
— % Z(i,j)e[n]Z(Az)ij | Aij~
View A and A? as functions mapping {0’1}10g nX{O,l}lOg "to F.
Define the polynomial h(X,Y) = (AZ) (X,Y) /I(X ,Y).

Counting Triangles

Input: A € {0,1}*", representing the adjacency matrix of a graph.

. 1
Desired Output: g) Z(i,j,k)e[n]3 AijAjkAki

= % ' Z(i,j)E[n]Z(Az)if F Ay
View A and A? as functions mapping {0’1}10{; nX{O,l}lOg "to F.
Detine the polynomial h(X,Y) = (,TZS(X ,Y) /I(X ,Y).
The Protocol:
e Apply the sum-check protocol to h.

Counting Triangles

 Input: A € {0,1}""*", representing the adjacency matrix of a graph.

. 1
® Desired Output: P . Z(i,j,k)e[n]3 AijAjkAki

= % ' Z(i,j)E[n]Z(Az)if $Ajj
e View A and A% as functions mapping {0’1}10{; nX{O,l}lOg "to F.
® Define the polynomial h(X,Y) = (PS(X ,Y) A(X ,Y).
® The Protocol:

e Apply the sum-check protocol to h.
* At the end of the protocol, V needs to evaluate:

h(ry, 12)=(A2) (11, 12) A(r, 12).
e V can evaluate A(7y,73) on its own in 0(11?) time. V uses the MatMult
_ protocol to force P to compute (A%) (1, 13) for her.

The GKR Protocol

A General—Purpose Doubly—EffiCient

Interactive Proot

The GKR Protocol: Overview

F, circuit

The GKR Protocol: Overview

conversation with
Layer 2 an answer (output).
Layer 3
Layer 4

F, circuit

The GKR Protocol: Overview

V sends series of

challenges. P responds

F, circuit

The GKR Protocol: Overview

Challenges continue,
layer by layer down
to the the input.

F, circuit

The GKR Protocol: Overview

Finally, P says

something about

the (multilinear

extension of the)

F, circuit

input.

Notation

® Assume layers land i + 1 of C have S gates each.
e Assign each gate a binary label (log S bits).

e Let W;(a): {0,1}10g > F output the value of gate @ at
layer 1.

Notation

® Assume layers land i + 1 of C have S gates each.
e Assign each gate a binary label (log S bits).

e Let W;(a): {0,1}10g > F output the value of gate @ at
layer 1.

o Let add;(a, b, €): {0,1}31°8 55 F output 1 iff
(b,c) = (in1 (a),in, (a)) and gate @ at layer i is an

addition gate.

Notation

® Assume layers land i + 1 of C have S gates each.
e Assign each gate a binary label (log S bits).

o Let W;(a): {0,1}'°8 5> F output the value of gate @ at
layer .

o Let add;(a, b, €): {0,1}31°8 55 F output 1 iff
(b,c) = (in1 (a),iny (a)) and gate @ at layer i is an
addition gate.

o Let mult;(a, b, ¢): {0,1}3 185> F output 1 iff
(b,c) = (in1 (a),in, (a)) and gate @ at layer i is a

multiplication gate.

GKR Protocol: Goal of Iteration |

® Iteration I starts with a claim from P about Wi (r,) for a
random point 7"} € F'o8S

® Goal: Reduce this to a claim about Wi+1 (1) for a random
point 'y € F'o85

GKR Protocol: Goal of Iteration |

® Iteration I starts with a claim from P about Wi (r,) for a
random point 7"} € F'o8S

e Goal: Reduce this to a claim about W; 4 (r,) for a random
point 'y € F'o85
* Observation: W;(a) =
ijce{o,l}log sladd;(a, b, c)(W;;1(b) + W;,4(c))+
mult;(a, b, ¢)(Wi11(b) - Wii1(c))]

GKR Protocol: Goal of Iteration |

® Iteration I starts with a claim from P about Wi (r,) for a
random point 7"} € F'o8S

e Goal: Reduce this to a claim about W; 4 (r,) for a random
point 'y € F'o85
* Observation: W;(a) =
ijce{oll}log sladd;(a, b, c)(W;;1(b) + W;,4(c))+
mult;(a, b, ¢)(Wi11(b) - Wii1(c))]

® Hence, the following equality holds as formal polynomials:
Wi(a) =
ijce{oll}log S[a’a/di (a, b, c)(Wi1(b) + Wii1(c))+
mult;(a, b, ¢) (W11 (b) - Wi41(c))]

GKR Protocol: Goal of Iteration |

® SoV applies sum-check protocol to compute
o Wi(ry) = Yp.ceqo,yiog s 9 (b, €), where:
gb,c) = @i (11, b, ©) (W41 (b) + W41 (c))
+ mult;(ry, b, ©) Wiy 1(b) - Wiy1(c))

GKR Protocol: Goal of Iteration |

® SoV applies sum-check protocol to compute
o Wi(ry)) = Yp.ceqo,yiog s 9 (b, €), where:
gb,c) = @i (11, b, ©) (W41 (b) + W41 (c))
+ mult; (11, b, €)(Wi11(b) - Wiy (€))

* At end of sum-check protocol, V must evaluate g (7, 1'3).

GKR Protocol: Goal of Iteration |

® SoV applies sum-check protocol to compute
o Wi(ry) = Yp.ceqo,yiog s 9 (b, €), where:
g(b,c) = add;(ry, b, €) (W41 (b) + W;,1(c))
+ mult; (11, b,) (Wiy1(b) - Wii1(€))
* At end of sum-check protocol, V must evaluate g (7, 1'3).

® Let us assumeV can compute aEdi(rl, r,,Tr3) and
rﬁﬁi(rl, T,, T3) unaided in time polylog(n).

® ThenV only needs to know Wi+1(‘l‘2) and Wi+1(1'3) to complete
this check.

GKR Protocol: Goal of Iteration |

® SoV applies sum-check protocol to compute
o Wi(ry) = Yp.ceqo,yiog s 9 (b, €), where:
g(b,c) = add;(ry, b, €) (W41 (b) + W;,1(c))
+ mult; (11, b,) (Wiy1(b) - Wii1(€))
* At end of sum-check protocol, V must evaluate g (7, 1'3).

® Let us assumeV can compute aEdi(rl, r,,Tr3) and
mult; (4, 7,, 73) unaided in time polylog(n).

® ThenV only needs to know Wi+1(‘l‘2) and Wi+1(1'3) to complete
this check.

e [teration I + 1 is devoted to computing these values.

Remaining Issue: Reducing to
Verification of a Single Point

® There is one remalmng problem we don’t want to have to separately
verity both W,+1 (r,) and W, +(r,) initeration i +1.

® Solution: Reduce verlfymg both of the above values to Verifying

Wia (r,) for a single point r, € Flogs

Remaining Issue: Reducing to
Verification of a Single Point

® There is one remalmng problem we don’t want to have to separately
verity both W,+1 (r,) and W, +(r,) initeration i +1.

® Solution: Reduce veritying both of the above values to veritying
Win (r,) for a single pointr, € Flogs
Wit
Wiiq
Boolean Hypercube
{0,105

\Extended Hypercube

FlogS

Remaining Issue: Reducing to
Verification of a Single Point

® There is one remalmng problem we don’t want to have to separately
verity both W,+1 (r,) and W, +(r,) initeration i +1.

® Solution: Reduce veritying both of the above values to veritying
W i1 (r,) for a single pointr, € F*¢S
Witq
Wi °r,
Boolean Hypercube
{O,l}mgs

er, \Extended Hypercube

FlogS

e
Remaining Issue: Reducing to

Verification of a Single Point

® There is one remalmng problem we don’t want to have to separately
verity both W,+1 (r,) and W, +(r,) initeration i +1.

® Solution: Reduce veritying both of the above values to veritying
Wi (r,) for a single point r, € Flogs
W-
ey Challenge line A

Wit1 “ I/
“ Boolean Hypercube
B
\‘ {O,l}logS
‘ \E
d‘r3 xtended Hvypercube
\ YP
“ FlogS

-

e

Remaining Issue: Reducing to
Verification of a Single Point

® There is one remamlng problem we don’t want to have to separately
verity both W,+1 (r,) and Wl +(r,) initeration i +1.

® Solution: Reduce ver1fy1ng both of the above values to Verifying

Wia (r,) for a single point r, € Flogs

Wit1

-

W;
—+11_ Challenge line A

X

r2
‘\‘/ Boolean Hypercube
\r, (0 i
¢ \E
d“r3 xtended Hypercube
“ floes

e

Costs of the GKR protocol

 Vtime is O(n + D log S) where n is input size,

D is circuit depth, and S is circuit size.

® AssumesV can compute add, i(r{,r,,7r3) and
mult; ;(r{,r5,13) unaided in time polylog(n)

* Communication cost is O (D log S).

-

Costs of the GKR protocol

 Vtime is O(n + D log S) where n is input size,

D is circuit depth, and S is circuit size.

® AssumesV can compute add, i(r{,r,,7r3) and
mult; ;(r{,r5,13) unaided in time polylog(n)

* Communication cost is O (D log S).

* P timeis O(S).
® A naive implementation of P takes Q(S3) time,
where S is circuit size.

* A sequence of works has brought this down to

0(S), for arbitrary circuits [CMT12,Thaler13,
WJBSTWW 17, XZZPS19]

ol

g

GKR Prover Runtime: Detalils

Recall: Core of the GKR protocol is applying sum-check to compute
Zp\,ge{o,l}log s g(b, c) where
g(b,c) = add;(ry, b, c) (mZi+1 (b) + ,'3'71'+1 (€))
+ mult; (1, b,) (Wi11(b) - Wii1(c))

4 N

GKR Prover Runtime: Detalils

Recall: Core of the GKR protocol is applying sum-check to compute
Z%E{O,l}log s g(b, c) where
g(b,c) = add;(ry, b, c) (mZi+1 (b) + ,'3'71'+1 (€))
+ mult; (1, b,) (Wi11(b) - Wii1(c))

* A naive implementation of P takes QS 3) time, where S is circuit
size.

* Same idea as “Approach 1” from the MatMult protocol.

® i.e., P evaluates g in each round of sum-check at all O(S 2/ Zi) necessary
points Z, taking O(S) time per point.

GKR Prover Runtime: Detalils

Recall: Core of the GKR protocol is applying sum-check to compute
Z%E{O,l}log s g(b, c) where
g(b,c) = add;(ry, b, c) (mZi+1 (b) + ,'3'71'+1 (€))
+ mult; (1, b,) (Wi11(b) - Wii1(c))

* A naive implementation of P takes QS 3) time, where S is circuit
size.

* Same idea as “Approach 1” from the MatMult protocol.
® i.e., P evaluates g in each round of sum-check at all O(S 2/ Zi) necessary
points Z, taking O(S) time per point.
® [CMT12]: P time is O(S log S).
® Achieved via “Approach 2” from the MatMult protocol: each gate of C
contributes to g (Z) for O(1) relevant points Z in each round.

GKR Prover Runtime: Detalils

Recall: Core of the GKR protocol is applying sum-check to compute
Z%E{O,l}log s g(b, c) where
g(b,c) = add;(ry, b, c) (mZi+1 (b) + Wi+1 (€))
+ mult; (1, b,) (Wi11(b) - Wii1(c))

* A naive implementation of P takes QS 3) time, where S is circuit
size.

* Same idea as “Approach 1” from the MatMult protocol.
® i.e., P evaluates g in each round of sum-check at all O(S 2/ Zi) necessary
points Z, taking O(S) time per point.
® [CMT12]: P time is O(S log S).
® Achieved via “Approach 2” from the MatMult protocol: each gate of C
contributes to g (Z) for O(1) relevant points Z in each round.
* All subsequent works seek to bring “Approach 3” to bear on the
GKR protocol, letting P reuse work across rounds. y

g

GKR Prover Runtime: Detalls
® [Thaler13]:

1. Ptime O(S) for circuits with “nice” wiring patterns.
2. Ptime O(SlogS") for data parallel circuits

i.e., that apply the same subcomputation (of size S")
independently to different pieces of data

g

GKR Prover Runtime: Detalls
® [Thaler13]:

1. Ptime O(S) for circuits with “nice” wiring patterns.
2. Ptime O(SlogS") for data parallel circuits

i.e., that apply the same subcomputation (of size S")
independently to different pieces of data

°* [W]BSTWW17] improved the data parallel time to
O(S + S'logS").

4 N

GKR Prover Runtime: Detalls
® [Thaler13]:

1. Ptime O(S) for circuits with “nice” wiring patterns.
2. Ptime O(SlogS") for data parallel circuits

i.e., that apply the same subcomputation (of size S")
independently to different pieces of data

°* [W]BSTWW17] improved the data parallel time to
O(S + S'logS").

* [ZGKPP18] extends to data parallel computations where each

subcomputation may not be the same.

4 N

GKR Prover Runtime: Detalls
® [Thaler13]:

1. Ptime O(S) for circuits with “nice” wiring patterns.
2. Ptime O(SlogS") for data parallel circuits

i.e., that apply the same subcomputation (of size S")
independently to different pieces of data

°* [W]BSTWW17] improved the data parallel time to
O(S + S'logS").

* [ZGKPP18] extends to data parallel computations where each

subcomputation may not be the same.

® [XZZPS19] achieved O(S) time for general circuits.

Rumination on Generality Vs. Efficiency

-

Generality vs. Efficiency

® The GKR protocol for circuit evaluation has now been
rendered optimally efficient for P (up to constant factors).

® Any computation can be represented as a circuit evaluation (or
satisfiability) problem.
¢ But this can introduce tremendous overheads.

® The GKR protocol forces the prover to compute the output in a
prescribed manner, which may be far from optimal (gate-by-gate
evaluation of a circuit).

® To achieve scalability, the gold standard is really something
like the counting triangles protocol.
* i.c., P computed the right answer directly using the fastest

known algorithm, and did a low-order amount of extra work
to prove correctness -/

Succinct ZK Arguments for Circuit-SAT

from Interactive Proofs

4 N

Succinctness for Circuit-SAT

e The GKR protocol solves arithmetic circuit evaluation.

* Applications often require solving circuit satisfiability, i.e.,
given a circuit € and public in put X, prove there exists a
“witness” W such that C(x,w) = y.

® Naive approach: have P send W toV and then apply the GKR
protocol to check that C (x,w) =y.
* Downside: Proof length is |w].

® [ZGKPP17]: Can decrease the proof length by having the

prover cryptographically commit to w, without sending w
in full to V.

- /

g

1.

Known Cryptographic Commitment
Schemes for Multilinear Polynomials
[KZG 2010, PST 2013, ZGKPP17]: Simple, based on bilinear maps,

requires trusted setup (SRS of size [W|), not quantum secure.
[Groth09, BG12, BCCGP16, BG18, BBBPWMI18, WSTTW18]:
Based on homomorphic commitments. Transparent but not
quantum secure.

[BSBHR 18, BSGKS19]: IOP-based commitment scheme for
univariate polynomials. Transparent and secure in quantum
Random Oracle model. [ZXZS19] combines this with Aurora to
handle multilinear polynomials.

4 I
Known Cryptographic Commitment

Schemes for Multilinear Polynomials
. [KZG 2010, PST 2013, ZGKPP17]: Simple, based on bilinear maps,

requires trusted setup (SRS of size [W|), not quantum secure.

2. [Groth09, BG12, BCCGP16, BG18, BBBPWMI18, WSTTW18]:
Based on homomorphic commitments. Transparent but not

quantum secure.

3. [BSBHR18, BSGKS19]: IOP-based commitment scheme for
univariate polynomials. Transparent and secure in quantum
Random Oracle model. [ZXZS19] combines this with Aurora to
handle multilinear polynomials.

* P complexity in 1) and 2): O(|w|) public-key crypto operations.
® P complexity in 3): O(lw]|log|w]|) field operations and O(lw])
private-key crypto operations.

® Not discussed: V time, restrictions on the field size, etc.

- /

g

Succinctness for Circuit-SAT

* Assume for simplicity that x| = |w| = n.

® When applying the GKR protocol to check that € (x,w) =y,V
views the input Z: = (x, W) as a function mapping
{0,1}x{0,1}°8™ v F.
 And the only information V needs to know about z is Z(r) for a
random input r = (77, r') e {O,I}X{O,l}logn .

e Fact: Z(r) = (1 —) X¥(r'") + o w(@@").

4 N

Succinctness for Circuit-SAT

* Assume for simplicity that x| = |w| = n.
® When applying the GKR protocol to check that € (x,w) =y,V
views the input Z: = (x, W) as a function mapping
{0,1}x{0,1}°8™ v F.
 And the only information V needs to know about z is Z(r) for a
random input r = (77, r') e {O,I}X{O,l}logn .
e Fact: Z(r) = (1 —) X¥(r'") + o w(@@").
® The Argument for CIRCUIT-SAT:
1. Pcryptographically commits to the multilinear polynomial W.
2. Vand P apply to GKR protocol to the claim € (x,w) =y.
3. To perform Vs final check in the protocol (which requires knowing

Z(1)), V makes P reveal W(r"), and derives Z (1) using Fact.

- /

e

Zero Knowledge for Circuit-SAT

® Two practical techniques:
1. [WsTTW18, ZGKPP18]: Efficient implementation of Cramer-

Damgard transformation (based on homomorphic commitments).

2. [CES17, XZZPS19] IOP-based transtormation.

® Both transparent. Only 2) is quantum secure.

THANK YOU!

MIPs and Succinct Arguments Derived

Thereof

Arithmetic Circuit Satisfiability

Given: An arithmetic circuit C over F of size S with explicit input x

and non-deterministic input w, and claimed output(s) y.

Goal: Determine if there exists a w such that C(x, w)=y.

Arithmetic Circuit Satisfiability

Given: An arithmetic circuit C over F of size S with explicit input x

and non-deterministic input w, and claimed output(s) y.
Goal: Determine if there exists a w such that C(x, w)=y.
Assign each gate in C a (log S)-bit label.

Call a function W : {0,1}'*** — F a transcript for C.

Say that Wis correct on x if it satisties the following properties:
The values W assigns to the explicit input gates equal x.
The value W assigns to the output gates is y.

The values W assigns to the intermediate gates correspond to the correct

operation of the gates.

Clearly there is a w such that C(x, w)=1 iff there is a correct transcript for C.

/

™
Sketch of 2-Prover MIP for Arithmetic Circuit SAT

[Blumberg, Thaler, Vu, Walfish, 2014]
® Protocol Sketch:

® P, and P, claim to hold an extension Z of a correct transcript W for C.
® Identify a polynomial g , :{0,1}’"**" —F (that depends on x and Z) such that:
Z extends a correct transcript &g, ,(a,b,c)=0V (a,b,c) € {0,11°¢°,

™
Sketch of 2-Prover MIP for Arithmetic Circuit SAT

[Blumberg, Thaler, Vu, Walfish, 2014]
® Protocol Sketch:

® P, and P, claim to hold an extension Z of a correct transcript W for C.
® Identify a polynomial g , :{0,1}’"**" —F (that depends on x and Z) such that:
Z extends a correct transcript <>g, ,(a,b,c)=0 VY (a,b,c) € {0,11°¢°,

® V checks this by running sum-check protocol with P, to compute

(7
0= E g:,(a,b,c).

(a,b,c)E{0,1}7 1085

™
Sketch of 2-Prover MIP for Arithmetic Circuit SAT

[Blumberg, Thaler, Vu, Walfish, 2014]
® Protocol Sketch:

® P, and P, claim to hold an extension Z of a correct transcript W for C.
® Identify a polynomial g , :{0,1}’"**" —F (that depends on x and Z) such that:
Z extends a correct transcript <>g, ,(a,b,c)=0 VY (a,b,c) € {0,11°¢°,

® V checks this by running sum-check protocol with P, to compute
(7
0= E g:,(a,b,c).
(a,b,0)€{0,1}7'8°

* To perform final check in sum-check protocol, V needs to evaluate
g.7 at arandom point. But this requires evaluating Z at a random point,

and Z only “exists” in P,’s head.
SoV asks P, for the evaluation of Z.

Soundness analysis of sum-check is valid as long as P,’s claim about Z is consistent

with a low-degree polynomial. SoV also runs a low-degree test with P, and P,.

/

e

Definition of the Key Polynomial

® Identify a polynomial g , :{0,1}’"**> — F (that depends on x and Z) such that:

Z extends a correct transcript <> g.,(a,b,c)=0 Y (a,b,c) € {0,1}3logs.

4 N
Definition of the Key Polynomial

® Identify a polynomial g , :{0,1}’"**> — F (that depends on x and Z) such that:
Z extends a correct transcript <> g (a,b,c)=0V (a,b,c) €{0,1}°*.
* Let add(a,b,c) output 1 itf (b,c¢)=(in,(a), in,(a)) and gateq is an addition gate.
* Letmult(a,b,c) output 1 ift (b,c)=(in,(a), in,(a)) and gate a is a mult gate.
* Let io(a,b,c) output 1 iff gate gis in the explicit input x and (b, ¢)=(0,0),
or if a is an output gate and b and ¢ are in—neighbors of a.

* Let/ (a)outputy, if g is an input gate,y_ ifa is an output gate, and O otherwise.

Definition of the Key Polynomial

® Identify a polynomial g , :{0,1}’"**> — F (that depends on x and Z) such that:

Z extends a correct transcript <> g (a,b,c)=0V (a,b,c) €{0,1}°*.
* Let add(a,b,c) output 1 itf (b,c¢)=(in,(a), in,(a)) and gateq is an addition gate.
* Letmult(a,b,c) output 1 ift (b,c)=(in,(a), in,(a)) and gate a is a mult gate.
* Let io(a,b,c) output 1 iff gate gis in the explicit input x and (b, ¢)=(0,0),

or if a is an output gate and b and ¢ are in—neighbors of a.

* Let/ (a)outputy, if g is an input gate,y_ ifa is an output gate, and O otherwise.

* Key Lemma: For G,y {0,1}’¢ - F defined below, W is a correct transcript
onxiff G, (a,b,c)=0 forall (a,b,c) in{0,1}°°.

G, (a,b,c):=10(a,b,c)* (I, (a)-W(a)) + add(a,b,c)(W(a)-(W(b)+W(c)) + mult(a,b,c) * (W(a)-W(b)* W(c))

Definition of the Key Polynomial

® Identify a polynomial g , :{0,1}’"**> — F (that depends on x and Z) such that:

Z extends a correct transcript <> g (a,b,c)=0V (a,b,c) €{0,1}°*.
* Let add(a,b,c) output 1 itf (b,c¢)=(in,(a), in,(a)) and gateq is an addition gate.
* Letmult(a,b,c) output 1 ift (b,c)=(in,(a), in,(a)) and gate a is a mult gate.
* Let io(a,b,c) output 1 iff gate gis in the explicit input x and (b, ¢)=(0,0),

or if a is an output gate and b and ¢ are in—neighbors of a.

* Let/ (a)outputy, if g is an input gate,y_ ifa is an output gate, and O otherwise.

* Key Lemma: For G,y {0,1}’¢ - F defined below, W is a correct transcript
onxiff G, (a,b,c)=0 forall (a,b,c) in{0,1}°°.

G, (a,b,c):=10(a,b,c)* (I, (a)-W(a)) + add(a,b,c)(W(a)-(W(b)+W(c)) + mult(a,b,c) * (W(a)-W(b)* W(c))

e So we define:

g, ,(a,b,c)= io(a,b,c)® (I,(a)-Z(a)) + ade(a,b,C)(Z(a)-(Z(b)+Z(C)) + mult(a,b,c)* (Z(a)-Z(b)* Z(c))

Costs of the 2-Prover MIP for Non-

Deterministic Circuit Evaluation

Rounds

VTime

P, Time

P, Time

log S

O(n + log* S)

O()

O(S log S)

[RRR16] and Open Questions

Another General—Purpose Doubly—

Efficient Interactive Proof

What We Really Want

* In the cloud computing scenario at the start of the talk, we really
wanted the following:

1. Vasks P to run some computer program on her data.
2. Pproves that she correctly ran the program on the data.

® V should not do much more work than read the input.

e P should not do much more work than run the program.

What We Really Want

* In the cloud computing scenario at the start of the talk, we really
wanted the following:

1. Vasks P to run some computer program on her data.
2. Pproves that she correctly ran the program on the data.
® V should not do much more work than read the input.

e P should not do much more work than run the program.

® If the program runs in time T', and space S, then P should run in time

O(T) and space O(s).

What We Really Want

* In the cloud computing scenario at the start of the talk, we really
wanted the following:

1. Vasks P to run some computer program on her data.
2. Pproves that she correctly ran the program on the data.
® V should not do much more work than read the input.

* P should not do much more work than run the program.
® If the program runs in time T', and space S, then P should run in time
O(T) and space O(s).
® The GKR protocol only achieves a linear-time for V
parallelizable programs.

What We Really Want

* In the cloud computing scenario at the start of the talk, we really
wanted the following:

1. Vasks P to run some computer program on her data.
2. Pproves that she correctly ran the program on the data.

® V should not do much more work than read the input.

* P should not do much more work than run the program.
® If the program runs in time T', and space S, then P should run in time
O(T) and space O(s).
* Unfortunately, we cannot hope for V to run in time 0 (n) for
space-intensive computations.
* If f has an interactive proof with Vruntime ¢, then f can be solved
In space 0(c).
® So we can only hope to achieve a linear-time verifier for problems
solvable in quadratic space.

What We Really Want

* In the cloud computing scenario at the start of the talk, we really
wanted the following:

1. Vasks P to run some computer program on her data.
2. Pproves that she correctly ran the program on the data.

® V should not do much more work than read the input.

* P should not do much more work than run the program.
® If the program runs in time T', and space S, then P should run in time
O(T) and space O(s).
* Unfortunately, we cannot hope for V to run in time 0 (n) for
space-intensive computations.

* If f has an interactive proof with Vruntime ¢, then f can be solved
In space 0(c).

® So we can only hope to achieve a linear-time verifier for problems
solvable in quadratic space.

®* [RRR16] come close to achieving the best we can hope for.

[RRR16]

* Let f be a problem solvable in time T and space S. Then for

any constant € > 0, f has an interactive proof where:
® Vruns in time G(Tl + T¢ - poly(s)).
e Prunsin time O (T1+g - poly(s)).

[RRR16]

* Let f be a problem solvable in time T and space S. Then for

any constant € > 0, f has an interactive proof where:
® Vruns in time 5(71 + T¢ - poly(s)).
e Pruns in time O (T1+€ - poly(s)).

® In particular, if T = poly(n) and s is a small enough

polynomial in 11, then this is a doubly-efficient interactive proof

system.

[RRR16]

* Let f be a problem solvable in time T and space S. Then for

any constant € > 0, f has an interactive proof where:
® Vruns in time 5(71 + T¢ - poly(s)).
e Pruns in time O (Tlﬂ3 - poly(s)).

® In particular, if T = poly(n) and s is a small enough

polynomial in 11, then this is a doubly-efficient interactive proof

system.

® The number of rounds is constant.

1
® More precisely, it is €Xp (E) :

Open Questions (Theory)

® Improve V’s runtime in [RRR16] from 5(7’1 + T¢ - poly(s))
to O(n + poly(s,log T))? Maybe even O(n + s - log T))?

* Improve the round complexity from eXxp (1) to poly (§)7

€

Open Questions (Theory)

® Improve V’s runtime in [RRR16] from 5(1’1 + T¢ - poly(s))
to O(n + poly(s,log T))? Maybe even O(n + s - log T))?
* Improve the round complexity from eXxp (1) to poly (é)?

>
e (Give an interactive proof for batch-verification of NP

statements’

® Under standard complexity assumptions, interactive proofs cannot

be succinct [GH98, GVWO1].

I.e., for a general NP relation, cannot do much better than just having the

prover send the NP witness to the verifier.

Open Questions (Theory)

® Improve V’s runtime in [RRR16] from 6(7’1 + T¢ - poly(s))
to O(n + poly(s,log T))? Maybe even O(n + s - log T))?
* Improve the round complexity from eXxp (1) to poly (é)?

>
e (Give an interactive proof for batch-verification of NP

statements’

® Under standard complexity assumptions, interactive proofs cannot

be succinct [GH98, GVWO1].

I.e., for a general NP relation, cannot do much better than just having the

prover send the NP witness to the verifier.

e Open: given k instances of the same NP problem, is there an

interactive proof for Verifying that the answer to all Kk instances is

YES, with communication that grows sublinearly with k?

/

A Parting Remark

e We've seen some fundamental limitations of interactive proofs.
’
e \ can’t run in linear time for space-intensive problems.
° They cannot be succinct.
° They are interactive.

° They are not publicly verifiable.

A Parting Remark

* We’ve seen some fundamental limitations of interactive prootfs.
® V can’t run in linear time for space-intensive problems.
® They cannot be succinct.
® They are interactive.
® They are not publicly veritiable.

* All of these limitations can be addressed by combining
interactive proofs with cryptography.
® This yields succinct non-interactive arguments.
® See tomorrow’s talks.

® There are many practically—relevant open questions about the

best way to combine interactive proofs with cryptography.

THANK YOU!

A Simple Triangles Protocol with Sub-

Optimal Prover Time

Counting Triangles

* Input: A € {0,1}'**" representing the adjacency matrix of a graph.
, 1
® Desired Output: P : Z(i,j,k)e[n]3 AijAjkAik .

* Fastest known algorithm runs in matrix-multiplication time, currently about
2.37
n .

Counting Triangles

* Input: A € {0,1}'**" representing the adjacency matrix of a graph.

1

® Desired Output: p Z(i,j,k)e[n]3 AijAjkAik :

® The Protocol:
View A as a function mapping {O,l}log nX{O,l}log Mto F.
Recall that A denotes the multilinear extension of A.

Define the polynomial g(X, Y,Z) = A(X, Y) A(Y, Z) A(X, Z)
Apply the sum-check protocol to g to compute:

2.

(a,b,c) €{0,1)3logn

g(a,b,c)

Counting Triangles

* Input: A € {0,1}'**" representing the adjacency matrix of a graph.
® Desired Output: % y Z(i,j,k)e[n]3 AijAjkAik :
® The Protocol:

® View A as a function mapping {0,1}10g nX{O,l}log Mto F.

® Recall that A denotes the multilinear extension of A.

® Detine the polynomial g(X, Y,Z) = A(X, Y) A(Y, Z) A(X, Z)

* Apply the sum-check protocol to g to compute:

z g(a,b,c)

(a,b,c) €{0,1}3l0gn
® Costs:
¢ Total communication is O (log TL) ,V runtime is O (nz), P runtime is O (TLB).

® V’s runtime dominated by evaluating:

_ g(ry,12,13) = A(Tp r2) A(Tz; 13) A(T1; 13).

