
Justin Thaler
Georgetown University

A Crash Course on Fast Interactive 
Proofs



Interactive Proofs
� Prover P and Verifier V.

� P solves problem, tells V the answer.
� Then P and V have a conversation.
� P’s goal: convince V the answer is correct.

� Requirements: 
� 1. Completeness: an honest P can convince V

to accept.
� 2. Soundness: V will catch a lying P with high 

probability. 
This must hold even if P is computationally unbounded 
and trying to trick V into accepting the incorrect 
answer.



Interactive Proofs
� Prover P and Verifier V.

� P solves problem, tells V the answer.
� Then P and V have a conversation.
� P’s goal: convince V the answer is correct.

� Requirements: 
� 1. Completeness: an honest P can convince V

to accept.
� 2. Soundness: V will catch a lying P with high 

probability. 
� This must hold even if P is computationally 

unbounded and trying to trick V into accepting the 
incorrect answer.



Interactive Proof Techniques: 
Preliminaries



Schwartz-Zippel Lemma
� Recall FACT: Let ! ≠ " be univariate polynomials over field 

#, of degree at most %. Then Pr(∈# ! * = " * ≤ -
# .

The Schwartz-Zippel lemma is a multivariate generalization:
Let ! ≠ " be ℓ-variate polynomials of total degree at most %. Then 

Pr0∈#ℓ ! 0 = " 0 ≤ -
# .

Total degree refers to the maximum sum of degrees of all variables 
in any term. E.g., 12313 + 1213 has total degree 3.
is not.



Schwartz-Zippel Lemma
� Recall FACT: Let ! ≠ " be univariate polynomials over field 

#, of degree at most %. Then Pr(∈# ! * = " * ≤ -
# .

� The Schwartz-Zippel lemma is a multivariate 
generalization:
� Let ! ≠ " be ℓ-variate polynomials over field # of total degree at 

most %. Then Pr(∈#ℓ ! * = " * ≤ -
# .

Total degree refers to the maximum sum of degrees of all variables 
in any term. E.g., 01202 + 0102 has total degree 3.
is not.



Schwartz-Zippel Lemma
� Recall FACT: Let ! ≠ " be univariate polynomials over field 

#, of degree at most %. Then Pr(∈# ! * = " * ≤ -
# .

� The Schwartz-Zippel lemma is a multivariate 
generalization:
� Let ! ≠ " be ℓ-variate polynomials over field # of total degree at 

most %. Then Pr(∈#ℓ ! * = " * ≤ -
# .

� “Total degree” refers to the maximum sum of degrees of all 
variables in any term. E.g., 01202 + 0102 has total degree 3.



Low-Degree and Multilinear Extensions
� Definition [Extensions]. Given a function !: {0,1}ℓ→ *, 

a ℓ-variate polynomial + over F is said to extend ! if ! , =
+(,) for all , ∈ {0,1}ℓ.

� Definition [Multilinear Extensions]. Any function 
!: {0,1}ℓ→ * has a unique multilinear extension (MLE),   
denoted 2!.
Multilinear means the polynomial has degree at most 1 in each 
variable.
(1 − ,4)(1 − ,5 ) is multilinear, ,4(,5)5 is not.



Low-Degree and Multilinear Extensions
� Definition [Extensions]. Given a function !: {0,1}ℓ→ *, 

a ℓ-variate polynomial + over F is said to extend ! if ! , =
+(,) for all , ∈ {0,1}ℓ.

� Definition [Multilinear Extensions]. Any function 
!: {0,1}ℓ→ * has a unique multilinear extension (MLE),   
denoted 2!.
� Multilinear means the polynomial has degree at most 1 in each 

variable.
� (1 − ,4)(1 − ,5 ) is multilinear, ,45,5 is not.



1 2

8 10

f : {0,1}2 → F

0

1

0 1



1 2

8 10

f :F2 → F~

3 4

12 14

15 18

22 26

21 24

30 34

29 34

36 42

39 44

48 54

5 6

16 18

27 30

38 42

49 56

60 68

0

1

0 1

2

3

4

5

2 3 4 5



Low-Degree and Multilinear Extensions
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function 
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time 
algorithm for evaluating 1# , .
� Assuming field addition and multiplication operations take one 

time step.

The following slides prove a slightly weaker .(ℓ 3 2ℓ) time 
bound.

Note:  If # is “structured”, there may extensions 4 for which 
4(,) can be evaluated much faster than .(2ℓ)-time.
Can view as error



Low-Degree and Multilinear Extensions
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function 
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time 
algorithm for evaluating 1# , .

� The following slides prove a slightly weaker .(ℓ 3 2ℓ) time 
bound.

Note:  If # is “structured”, there may extensions 4 for which 
4(,) can be evaluated much faster than .(2ℓ)-time.
Can view as error



A Useful Expression for the MLE
� For any ! ∈ {0,1}ℓ, define )*: {0,1}ℓ→ - via: 

)* ! = 1 and )* / = 0 for all / ≠ !.
Fact 1: For any 2 ∈ {0,1}ℓ, 3(2) = ∑*∈{7,8}ℓ 3 ! 9 )* 2 .

Lemma (Lagrange Interpolation): Let 3: {0,1}ℓ→ -. Then as 
formal polynomials, :3(;) = ∑*∈{7,8}ℓ 3 ! 9 :)* ; .
Proof: Combine Fact 1 with uniqueness of the MLE.

Fact 2: (Explicit Expression for Lagrange Basis Polynomials) 
:)* ; = ∏=>8

ℓ (;=!= + (1 − ;=)(1 − !=)).



A Useful Expression for the MLE
� For any ! ∈ {0,1}ℓ, define )*: {0,1}ℓ→ - via: 

)* ! = 1 and )* / = 0 for all / ≠ !.
� Fact 1: For any 2 ∈ {0,1}ℓ, 3(2) = ∑*∈{7,8}ℓ 3 ! 9 )* 2 .

Lemma (Lagrange Interpolation): Let 3: {0,1}ℓ→ -. Then as 
formal polynomials, :3(;) = ∑*∈{7,8}ℓ 3 ! 9 :)* ; .
Proof: Combine Fact 1 with uniqueness of the MLE.

Fact 2: (Explicit Expression for Lagrange Basis Polynomials) 
:)* ; = ∏=>8

ℓ (;=!= + (1 − ;=)(1 − !=)).



A Useful Expression for the MLE
� For any ! ∈ {0,1}ℓ, define )*: {0,1}ℓ→ - via: 

)* ! = 1 and )* / = 0 for all / ≠ !.
� Fact 1: For any 2 ∈ {0,1}ℓ, 3(2) = ∑*∈{7,8}ℓ 3 ! 9 )* 2 .

� Lemma (Lagrange Interpolation): Let 3: {0,1}ℓ→ -. Then 
as formal polynomials, :3(;) = ∑*∈{7,8}ℓ 3 ! 9 :)* ; .

� Proof: The RHS is multilinear. The lemma then follows from Fact 
1 and uniqueness of the MLE.

Fact 2: (Explicit Expression for Lagrange Basis Polynomials) 
:)* ; = ∏=>8

ℓ (;=!= + (1 − ;=)(1 − !=)).



A Useful Expression for the MLE
� For any ! ∈ {0,1}ℓ, define )*: {0,1}ℓ→ - via: 

)* ! = 1 and )* / = 0 for all / ≠ !.
� Fact 1: For any 2 ∈ {0,1}ℓ, 3(2) = ∑*∈{7,8}ℓ 3 ! 9 )* 2 .

� Lemma (Lagrange Interpolation): Let 3: {0,1}ℓ→ -. Then 
as formal polynomials, :3(;) = ∑*∈{7,8}ℓ 3 ! 9 :)* ; .

� Proof: The RHS is multilinear. The lemma then follows from Fact 
1 and uniqueness of the MLE.

� Fact 2: (Explicit Expression for Lagrange Basis Polynomials) 
:)* ; = ∏=>8

ℓ (;=!= + (1 − ;=)(1 − !=)).



Evaluating The MLE At Any Point, Efficiently
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function 
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time 
algorithm for evaluating 1# , .

Proof of slightly weaker .(ℓ 3 2ℓ) time bound: 
Recall 1# , = ∑6∈ 7,8 ℓ # 9 3 1:6 , .
For each 9 ∈ 0,1 ℓ, 1:6 , can be computed with .(ℓ) field 
operations.

1:6 , =;
<=8

ℓ
(,<9< + (1 − ,<)(1 − 9<)).

Can reduce to time .(2ℓ) via dynamic programming.



Evaluating The MLE At Any Point, Efficiently
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function 
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time 
algorithm for evaluating 1# , .

� Proof of slightly weaker .(ℓ 3 2ℓ) time bound: 
Recall 1# , = ∑6∈ 7,8 ℓ # 9 3 1:6 , .
For each 9 ∈ 0,1 ℓ, 1:6 , can be computed with .(ℓ) field 
operations.

1:6 , =;
<=8

ℓ
(,<9< + (1 − ,<)(1 − 9<)).

Can reduce to time .(2ℓ) via dynamic programming.



Evaluating The MLE At Any Point, Efficiently
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function 
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time 
algorithm for evaluating 1# , .

� Proof of slightly weaker .(ℓ 3 2ℓ) time bound: 
� Recall 1# , = ∑6∈ 7,8 ℓ # 9 3 1:6 , .
For each 9 ∈ 0,1 ℓ, 1:6 , can be computed with .(ℓ) field 
operations.

1:6 , = ∏<=8
ℓ (,<9< + (1 − ,<)(1 − 9<)).

Can reduce to time .(2ℓ) via dynamic programming.



Evaluating The MLE At Any Point, Efficiently
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function 
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time 
algorithm for evaluating 1# , .

� Proof of slightly weaker .(ℓ 3 2ℓ) time bound: 
� Recall 1# , = ∑6∈ 7,8 ℓ # 9 3 1:6 , .
� For each 9 ∈ 0,1 ℓ, 1:6 , can be computed with .(ℓ) field 

operations.
� 1:6 , = ∏<=8

ℓ (,<9< + (1 − ,<)(1 − 9<)).

Can reduce to time .(2ℓ) via dynamic programming.



Evaluating The MLE At Any Point, Efficiently
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function 
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time 
algorithm for evaluating 1# , .

� Proof of slightly weaker .(ℓ 3 2ℓ) time bound: 
� Recall 1# , = ∑6∈ 7,8 ℓ # 9 3 1:6 , .
� For each 9 ∈ 0,1 ℓ, 1:6 , can be computed with .(ℓ) field 

operations.
� 1:6 , = ∏<=8

ℓ (,<9< + (1 − ,<)(1 − 9<)).

� Can reduce to time .(2ℓ) via dynamic programming.



The Sum-Check Protocol [LFKN90]



Sum-Check Protocol [LFKN90]
� Input: V given oracle access to a ℓ-variate polynomial "

over field #.
� Goal: compute the quantity: 

$
%&∈{),+}

$
%-∈{),+}

… $
%ℓ∈{),+}

"(0+, … , 0ℓ).



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P. 
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ).



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P. 
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ). 

Costs one oracle query for V.



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P. 
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ). 

Costs one oracle query for V.



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P. 
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ). 

Costs one oracle query for V.



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� If this check passes, it is safe for V to believe that !" is the correct answer, so long  

as V believes that 4"= 6".
� How to check this? Just check that 4" and 6" agree at a random point <".
Note: V can compute 4"(<") directly from P’s first message, but not 6"(<").

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ>" <ℓ>" = /(<", … , <ℓ>", 0) + /(<", … , <ℓ>", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ>", 5ℓ). V checks 
that 4ℓ>"(<ℓ>") = 4ℓ 0 + 4ℓ 1 .
V picks at random, checks that /( ). 



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� If this check passes, it is safe for V to believe that !" is the correct answer, so long  

as V believes that 4"= 6".
� How to check this? Just check that 4" and 6" agree at a random point <".
� V can compute 4"(<") directly from P’s first message, but not 6"(<").

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ>" <ℓ>" = /(<", … , <ℓ>", 0) + /(<", … , <ℓ>", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ>", 5ℓ). V checks 
that 4ℓ>"(<ℓ>") = 4ℓ 0 + 4ℓ 1 .
V picks at random, checks that /( ). 



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� V picks <" at random from = and sends <" to P. 
� Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ). 

Costs one oracle query for V.



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� V picks <" at random from = and sends <" to P. 
� Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ). 

Costs one oracle query for V.



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� V picks <" at random from = and sends <" to P. 
� Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
� Round ℓ (Final round): P sends univariate polynomial 4ℓ(5ℓ) claimed to equal 

6ℓ ∶= /(<", … , <ℓ@", 5ℓ). 
� V checks that 4ℓ@"(<ℓ@") = 4ℓ 0 + 4ℓ 1 .
� V picks <ℓ at random, and needs to check that 4ℓ <ℓ = /(<", … , <ℓ). 

� No need for more rounds. V can perform this check with one oracle query.



Analysis of the Sum-Check Protocol



Completeness and Soundness
� Completeness holds by design: If P sends the prescribed 

messages, then all of V’s checks will pass.
Soundness: If !" ≠ ∑ %&,…,%ℓ ∈ +," ℓ ,(.", … , .ℓ), then V 

rejects with probability at least 1- ℓ01|3| , where 4 is the total 

degree of ,.
Proof is by induction on the number of variables ℓ.



Completeness and Soundness
� Completeness holds by design: If P sends the prescribed 

messages, then all of V’s checks will pass.
� Soundness: If P does not send the prescribed messages, 

then V rejects with probability at least 1- ℓ"#|%| , where ' is 

the maximum degree of ( in any variable.
� Proof is by induction on the number of variables ℓ.



Costs of the Sum-Check Protocol
� Total communication is ! "ℓ field elements. 

� P sends ℓ messages, each a univariate polynomial of degree at 
most ".V sends ℓ − 1 messages, each consisting of one field 
element.

V’s runtime is:
! "' + [*+,- .-/0+.-" *1 -'2302*- 4 2* 15- 61+5*] .

P’s runtime is at most:
! " 8 2: 8 [*+,- .-/0+.-" *1 -'2302*- 4 2* 15- 61+5*] .



Costs of the Sum-Check Protocol
� Total communication is ! "ℓ field elements. 

� P sends ℓ messages, each a univariate polynomial of degree at 
most ".V sends ℓ − 1 messages, each consisting of one field 
element.

� V’s runtime is:
! "ℓ + [)*+, -,./*-," )0 ,123/2), 4 2) 05, 60*5)] .

P’s runtime is at most:
! " 8 2: 8 [)*+, -,./*-," )0 ,123/2), 4 2) 05, 60*5)] .



Costs of the Sum-Check Protocol
� Total communication is ! "ℓ field elements. 

� P sends ℓ messages, each a univariate polynomial of degree at 
most ".V sends ℓ − 1 messages, each consisting of one field 
element.

� V’s runtime is:
! "ℓ + [)*+, -,./*-," )0 ,123/2), 4 2) 05, 60*5)] .

� P’s runtime is at most:
! " 8 2ℓ 8 [)*+, -,./*-," )0 ,123/2), 4 2) 05, 60*5)] .



An Application of the Sum-Check Protocol

A Doubly-Efficient Interactive Proof for 
Matrix Multiplication



[Thaler13]: Optimal IP For n x n MatMult
� Goal: Given !×! input matrices #, % over field &, compute 
' = # ) %.



[Thaler13]: Optimal IP For n x n MatMult
� Goal: Given !×! input matrices #, % over field &, compute 
' = # ) %.

� P simply determines the “right answer”, and then P does 
*(!,) extra work to prove its correctness.

� Optimal runtime up to leading constant assuming no *(!,)
time algorithm for MatMult.

� V runs in linear time (which is also optimal).



[Thaler13]: Optimal IP For n x n MatMult
� Goal: Given !×! input matrices #, % over field &, compute 
' = # ) %.

� P simply determines the “right answer”, and then P does 
*(!,) extra work to prove its correctness.

� Optimal runtime up to leading constant assuming no *(!,)
time algorithm for MatMult.

� V runs in linear time (which is also optimal).

Problem 
Size

Naïve 
MatMult

Time

Additional P
time

V Time Rounds Protocol  
Comm

1024 x 1024 2.17 s 0.03 s 0.09 s 11 264 bytes

2048 x 2048 18.23 s 0.13 s 0.30 s 12 288 bytes



Comparison to Freivalds’ Algorithm
� Freivalds (MFCS, 1979) gave the following protocol for 

MatMult. To check ! " # = %:
� V picks random vector &.
� Accepts if ! " #& = %&.
� No extra work for P, '()*) time for V.

Our big win: verifying algorithms that invoke MatMult, but 
aren’t really interested in matrices.

E.g. Best-known graph diameter algorithms square the adjacency 
matrix, but are only interested in a single number.
Total communication for us is O(log2 n), Freivalds’ is Ω(n2).

Next talk gives non-interactive protocols for more complicated 
linear-algebraic problems.



Comparison to Freivalds’ Algorithm
� Freivalds (MFCS, 1979) gave the following protocol for 

MatMult. To check ! " # = %:
� V picks random vector &.
� Accepts if ! " #& = %&.
� No extra work for P, '()*) time for V.

� Our big win: verifying algorithms that invoke MatMult, but 
aren’t really interested in matrices.
� E.g., Best-known subgraph-counting algorithms square the 

adjacency matrix, but are only interested in a single number.
� Total communication for us is '(log )), Freivalds’ is Ω )* .

Next talk gives non-interactive protocols for more complicated 
linear-algebraic problems.



MatMult Protocol: Technical Details



Notation
� Given !×! input matrices #, % over field &, interpret #

and % as functions mapping {0,1}*+, - × {0,1}*+, - to &
via # ./, … , .*+, -, 1/, … , 1*+, - = #34.

� Let 6 = # 7 % denote the true answer.

� Let 8#, 9% denote the multilinear extensions of the functions #
and %.



MatMult Protocol
� P sends a matrix ! claimed to equal " = $ % &.
V evaluates '! at a random point (), (+ ∈ -./0 1 ×-./0 1.
By Schwartz-Zippel: it is safe for V to believe that ! equals the 
correct answer " as long as '! (), (+ = 4" (), (+ .
Goal becomes: compute 4" (), (+



MatMult Protocol
� P sends a matrix ! claimed to equal " = $ % &.
� V evaluates '! at a random point (), (+ ∈ -./0 1 ×-./0 1.
By Schwartz-Zippel: it is safe for V to believe that ! equals the 
correct answer " as long as '! (), (+ = 4" (), (+ .
Goal becomes: compute 4" (), (+



MatMult Protocol
� P sends a matrix ! claimed to equal " = $ % &.
� V evaluates '! at a random point (), (+ ∈ -./0 1 ×-./0 1.
� By Schwartz-Zippel: it is safe for V to believe that ! equals the 

correct answer " as long as '! (), (+ = 4" (), (+ .
Goal becomes: compute 4" (), (+



MatMult Protocol
� P sends a matrix ! claimed to equal " = $ % &.
� V evaluates '! at a random point (), (+ ∈ -./0 1 ×-./0 1.
� By Schwartz-Zippel: it is safe for V to believe that ! equals the 

correct answer " as long as '! (), (+ = 4" (), (+ .
� Goal becomes: compute 4" (), (+



MatMult Protocol
� Goal: Compute !" #$, #& . 
For Boolean vectors ', ( ∈ {0,1}./0 1, clearly:

" ', ( = ∑4∈{5,6}789 : ; ', 4 <(4, ()
This implies the following polynomial identity:

!" ', ( = ∑4∈{5,6}789 : !; ', 4 ?<(4, ().
So V applies sum-check protocol to compute

!" #$, #& = ∑@A∈{5,6} …∑@789 :∈{5,6} C(D6, … , D./0 1), 
where:

C E := !; #$, E !; E, #& .



MatMult Protocol
� Goal: Compute !" #$, #& . 
� For Boolean vectors ', ( ∈ {0,1}./0 1, clearly:

" ', ( = ∑4∈{5,6}789 : ; ', 4 <(4, ()
This implies the following polynomial identity:

!" ', ( = ∑4∈{5,6}789 : !; ', 4 ?<(4, ().
So V applies sum-check protocol to compute

!" #$, #& = ∑@A∈{5,6} …∑@789 :∈{5,6} C(D6, … , D./0 1), 
where:

C E := !; #$, E !; E, #& .



MatMult Protocol
� Goal: Compute !" #$, #& . 
� For Boolean vectors ', ( ∈ {0,1}./0 1, clearly:

" ', ( = ∑4∈{5,6}789 : ; ', 4 <(4, ()
� This implies the following polynomial identity:

!" ', ( = ∑4∈{5,6}789 : !; ', 4 ?<(4, ().
So V applies sum-check protocol to compute

!" #$, #& = ∑@A∈{5,6} …∑@789 :∈{5,6} C(D6, … , D./0 1), 
where:

C E := !; #$, E !; E, #& .



MatMult Protocol
� Goal: Compute !" #$, #& . 
� For Boolean vectors ', ( ∈ {0,1}./0 1, clearly:

" ', ( = ∑4∈{5,6}789 : ; ', 4 <(4, ()
� This implies the following polynomial identity:

!" ', ( = ∑4∈{5,6}789 : !; ', 4 ?<(4, ().
� So V applies sum-check protocol to compute

!" #$, #& = ∑@A∈{5,6} …∑@789 :∈{5,6} C(D6, … , D./0 1), 
where:

C E := !; #$, E ?< E, #& .



Making V Fast
� At end of sum-check, V must evaluate

! "# = %& "', "# )* "#, "+ .
� Suffices to evaluate %& "', "# and )* "#, "+ .



Making V Fast
� At end of sum-check, V must evaluate

! "# = %& "', "# )* "#, "+ .
� Suffices to evaluate %& "', "# and )* "#, "+ .
� Can be done in ,(./) time by “Fast Evaluation of MLE” 

lemma in preliminaries. 



Making P Fast: A First Attempt
� Recall: we’re using sum-check to compute 
∑"#∈{&,(} …∑"+,- .∈{&,(} /(1(, … , 1234 5). 

� Round 7: P sends quadratic polynomial 89(:9) claimed to equal: 
∑";<#∈{&,(} …∑"+,- .∈{&,(} /(=>,(, … , =>,9?(, :9, 19@(, … , 1234 5)
� Suffices for P to specify 89 0 , 89(1), 89(2)
Thus: Enough to evaluate / at all points of the form 

(=>,(, … , =>,9?(, 0,1,2 , 19@(, … , 1234 5): 19@(, … , 1234 5 ∈ {0,1}234 5 ?9

This is E(5F;) points.

Recall GH and IJcan each be evaluated at any input in E KF time, and hence 
so can /.

So P can compute 89 in E 5
F; L K

F = E K>/29 time. 



Making P Fast: A First Attempt
� Recall: we’re using sum-check to compute 
∑"#∈{&,(} …∑"+,- .∈{&,(} /(1(, … , 1234 5). 

� Round 7: P sends quadratic polynomial 89(:9) claimed to equal: 
∑";<#∈{&,(} …∑"+,- .∈{&,(} /(=>,(, … , =>,9?(, :9, 19@(, … , 1234 5)
� Suffices for P to specify 89 0 , 89(1), 89(2)
� Thus: Enough for P to evaluate / at all points of the form 

(=>,(, … , =>,9?(, 0,1,2 , 19@(, … , 1234 5): 19@(, … , 1234 5 ∈ {0,1}234 5 ?9

This is E(5F;) points.

Recall GH and IJcan each be evaluated at any input in E KF time, and hence 
so can /.

So P can compute 89 in E 5
F; L K

F = E K>/29 time. 



Making P Fast: A First Attempt
� Recall: we’re using sum-check to compute 
∑"#∈{&,(} …∑"+,- .∈{&,(} /(1(, … , 1234 5). 

� Round 7: P sends quadratic polynomial 89(:9) claimed to equal: 
∑";<#∈{&,(} …∑"+,- .∈{&,(} /(=>,(, … , =>,9?(, :9, 19@(, … , 1234 5)
� Suffices for P to specify 89 0 , 89(1), 89(2)
� Thus: Enough for P to evaluate / at all points of the form 

(=>,(, … , =>,9?(, 0,1,2 , 19@(, … , 1234 5): 19@(, … , 1234 5 ∈ {0,1}234 5 ?9

� This is E(5F;) points.

Recall GH and IJcan each be evaluated at any input in E KF time, and hence 
so can /.

So P can compute 89 in E 5
F; L K

F = E K>/29 time. 



Making P Fast: A First Attempt
� Recall: we’re using sum-check to compute 
∑"#∈{&,(} …∑"+,- .∈{&,(} /(1(, … , 1234 5). 

� Round 7: P sends quadratic polynomial 89(:9) claimed to equal: 
∑";<#∈{&,(} …∑"+,- .∈{&,(} /(=>,(, … , =>,9?(, :9, 19@(, … , 1234 5)
� Suffices for P to specify 89 0 , 89(1), 89(2)
� Thus: Enough for P to evaluate / at all points of the form 

(=>,(, … , =>,9?(, 0,1,2 , 19@(, … , 1234 5): 19@(, … , 1234 5 ∈ {0,1}234 5 ?9

� This is E(5F;) points.

� Recall GH and IJ can each be evaluated at any input in E KF time, and 
hence so can /.

� So P can compute 89 in E 5
F; L K

F = E K>/29 time. 



Making P Fast: A First Attempt
� Recall: we’re using sum-check to compute 
∑"#∈{&,(} …∑"+,- .∈{&,(} /(1(, … , 1234 5). 

� Round 7: P sends quadratic polynomial 89(:9) claimed to equal: 
∑";<#∈{&,(} …∑"+,- .∈{&,(} /(=>,(, … , =>,9?(, :9, 19@(, … , 1234 5)
� Suffices for P to specify 89 0 , 89(1), 89(2)
� Thus: Enough for P to evaluate / at all points of the form 

(=>,(, … , =>,9?(, 0,1,2 , 19@(, … , 1234 5): 19@(, … , 1234 5 ∈ {0,1}234 5 ?9

� This is E(5F;) points.

� Recall GH and IJ can each be evaluated at any input in E KF time, and 
hence so can /.

� Over all rounds, this is E ∑9 K>/ 29 = E K> total time.



Making P Fast: Second Attempt
� Recall: Enough to evaluate ! at all points of the form: 
" = (%&,(, … , %&,*+(, 0,1,2 , /*0(, … , /123 4): /*0(, … , /123 4 ∈ {0,1}

123 4 +*

� Already showed: how to do this in : ;&/2* time. 
� Can we improve this to : ;= time? 

Key observation each entry >*? contributes to @> AB, " for less than 3 tuples " of the 
above form.

Similarly entry C*? contributes to DC ", AE for less than 3 tuples " of the above form.

Recall: @> AB, " = ∑
(*,?)∈ G,( H IJK L > M, N O @P(*,?) AB, " , where

@P(*,?) AB, " = @P* AB @P? " = @P* AB OQ

RS(

ℓ

(NRUR + (1 − NR)(1 − UR)).

Recall that for Y ≥ M + 1, the Y’th entry of " is /R ∈{0,1}. 

If /R ≠ NR, then @P? " = 0, so @P(*,?) AB, " = 0.
i.e., > M, N only contributes to @> AB, " if N*0(, … , N123 4 = (/*0(, … , /123 4)



Making P Fast: Second Attempt
� Recall: Enough to evaluate ! at all points of the form: 
" = (%&,(, … , %&,*+(, 0,1,2 , /*0(, … , /123 4): /*0(, … , /123 4 ∈ {0,1}

123 4 +*

� Already showed: how to do this in : ;&/2* time. 
� Can we improve this to : ;= time? 

� Key observation each entry >*? contributes to @> AB, " for less than 3 tuples " of 
the above form.
� Similarly entry C*? contributes to DC ", AE for less than 3 tuples " of the above form.

Recall: @> AB, " = ∑
(*,?)∈ G,( H IJK L > M, N O @P(*,?) AB, " , where

@P(*,?) AB, " = @P* AB @P? " = @P* AB OQ

RS(

ℓ

(NRUR + (1 − NR)(1 − UR)).

Recall that for Y ≥ M + 1, the Y’th entry of " is /R ∈{0,1}. 

If /R ≠ NR, then @P? " = 0, so @P(*,?) AB, " = 0.
i.e., > M, N only contributes to @> AB, " if N*0(, … , N123 4 = (/*0(, … , /123 4)



Making P Fast: Second Attempt
� Recall: Enough to evaluate ! at all points of the form: 
" = (%&,(, … , %&,*+(, 0,1,2 , /*0(, … , /123 4): /*0(, … , /123 4 ∈ {0,1}

123 4 +*

� Already showed: how to do this in : ;&/2* time. 
� Can we improve this to : ;= time? 

� Key observation each entry >*? contributes to @> AB, " for less than 3 tuples " of 
the above form.
� Similarly entry C*? contributes to DC ", AE for less than 3 tuples " of the above form.

� Recall: @> AB, " = ∑
(*,?)∈ G,( H IJK L > M, N O @P(*,?) AB, " , where

@P(*,?) AB, " = @P* AB @P? " = @P* AB OQ

RS(

ℓ

(NRUR + (1 − NR)(1 − UR)).

Recall that for Y ≥ M + 1, the Y’th entry of " is /R ∈{0,1}. 

If /R ≠ NR, then @P? " = 0, so @P(*,?) AB, " = 0.
i.e., > M, N only contributes to @> AB, " if N*0(, … , N123 4 = (/*0(, … , /123 4)



Making P Fast: Second Attempt
� Recall: Enough to evaluate ! at all points of the form: 
" = (%&,(, … , %&,*+(, 0,1,2 , /*0(, … , /123 4): /*0(, … , /123 4 ∈ {0,1}

123 4 +*

� Already showed: how to do this in : ;&/2* time. 
� Can we improve this to : ;= time? 

� Key observation each entry >*? contributes to @> AB, " for less than 3 tuples " of 
the above form.
� Similarly entry C*? contributes to DC ", AE for less than 3 tuples " of the above form.

� Recall: @> AB, " = ∑
(*,?)∈ G,( H IJK L > M, N O @P(*,?) AB, " , where

@P(*,?) AB, " = @P* AB @P? " = @P* AB OQ

RS(

ℓ

(NRUR + (1 − NR)(1 − UR)).

� For Y ≥ M + 1, the Y’th entry of " is /R ∈{0,1}. 

� If /R ≠ NR, then @P? " = 0, so @P(*,?) AB, " = 0.
i.e., > M, N only contributes to @> AB, " if N*0(, … , N123 4 = (/*0(, … , /123 4)



Making P Fast: Second Attempt
� Recall: Enough to evaluate ! at all points of the form: 
" = (%&,(, … , %&,*+(, 0,1,2 , /*0(, … , /123 4): /*0(, … , /123 4 ∈ {0,1}

123 4 +*

� Already showed: how to do this in : ;&/2* time. 
� Can we improve this to : ;= time? 

� Key observation each entry >*? contributes to @> AB, " for less than 3 tuples " of 
the above form.
� Similarly entry C*? contributes to DC ", AE for less than 3 tuples " of the above form.

� Recall: @> AB, " = ∑
(*,?)∈ G,( H IJK L > M, N O @P(*,?) AB, " , where

@P(*,?) AB, " = @P* AB @P? " = @P* AB OQ

RS(

ℓ

(NRUR + (1 − NR)(1 − UR)).

� For Y ≥ M + 1, the Y’th entry of " is /R ∈{0,1}. 

� If /R ≠ NR, then @P? " = 0, so @P(*,?) AB, " = 0.
� i.e., > M, N only contributes to @> AB, " if N*0(, … , N123 4 = (/*0(, … , /123 4)



Making P Fast: Second Attempt
� Summary: In round !, P must evaluate " at #(%&') points of a 

special form (trailing entries are Boolean).

� Each matrix entry )*+, ,*+ contributes to only at most three
of these evaluations. 

� So P can run in #(-&) time per round, or #(-& log -) time 
across all #(log -) rounds.



Making P Fast: Third Attempt
� With care: can bring P’s time down to ! "# across all rounds.
� Key idea: Reuse work across rounds.

� If two matrix index pairs $, & and ($+, &+) in {0,1}123 4×
{0,1}123 4 agree in their last 6 bits, then 7$& and 7$+&+ contribute to 
the same points 8 in rounds 6 and up.

� Can treat $, & and $′, &′ as a single entity thereafter.

� Only O "/2= , entities of interest in round 6. 
� Total work across all rounds is proportional to 

n / 2k
1≤k≤logn
∑ = 2n.



Details of Third Attempt
� !" #$, #& = ∑(*,+)∈ .,/ 0 123 4 " 5, 6 7 !8(*,+) #$, #&
where !89 : = ∏*</

ℓ (:*>* + (1 − :*)(1 − >*)).
Consider two indices C, D and (CH, DH) that differ in only their first 
bit, e.g., C, D = 00…0 and CH, DH =10…0.
Then the products defining !8(C,D) and !8(CH,DH) are the same except 
for the first term.

For !8(C,D)(#$, #&) the first term is I/,/ 7 0 + (1 − I/,/) 7 1 = 1 − I/,/ .
For !8(CH,DH)(#$, #&) the first term is I/,/ 7 1 + (1 − I/,/) 7 0 = I/,/.

Once the first variable I/,/ is bound to a fixed value :/,/ by the 
MatMult protocol, this difference is fixed.

i.e., no need for P to remember both " C, D and " C′, D′ .
Suffices just to remember 1 − :/,/ " C, D + :/,/" C′, D′ .



Details of Third Attempt
� !" #$, #& = ∑(*,+)∈ .,/ 0 123 4 " 5, 6 7 !8(*,+) #$, #&
where !89 : = ∏*</

ℓ (:*>* + (1 − :*)(1 − >*)).
� Consider two indices C, D and (CH, DH) that differ in only their 

first bit, e.g., C, D = 00…0 and CH, DH =10…0.
Then the products defining !8(C,D) and !8(CH,DH) are the same except 
for the first term.

For !8(C,D)(#$, #&) the first term is I/,/ 7 0 + (1 − I/,/) 7 1 = 1 − I/,/ .
For !8(CH,DH)(#$, #&) the first term is I/,/ 7 1 + (1 − I/,/) 7 0 = I/,/.

Once the first variable I/,/ is bound to a fixed value :/,/ by the 
MatMult protocol, this difference is fixed.

i.e., no need for P to remember both " C, D and " C′, D′ .
Suffices just to remember 1 − :/,/ " C, D + :/,/" C′, D′ .



Details of Third Attempt
� !" #$, #& = ∑(*,+)∈ .,/ 0 123 4 " 5, 6 7 !8(*,+) #$, #&
where !89 : = ∏*</

ℓ (:*>* + (1 − :*)(1 − >*)).
� Consider two indices C, D and (CH, DH) that differ in only their 

first bit, e.g., C, D = 00…0 and CH, DH =10…0.
� Then the products defining !8(C,D) and !8(CH,DH) are the same except 

for the first term.
� For   !8(C,D)(#$, #&) the first term is I/,/ 7 0 + (1 − I/,/) 7 1 = 1 − I/,/ .
� For !8(CH,DH)(#$, #&) the first term is I/,/ 7 1 + (1 − I/,/) 7 0 = I/,/.

Once the first variable I/,/ is bound to a fixed value :/,/ by the 
MatMult protocol, this difference is fixed.

i.e., no need for P to remember both " C, D and " C′, D′ .
Suffices just to remember 1 − :/,/ " C, D + :/,/" C′, D′ .



Details of Third Attempt
� !" #$, #& = ∑(*,+)∈ .,/ 0 123 4 " 5, 6 7 !8(*,+) #$, #&
where !89 : = ∏*</

ℓ (:*>* + (1 − :*)(1 − >*)).
� Consider two indices C, D and (CH, DH) that differ in only their 

first bit, e.g., C, D = 00…0 and CH, DH =10…0.
� Then the products defining !8(C,D) and !8(CH,DH) are the same except 

for the first term.
� For !8(C,D)(#$, #&) the first term is I/,/ 7 0 + (1 − I/,/) 7 1 = 1 − I/,/ .
� For !8(CH,DH)(#$, #&) the first term is I/,/ 7 1 + (1 − I/,/) 7 0 = I/,/.

� Once the first variable I/,/ is bound to a fixed value :/,/ by the 
MatMult protocol, this difference is fixed.
� i.e., no need for P to remember both " C, D and " C′, D′ .
� Suffices just to remember 1 − :/,/ " C, D + :/,/" C′, D′ .



Details of Third Attempt
A(0,0,0) A(0,0,1) A(0,1,0) A(0,1,1) A(1,0,0) A(1,0,1) A(1,1,0) A(1,1,1)

1 − #$ A(0,0,0)
+ #$A(1,0,0) 

:= B(0,0)

1 − #$ A(0,0,1)
+ #$A(1,0,1) 

:= B(0,1)

1 − #$ A(0,1,0)
+ #$A(1,1,0) 

:= B(1,0)

1 − #$ A(0,1,1)
+ #$A(1,1,1) 

:= B(1,1)

1 − #% B(0,0) + #%B(1,0)
:=C(0)

1 − #% B(0,1) + #%B(1,1)
:= C(1)

1 − #3 C(0) + #(C(1) 



A Second Application of the Sum-Check 
Protocol

A Doubly-Efficient Interactive Proof for 
Counting Triangles



Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *+ , ∑ .,/,0 ∈ ( 1 !./!/0!0.
= *

+ , ∑ .,/ ∈ ( 3(!5)./ , !./.

View ! and !5 as functions mapping 0,1 789 (× 0,1 789 ( to :.
Define the polynomial ℎ =, > = ?(!5)(=, >) @!(=, Y).
The Protocol:

Apply the sum-check protocol to ℎ.
At the end of the protocol, V needs to evaluate:

ℎ B*, B5 =?(!5)(B*, B5) @!(B*, B5).
V  can evaluate @! B*, B5 on its own in C D5 time. Use the MatMult
protocol to compute ?(!5)(B*, B5). 



Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *+ , ∑ .,/,0 ∈ ( 1 !./!/0!0.
= *

+ , ∑ .,/ ∈ ( 3(!5)./ , !./.

� View ! and !5 as functions mapping 0,1 789 (× 0,1 789 ( to :.
� Define the polynomial ℎ =, > = ?(!5)(=, >) @!(=, Y).
The Protocol:

Apply the sum-check protocol to ℎ.
At the end of the protocol, V needs to evaluate:

ℎ B*, B5 =?(!5)(B*, B5) @!(B*, B5).
V  can evaluate @! B*, B5 on its own in C D5 time. Use the MatMult
protocol to compute ?(!5)(B*, B5). 



Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *+ , ∑ .,/,0 ∈ ( 1 !./!/0!0.
= *

+ , ∑ .,/ ∈ ( 3(!5)./ , !./.

� View ! and !5 as functions mapping 0,1 789 (× 0,1 789 ( to :.
� Define the polynomial ℎ =, > = ?(!5)(=, >) @!(=, Y).
� The Protocol:

� Apply the sum-check protocol to ℎ.
At the end of the protocol, V needs to evaluate:

ℎ B*, B5 =?(!5)(B*, B5) @!(B*, B5).
V can evaluate @! B*, B5 on its own in C D5 time. V uses the MatMult
protocol to force P to compute ?(!5)(B*, B5) for her.



Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *+ , ∑ .,/,0 ∈ ( 1 !./!/0!0.
= *

+ , ∑ .,/ ∈ ( 3(!5)./ , !./.

� View ! and !5 as functions mapping 0,1 789 (× 0,1 789 ( to :.
� Define the polynomial ℎ =, > = ?(!5)(=, >) @!(=, Y).
� The Protocol:

� Apply the sum-check protocol to ℎ.
� At the end of the protocol, V needs to evaluate:

ℎ B*, B5 =?(!5)(B*, B5) @!(B*, B5).
� V can evaluate @! B*, B5 on its own in C D5 time. V uses the MatMult

protocol to force P to compute ?(!5)(B*, B5) for her.



The GKR Protocol

A General-Purpose Doubly-Efficient 
Interactive Proof



a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4



a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

P starts the
conversation with 
an answer (output).

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4



a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

V sends series of  
challenges. P responds 
with info about next 
circuit level. 



a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

Challenges continue,
layer by layer down
to the the input. 



a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4
Finally, P says 
something about 
the (multilinear
extension of the) 
input. 



Notation
� Assume layers ! and ! + 1 of $ have % gates each.

� Assign each gate a binary label (log % bits).

� Let )*(,): {0,1}345 6→ 8 output the value of gate , at 
layer !.

Let add*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff

;, < = inA , , inB , and gate , at layer ! is an 
addition gate.

Let mult*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff

;, < = inA , , inB , and gate , at layer ! is a 
multiplication gate.



Notation
� Assume layers ! and ! + 1 of $ have % gates each.

� Assign each gate a binary label (log % bits).

� Let )*(,): {0,1}345 6→ 8 output the value of gate , at 
layer !.

� Let add*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff

;, < = inA , , inB , and gate , at layer ! is an 
addition gate.

Let mult*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff

;, < = inA , , inB , and gate , at layer ! is a 
multiplication gate.



Notation
� Assume layers ! and ! + 1 of $ have % gates each.

� Assign each gate a binary label (log % bits).

� Let )*(,): {0,1}345 6→ 8 output the value of gate , at 
layer !.

� Let add*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff

;, < = inA , , inB , and gate , at layer ! is an 
addition gate.

� Let mult*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff

;, < = inA , , inB , and gate , at layer ! is a 
multiplication gate.



GKR Protocol: Goal of Iteration i
� Iteration ! starts with a claim from P about "#$(&') for a 

random point &' ∈ *+,- ..
� Goal: Reduce this to a claim about "#$/'(&0) for a random 

point &0 ∈ *+,- ..
Observation: #$ 1 =
∑4,6∈{8,'}:;< =[add$(1, 4, 6)(#$/' 4 +#$/' 6 )+ 

mult$(1, 4, 6)(#$/' 4 F #$/' 6 )]

Hence, the following equality holds as formal polynomials: 
"#$ 1 =
∑4,6∈{8,'}:;< =[ Hadd$(1, 4, 6)( "#$/' 4 + "#$/' 6 )+ 

Imult$(1, 4, 6)( "#$/' 4 F "#$/' 6 )]



GKR Protocol: Goal of Iteration i
� Iteration ! starts with a claim from P about "#$(&') for a 

random point &' ∈ *+,- ..
� Goal: Reduce this to a claim about "#$/'(&0) for a random 

point &0 ∈ *+,- ..
� Observation: #$ 1 =
∑4,6∈{8,'}:;< =[add$(1, 4, 6)(#$/' 4 +#$/' 6 )+ 

mult$(1, 4, 6)(#$/' 4 F #$/' 6 )]

Hence, the following equality holds as formal polynomials: 
"#$ 1 =
∑4,6∈{8,'}:;< =[ Hadd$(1, 4, 6)( "#$/' 4 + "#$/' 6 )+ 

Imult$(1, 4, 6)( "#$/' 4 F "#$/' 6 )]



GKR Protocol: Goal of Iteration i
� Iteration ! starts with a claim from P about "#$(&') for a 

random point &' ∈ *+,- ..
� Goal: Reduce this to a claim about "#$/'(&0) for a random 

point &0 ∈ *+,- ..
� Observation: #$ 1 =
∑4,6∈{8,'}:;< =[add$(1, 4, 6)(#$/' 4 +#$/' 6 )+ 

mult$(1, 4, 6)(#$/' 4 F #$/' 6 )]

� Hence, the following equality holds as formal polynomials: 
"#$ 1 =

∑4,6∈{8,'}:;< =[ Hadd$(1, 4, 6)( "#$/' 4 + "#$/' 6 )+ 
Imult$(1, 4, 6)( "#$/' 4 F "#$/' 6 )]



GKR Protocol: Goal of Iteration i
� So V applies sum-check protocol to compute

� !"# $% = ∑(,*∈{-,%}/01 2 3((, *),	where:

3 (, * = <add#($%, (, *)( !"#?% ( + !"#?% * )
+ Amult#($%, (, *)( !"#?% ( F !"#?% * )

At end of sum-check protocol, V must evaluate 3($G, $H).

Let us assume V can compute <add# $%, $G, $H and Amult# $%, $G, $H
unaided in polylog(M)
Then V only needs to know !"#?% $G and !"#?% $H to complete this 
check.  
Iteration N + 1 is devoted to computing these values.



GKR Protocol: Goal of Iteration i
� So V applies sum-check protocol to compute

� !"# $% = ∑(,*∈{-,%}/01 2 3((, *),	where:

3 (, * = <add#($%, (, *)( !"#?% ( + !"#?% * )
+ Amult#($%, (, *)( !"#?% ( F !"#?% * )

� At end of sum-check protocol, V must evaluate 3($G, $H).

Let us assume V can compute <add# $%, $G, $H and Amult# $%, $G, $H
unaided in polylog(M)
Then V only needs to know !"#?% $G and !"#?% $H to complete this 
check.  
Iteration N + 1 is devoted to computing these values.



GKR Protocol: Goal of Iteration i
� So V applies sum-check protocol to compute

� !"# $% = ∑(,*∈{-,%}/01 2 3((, *),	where:

3 (, * = <add#($%, (, *)( !"#?% ( + !"#?% * )
+ Amult#($%, (, *)( !"#?% ( F !"#?% * )

� At end of sum-check protocol, V must evaluate 3($G, $H).
� Let us assume V can compute <add# $%, $G, $H and 
Amult# $%, $G, $H unaided in time polylog(M).

� Then V only needs to know !"#?% $G and !"#?% $H to complete 
this check.  

Iteration O + 1 is devoted to computing these values.



GKR Protocol: Goal of Iteration i
� So V applies sum-check protocol to compute

� !"# $% = ∑(,*∈{-,%}/01 2 3((, *),	where:

3 (, * = <add#($%, (, *)( !"#?% ( + !"#?% * )
+ Amult#($%, (, *)( !"#?% ( F !"#?% * )

� At end of sum-check protocol, V must evaluate 3($G, $H).
� Let us assume V can compute <add# $%, $G, $H and 
Amult# $%, $G, $H unaided in time polylog(M).

� Then V only needs to know !"#?% $G and !"#?% $H to complete 
this check.  

� Iteration O + 1 is devoted to computing these values.



Remaining Issue: Reducing to 
Verification of a Single Point
� There is one remaining problem: we don’t want to have to separately 

verify both                and                in iteration ! +1.
� Solution: Reduce verifying both of the above values to verifying

for a single point 

Wi+1(r2 ) Wi+1(r3)
~ ~

Wi+1(r4 )
~ r4 ∈ F

logS.



Remaining Issue: Reducing to 
Verification of a Single Point
� There is one remaining problem: we don’t want to have to separately 

verify both                and                in iteration ! +1.
� Solution: Reduce verifying both of the above values to verifying

for a single point 

Wi+1(r2 ) Wi+1(r3)
~ ~

Wi+1(r4 )
~ r4 ∈ F

logS.

Extended Hypercube 

FlogS

Boolean Hypercube 

{0,1}logS

"#$%&

#$%&



Remaining Issue: Reducing to 
Verification of a Single Point
� There is one remaining problem: we don’t want to have to separately 

verify both                and                in iteration ! +1.
� Solution: Reduce verifying both of the above values to verifying

for a single point 

Wi+1(r2 ) Wi+1(r3)
~ ~

Wi+1(r4 )
~ r4 ∈ F

logS.

Extended Hypercube 

FlogS

Boolean Hypercube 

{0,1}logS

r3

r2

"#$%&

#$%&



Remaining Issue: Reducing to 
Verification of a Single Point
� There is one remaining problem: we don’t want to have to separately 

verify both                and                in iteration ! +1.
� Solution: Reduce verifying both of the above values to verifying

for a single point 

Wi+1(r2 ) Wi+1(r3)
~ ~

Wi+1(r4 )
~ r4 ∈ F

logS.

Extended Hypercube 

FlogS

Boolean Hypercube 

{0,1}logS

Challenge line λ
r2

r3

"#$%&

#$%&



Remaining Issue: Reducing to 
Verification of a Single Point
� There is one remaining problem: we don’t want to have to separately 

verify both                and                in iteration ! +1.
� Solution: Reduce verifying both of the above values to verifying

for a single point 

Wi+1(r2 ) Wi+1(r3)
~ ~

Wi+1(r4 )
~ r4 ∈ F

logS.

Extended Hypercube 

FlogS

Boolean Hypercube 

{0,1}logS

r2

r3

Challenge line λ

r4

"#$%&

#$%&



Costs of the GKR protocol
� V time is ! " + $ log ( where " is input size, 
$ is circuit depth, and ( is circuit size.
� Assumes V can compute )add, -., -0, -1 and 
2mult, -., -0, -1 unaided in time polylog(")

� Communication cost is !($ log ().

P time is ! ( .
A naïve implementation of P takes Ω (1 time, 
where ( is circuit size.
A sequence of works has brought this down to
! ( , for arbitrary circuits [CMT12, Thaler13, 
WBSTWW17, WTSTW18, XZZPS19] 



Costs of the GKR protocol
� V time is ! " + $ log ( where " is input size, 
$ is circuit depth, and ( is circuit size.
� Assumes V can compute )add, -., -0, -1 and 
2mult, -., -0, -1 unaided in time polylog(")

� Communication cost is !($ log ().

� P time is ! ( .
� A naïve implementation of P takes Ω (1 time, 

where ( is circuit size.
� A sequence of works has brought this down to
! ( , for arbitrary circuits [CMT12, Thaler13, 
WJBSTWW17, XZZPS19] 



GKR Prover Runtime: Details
Recall: Core of the GKR protocol is applying sum-check to compute 

∑",$∈{',(}*+, - .(", $) where
. ", $ = 2add5(6(, ", $)( 7859( " + 7859( $ )

+ ;mult5(6(, ", $)( 7859( " @ 7859( $ )
A naïve implementation of P takes Ω BC time, where B is c   ircuit
size.

Same idea as “Approach 1” from the MatMult protocol.
i.e., P evaluates . in each round of sum-check at all O BE/25 necessary 
points H, taking O(B) time per point.

[CMT12]: P time is I B log B .
Achieved via “Approach 2” from the MatMult protocol: each gate of M
contributes to .(H) for I 1 relevant points H in each round.

All subsequent works seek to bring “Approach 3” to bear on the 
GKR protocol, letting P reuse work across rounds.



GKR Prover Runtime: Details
Recall: Core of the GKR protocol is applying sum-check to compute 

∑",$∈{',(}*+, - .(", $) where
. ", $ = 2add5(6(, ", $)( 7859( " + 7859( $ )

+ ;mult5(6(, ", $)( 7859( " @ 7859( $ )
� A naïve implementation of P takes Ω BC time, where B is circuit 

size.
� Same idea as “Approach 1” from the MatMult protocol.
� i.e., P evaluates . in each round of sum-check at all O BE/25 necessary 

points H, taking O(B) time per point.
[CMT12]: P time is I B log B .

Achieved via “Approach 2” from the MatMult protocol: each gate of M
contributes to .(H) for I 1 relevant points H in each round.

All subsequent works seek to bring “Approach 3” to bear on the 
GKR protocol, letting P reuse work across rounds.



GKR Prover Runtime: Details
Recall: Core of the GKR protocol is applying sum-check to compute 

∑",$∈{',(}*+, - .(", $) where
. ", $ = 2add5(6(, ", $)( 7859( " + 7859( $ )

+ ;mult5(6(, ", $)( 7859( " @ 7859( $ )
� A naïve implementation of P takes Ω BC time, where B is circuit 

size.
� Same idea as “Approach 1” from the MatMult protocol.
� i.e., P evaluates . in each round of sum-check at all O BE/25 necessary 

points H, taking O(B) time per point.
� [CMT12]: P time is I B log B .

� Achieved via “Approach 2” from the MatMult protocol: each gate of M
contributes to .(H) for I 1 relevant points H in each round.

All subsequent works seek to bring “Approach 3” to bear on the 
GKR protocol, letting P reuse work across rounds.



GKR Prover Runtime: Details
Recall: Core of the GKR protocol is applying sum-check to compute 

∑",$∈{',(}*+, - .(", $) where
. ", $ = 2add5(6(, ", $)( 7859( " + 7859( $ )

+ ;mult5(6(, ", $)( 7859( " @ 7859( $ )
� A naïve implementation of P takes Ω BC time, where B is circuit 

size.
� Same idea as “Approach 1” from the MatMult protocol.
� i.e., P evaluates . in each round of sum-check at all O BE/25 necessary 

points H, taking O(B) time per point.
� [CMT12]: P time is I B log B .

� Achieved via “Approach 2” from the MatMult protocol: each gate of M
contributes to .(H) for I 1 relevant points H in each round.

� All subsequent works seek to bring “Approach 3” to bear on the 
GKR protocol, letting P reuse work across rounds.



GKR Prover Runtime: Details
� [Thaler13]: 

1. P time ! " for circuits with “nice” wiring patterns.
2. P time ! " log "′ for data parallel circuits 

i.e., that apply the same subcomputation (of size "′) 
independently to different pieces of data

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Aggrega1on$



GKR Prover Runtime: Details
� [Thaler13]: 

1. P time ! " for circuits with “nice” wiring patterns.
2. P time ! " log "′ for data parallel circuits 

i.e., that apply the same subcomputation (of size "′) 
independently to different pieces of data

� [WJBSTWW17] improved the data parallel time to 
! " + "′ log "′ .

[ZGKPP18] extends to data parallel computations where each 
subcomputation may not be the same.
[XZZPS19] achieved ! " time for general circuits.



GKR Prover Runtime: Details
� [Thaler13]: 

1. P time ! " for circuits with “nice” wiring patterns.
2. P time ! " log "′ for data parallel circuits 

i.e., that apply the same subcomputation (of size "′) 
independently to different pieces of data

� [WJBSTWW17] improved the data parallel time to 
! " + "′ log "′ .

� [ZGKPP18] extends to data parallel computations where each 
subcomputation may not be the same.

[XZZPS19] achieved ! " time for general circuits.



GKR Prover Runtime: Details
� [Thaler13]: 

1. P time ! " for circuits with “nice” wiring patterns.
2. P time ! " log "′ for data parallel circuits 

i.e., that apply the same subcomputation (of size "′) 
independently to different pieces of data

� [WJBSTWW17] improved the data parallel time to 
! " + "′ log "′ .

� [ZGKPP18] extends to data parallel computations where each 
subcomputation may not be the same.

� [XZZPS19] achieved ! " time for general circuits.



Rumination on Generality Vs. Efficiency



Generality vs. Efficiency
� The GKR protocol for circuit evaluation has now been 

rendered optimally efficient for P (up to constant factors).
� Any computation can be represented as a circuit evaluation (or 

satisfiability) problem.
� But this can introduce tremendous overheads.
� The GKR protocol forces the prover to compute the output in a 

prescribed manner, which may be far from optimal (gate-by-gate 
evaluation of a circuit).

� To achieve scalability, the gold standard is really something 
like the counting triangles protocol.
� i.e., P computed the right answer directly using the fastest 

known algorithm, and did a low-order amount of extra work 
to prove correctness



Succinct ZK Arguments for Circuit-SAT 
from Interactive Proofs



Succinctness for Circuit-SAT
� The GKR protocol solves arithmetic circuit evaluation.
� Applications often require solving circuit satisfiability, i.e., 

given a circuit ! and public in put ", prove there exists a 
“witness” # such that ! ",# = &. 

� Naïve approach: have P send # toV and then apply the GKR 
protocol to check that ! ",# = &.
� Downside: Proof length is # .

� [ZGKPP17]: Can decrease the proof length by having the 
prover cryptographically commit to #, without sending #
in full to V. 



Known Cryptographic Commitment 
Schemes for Multilinear Polynomials

1. [KZG 2010, PST 2013, ZGKPP17]: Simple, based on bilinear maps, 
requires trusted setup (SRS of size |"|), not quantum secure.

2. [Groth09, BG12, BCCGP16, BG18, BBBPWM18, WSTTW18]: 
Based on homomorphic commitments. Transparent but not 
quantum secure. 

3. [BSBHR18, BSGKS19]: IOP-based commitment scheme for
univariate polynomials. Transparent and secure in quantum 
Random Oracle model. [ZXZS19] combines this with Aurora to 
handle multilinear polynomials.

P complexity in 1) and 2): O " public-key crypto operations.
P complexity in 3): $ " log |"| field operations and O "
private-key crypto operations.
Not discussed: V time, restrictions on the field size, etc. 



Known Cryptographic Commitment 
Schemes for Multilinear Polynomials

1. [KZG 2010, PST 2013, ZGKPP17]: Simple, based on bilinear maps, 
requires trusted setup (SRS of size |"|), not quantum secure.

2. [Groth09, BG12, BCCGP16, BG18, BBBPWM18, WSTTW18]: 
Based on homomorphic commitments. Transparent but not 
quantum secure. 

3. [BSBHR18, BSGKS19]: IOP-based commitment scheme for
univariate polynomials. Transparent and secure in quantum 
Random Oracle model. [ZXZS19] combines this with Aurora to 
handle multilinear polynomials.

� P complexity in 1) and 2): O " public-key crypto operations.
� P complexity in 3): $ " log |"| field operations and O "

private-key crypto operations.
� Not discussed: V time, restrictions on the field size, etc. 



Succinctness for Circuit-SAT
� Assume for simplicity that ! = # = $.
� When applying the GKR protocol to check that & !,# = (, V

views the input ):= !, # as a function mapping 
0,1 ×{0,1}012 3 to 4.
� And the only information V needs to know about ) is )̃ 6 for a 

random input 6 = (89, 6:) ∈ 0,1 ×{0,1}012 3 .
� Fact: )̃ 6 = (1 − 89) >! 6: + 89 ># 6: .

The Argument for CIRCUIT-SAT:
P cryptographically commits to the multilinear polynomial @#. 
V and P apply to GKR protocol to the claim & !,# = (. 
To perform V‘s final check in the protocol (which requires knowing 
)̃ 6 ), V makes P reveal @#(6:), and derives )̃ 6 using Fact.



Succinctness for Circuit-SAT
� Assume for simplicity that ! = # = $.
� When applying the GKR protocol to check that & !,# = (, V

views the input ):= !, # as a function mapping 
0,1 ×{0,1}012 3 to 4.
� And the only information V needs to know about ) is )̃ 6 for a 

random input 6 = (89, 6:) ∈ 0,1 ×{0,1}012 3 .
� Fact: )̃ 6 = (1 − 89) >! 6: + 89 ># 6: .

� The Argument for CIRCUIT-SAT:
1. P cryptographically commits to the multilinear polynomial @#. 
2. V and P apply to GKR protocol to the claim & !,# = (. 
3. To perform V‘s final check in the protocol (which requires knowing 

)̃ 6 ), V makes P reveal @#(6:), and derives )̃ 6 using Fact.



Zero Knowledge for Circuit-SAT
� Two practical techniques:

1. [WsTTW18, ZGKPP18]: Efficient implementation of Cramer-
Damgård transformation (based on homomorphic commitments). 

2. [CFS17, XZZPS19] IOP-based transformation.
� Both transparent. Only 2) is quantum secure.



THANK  YOU!



MIPs and Succinct Arguments Derived 
Thereof



Arithmetic Circuit Satisfiability
� Given: An arithmetic circuit C over F of size S with explicit input x 

and non-deterministic input w, and claimed output(s) y.
� Goal: Determine if there exists a w such that C(x, w)=y.
Assign each gate in C a (log S)-bit label. 
Call a function                              a transcript for C.

Say that     is correct if it satisfies the following properties:
The values W assigns to the explicit input gates equal x.
The value W assigns to the output gates is 1.
The values W assigns to the intermediate gates correspond to the correct operation of 
the gates.
Clearly there is a w such that C(x, w)=1 iff there is a correct transcript for C. 



Arithmetic Circuit Satisfiability
� Given: An arithmetic circuit C over F of size S with explicit input x 

and non-deterministic input w, and claimed output(s) y.
� Goal: Determine if there exists a w such that C(x, w)=y.
� Assign each gate in C a (log S)-bit label. 
� Call a function                              a transcript for C.

� Say that     is correct on x if it satisfies the following properties:
� The values W assigns to the explicit input gates equal x.
� The value W assigns to the output gates is y.
� The values W assigns to the intermediate gates correspond to the correct 

operation of the gates.
� Clearly there is a w such that C(x, w)=1 iff there is a correct transcript for C. 

W : {0,1}logS → F
W



� Protocol Sketch: 
� P1 and P2 claim to hold an extension Z of a correct transcript W for C.
� Identify a polynomial                                      (that depends on x and Z) such that:
Z extends a correct transcript 

V checks this by running sum-check protocol with P1 to compute

To perform final check in sum-check protocol, V needs to evaluate 
at a random point. But this requires evaluating Z at a random point,

and Z only “exists” in P1’s head.
So V asks P2 for the evaluation of Z. 
Soundness analysis of sum-check is valid as long as P2’s claim about Z is consistent with 
a low-degree polynomial. So V also runs a low-degree test with P1 and  P2 .

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.⇔

Sketch of 2-Prover MIP for Arithmetic Circuit SAT
[Blumberg, Thaler, Vu, Walfish, 2014]



� Protocol Sketch: 
� P1 and P2 claim to hold an extension Z of a correct transcript W for C.
� Identify a polynomial                                      (that depends on x and Z) such that:
Z extends a correct transcript 

� V checks this by running sum-check protocol with P1 to compute

To perform final check in sum-check protocol, V needs to evaluate 
at a random point. But this requires evaluating Z at a random point,

and Z only “exists” in P1’s head.
V asks P2 for the evaluation of Z. 
oundness analysis of sum-check is valid as long as P2’s claim about Z is consistent with 
a low-degree polynomial. So V also runs a low-degree test with P1 and  P2.

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.

0 = g2x,Z (a,b,c)
(a,b,c)∈{0,1}3logS
∑ .?

⇔

Sketch of 2-Prover MIP for Arithmetic Circuit SAT
[Blumberg, Thaler, Vu, Walfish, 2014]



� Protocol Sketch: 
� P1 and P2 claim to hold an extension Z of a correct transcript W for C.
� Identify a polynomial                                      (that depends on x and Z) such that:
Z extends a correct transcript 

� V checks this by running sum-check protocol with P1 to compute
�

� To perform final check in sum-check protocol, V needs to evaluate 
at a random point. But this requires evaluating Z at a random point,

and Z only “exists” in P1’s head.
� So V asks P2 for the evaluation of Z. 
� Soundness analysis of sum-check is valid as long as P2’s claim about Z is consistent 

with a low-degree polynomial. So V also runs a low-degree test with P1 and P2.

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.

0 = g2x,Z (a,b,c)
(a,b,c)∈{0,1}3logS
∑ .?

g2x,Z

⇔

Sketch of 2-Prover MIP for Arithmetic Circuit SAT
[Blumberg, Thaler, Vu, Walfish, 2014]



� Identify a polynomial                                      (that depends on x and Z) such that:
Z extends a correct transcript 

Let add(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))   and gate is an addition gate.
Let mult(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))    and gate is a mult gate.
Let io(a,b,c)   output 1 iff gate is in the explicit input x and (b,c)=(0, 0)      

or if a is an output gate and b and are in-neighbors of .
Let Ix(a)  output xa if a is an input gate, ya ifa is an output gate, and 0 otherwise.
Key Lemma: For Ga,b,W:{0,1}3log S            defined below, W is a correct transcript on 
x iff Ga,b,W(a,b,c)=0 for all (a, b, c)  in {0,1}3log S.

Ga,b,W(a,b,c)=io(a,b,c)*(Ix(a)-W(a)) + add(a,b,c)(W(a)-(W(b)+W(c)) + mult(a, b, c) * (W(a)-
W(b)*W(c)).

So we define: 

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.⇔

Definition of the Key Polynomial



� Identify a polynomial                                      (that depends on x and Z) such that:
Z extends a correct transcript 

� Let add(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))   and gate is an addition gate.
� Let mult(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))    and gate is a mult gate.
� Let io(a,b,c)   output 1 iff gate is in the explicit input x and (b,c)=(0, 0)      

or if a is an output gate and b and are in-neighbors of .
� Let Ix(a)  output xa if a is an input gate, ya ifa is an output gate, and 0 otherwise.
Key Lemma: For Ga,b,W:{0,1}3log S            defined below, W is a correct transcript on 
x iff Ga,b,W(a,b,c)=0 for all (a, b, c)  in {0,1}3log S.

Ga,b,W(a,b,c)=io(a,b,c)*(Ix(a)-W(a)) + add(a,b,c)(W(a)-(W(b)+W(c)) + mult(a, b, c) * (W(a)-
W(b)*W(c)).

So we define: 

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.⇔

Definition of the Key Polynomial

add(a, b, c)
mult(a, b, c)
io(a, b, c)

(b, c)=(in1(a), in2 (a)) 
(b, c)=(in1(a), in2 (a)) 

a
a

a (b, c)=(0,0),
acb
x

aaxaIx (a) ya



� Identify a polynomial                                      (that depends on x and Z) such that:
Z extends a correct transcript 

� Let add(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))   and gate is an addition gate.
� Let mult(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))    and gate is a mult gate.
� Let io(a,b,c)   output 1 iff gate is in the explicit input x and (b,c)=(0, 0)      

or if a is an output gate and b and are in-neighbors of .
� Let Ix(a)  output xa if a is an input gate, ya ifa is an output gate, and 0 otherwise.
� Key Lemma: For Ga,b,W:{0,1}3log S            defined below, W is a correct transcript 

on x iff Ga,b,W(a,b,c)=0 for all (a, b, c)  in {0,1}3log S.
Ga,b,W(a,b,c)=io(a,b,c)*(Ix(a)-W(a)) + add(a,b,c)(W(a)-(W(b)+W(c)) + mult(a, b, c) * (W(a)-

W(b)*W(c)).

So we define: 

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.⇔

Definition of the Key Polynomial

Gx,W : {0,1}
3logS → F

add(a, b, c)
mult(a, b, c)
io(a, b, c)

(b, c)=(in1(a), in2 (a)) 
(b, c)=(in1(a), in2 (a)) 

a
a

a (b, c)=(0,0),
acb
x

aaxaIx (a)

Gx,W (a, b, c) = 0 (a, b, c) {0,1}3logS.
Gx,W (a, b, c) := io(a, b, c)•(Ix (a)-W(a)) + add(a, b, c)(W(a)-(W(b)+W(c)) + mult(a, b, c) •  (W(a)-W(b)•W(c))

ya



� Identify a polynomial                                      (that depends on x and Z) such that:
Z extends a correct transcript 

� Let add(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))   and gate is an addition gate.
� Let mult(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))    and gate is a mult gate.
� Let io(a,b,c)   output 1 iff gate is in the explicit input x and (b,c)=(0, 0)      

or if a is an output gate and b and are in-neighbors of .
� Let Ix(a)  output xa if a is an input gate, ya ifa is an output gate, and 0 otherwise.
� Key Lemma: For Ga,b,W:{0,1}3log S            defined below, W is a correct transcript 

on x iff Ga,b,W(a,b,c)=0 for all (a, b, c)  in {0,1}3log S.
Ga,b,W(a,b,c)=io(a,b,c)*(Ix(a)-W(a)) + add(a,b,c)(W(a)-(W(b)+W(c)) + mult(a, b, c) * (W(a)-

W(b)*W(c)).

� So we define: 

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.⇔

Definition of the Key Polynomial

Gx,W : {0,1}
3logS → F

add(a, b, c)
mult(a, b, c)
io(a, b, c)

(b, c)=(in1(a), in2 (a)) 
(b, c)=(in1(a), in2 (a)) 

a
a

a (b, c)=(0,0),
acb
x

aaxaIx (a)

Gx,W (a, b, c) = 0 (a, b, c) {0,1}3logS.

gx,Z (a, b, c) = io(a, b, c)•(Ix (a)-Z(a)) + add(a, b, c)(Z(a)-(Z(b)+Z(c)) + mult(a, b, c)•(Z(a)-Z(b)•Z(c))~ ~ ~ ~

Gx,W (a, b, c) := io(a, b, c)•(Ix (a)-W(a)) + add(a, b, c)(W(a)-(W(b)+W(c)) + mult(a, b, c) •  (W(a)-W(b)•W(c))

ya



Costs of the 2-Prover MIP for Non-
Deterministic Circuit Evaluation

Rounds VTime P1Time P2Time

log S O(n + log2 S) O(S) O(S log S)



[RRR16] and Open Questions

Another General-Purpose Doubly-
Efficient Interactive Proof



What We Really Want
� In the cloud computing scenario at the start of the talk, we really 

wanted the following:
1. V asks P to run some computer program on her data.
2. P proves that she correctly ran the program on the data.

� V should not do much more work than read the input.
� P should not do much more work than run the program.

If the program runs in time !, and space ", then P should run in time 
# ! and space # " .

Unfortunately, we cannot hope for V to run in time # $ for space-
intensive computations.

If % has an interactive proof with V runtime &, then % can be solved in 
space '#(&)).
So we can only hope to achieve a linear-time verifier for problems solvable 
in quadratic space.  
[RRR16] come close to achieving this.



What We Really Want
� In the cloud computing scenario at the start of the talk, we really 

wanted the following:
1. V asks P to run some computer program on her data.
2. P proves that she correctly ran the program on the data.

� V should not do much more work than read the input.
� P should not do much more work than run the program.

� If the program runs in time !, and space ", then P should run in time 
# ! and space # " .

The GKR protocol only achieves this for parallelizable programs
Unfortunately, we cannot hope for V to run in time # $ for space-
intensive computations.

If % has an interactive proof with V runtime &, then % can be solved in 
space '#(&)).
So we can only hope to achieve a linear-time verifier for problems solvable 
in quadratic space.  
[RRR16] come close to achieving this.



What We Really Want
� In the cloud computing scenario at the start of the talk, we really 

wanted the following:
1. V asks P to run some computer program on her data.
2. P proves that she correctly ran the program on the data.

� V should not do much more work than read the input.
� P should not do much more work than run the program.

� If the program runs in time !, and space ", then P should run in time 
# ! and space # " .

� The GKR protocol only achieves a linear-time for V
parallelizable programs.

Unfortunately, we cannot hope for V to run in time # $ for space-
intensive computations.

If % has an interactive proof with V runtime &, then % can be solved in 
space '#(&)).
So we can only hope to achieve a linear-time verifier for problems solvable 
in quadratic space.  



What We Really Want
� In the cloud computing scenario at the start of the talk, we really 

wanted the following:
1. V asks P to run some computer program on her data.
2. P proves that she correctly ran the program on the data.

� V should not do much more work than read the input.
� P should not do much more work than run the program.

� If the program runs in time !, and space ", then P should run in time 
# ! and space # " .

� Unfortunately, we cannot hope for V to run in time # $ for 
space-intensive computations.

� If % has an interactive proof with V runtime &, then % can be solved 
in space '#(&).

� So we can only hope to achieve a linear-time verifier for problems 
solvable in quadratic space.  

[RRR16] come close to achieving this.



What We Really Want
� In the cloud computing scenario at the start of the talk, we really 

wanted the following:
1. V asks P to run some computer program on her data.
2. P proves that she correctly ran the program on the data.

� V should not do much more work than read the input.
� P should not do much more work than run the program.

� If the program runs in time !, and space ", then P should run in time 
# ! and space # " .

� Unfortunately, we cannot hope for V to run in time # $ for 
space-intensive computations.

� If % has an interactive proof with V runtime &, then % can be solved 
in space '#(&).

� So we can only hope to achieve a linear-time verifier for problems 
solvable in quadratic space.  

� [RRR16] come close to achieving the best we can hope for.



[RRR16]
� Let ! be a problem solvable in time " and space #. Then for 

any constant ε > 0, ! has an interactive proof where:
� V runs in time )* + + "- . poly(#) .
� P runs in time )* ("56- . poly # ).

In particular, if " = poly(+) and # is a small enough polynomial 
in +, then this is a doubly-efficient interactive proof system.
The number of rounds is constant. 

More precisely, it is exp 5
: .



[RRR16]
� Let ! be a problem solvable in time " and space #. Then for 

any constant ε > 0, ! has an interactive proof where:
� V runs in time )* + + "- . poly(#) .
� P runs in time )* ("56- . poly # ).

� In particular, if " = poly(+) and # is a small enough 
polynomial in +, then this is a doubly-efficient interactive proof 
system.

The number of rounds is constant. 

More precisely, it is exp 5
: .



[RRR16]
� Let ! be a problem solvable in time " and space #. Then for 

any constant ε > 0, ! has an interactive proof where:
� V runs in time )* + + "- . poly(#) .
� P runs in time )* ("56- . poly # ).

� In particular, if " = poly(+) and # is a small enough 
polynomial in +, then this is a doubly-efficient interactive proof 
system.

� The number of rounds is constant. 

� More precisely, it is exp 5
: .



Open Questions (Theory)
� Improve V’s runtime in [RRR16] from !" # + %& ' poly(-)

to !" # + poly(-, log %) ? Maybe even !" # + - ' log %) ?
� Improve the round complexity from exp 4

5 to poly 4
5 ?

Give an interactive proof for batch-verification of NP 
statements?

i.e., given 6 instances of the same NP problem, can you give an 
interactive proof for verifying that the answer to all 6 instances is 
YES, with communication that grows sublinearly with 6?



Open Questions (Theory)
� Improve V’s runtime in [RRR16] from !" # + %& ' poly(-)

to !" # + poly(-, log %) ? Maybe even !" # + - ' log %) ?
� Improve the round complexity from exp 4

5 to poly 4
5 ?

� Give an interactive proof for batch-verification of NP 
statements?
� Under standard complexity assumptions, interactive proofs cannot 

be succinct [GH98, GVW01].
� I.e., for a general NP relation, cannot do much better than just having the 

prover send the NP witness to the verifier.

Open: given 6 instances of the same NP problem, is there an 
interactive proof for verifying that the answer to all 6 instances is 
YES, with communication that grows sublinearly with 6?



Open Questions (Theory)
� Improve V’s runtime in [RRR16] from !" # + %& ' poly(-)

to !" # + poly(-, log %) ? Maybe even !" # + - ' log %) ?
� Improve the round complexity from exp 4

5 to poly 4
5 ?

� Give an interactive proof for batch-verification of NP 
statements?
� Under standard complexity assumptions, interactive proofs cannot 

be succinct [GH98, GVW01].
� I.e., for a general NP relation, cannot do much better than just having the 

prover send the NP witness to the verifier.

� Open: given 6 instances of the same NP problem, is there an 
interactive proof for verifying that the answer to all 6 instances is 
YES, with communication that grows sublinearly with 6?



A Parting Remark
� We’ve seen some fundamental limitations of interactive proofs.

� V can’t run in linear time for space-intensive problems.
� They cannot be succinct.
� They are interactive.
� They are not publicly verifiable.

All of these limitations can be addressed by combining interactive 
proofs with cryptography.

This yields succinct non-interactive arguments.
See tomorrow’s talks.

There are many practically-relevant open questions about the best 
way to combine interactive proofs with cryptography.



A Parting Remark
� We’ve seen some fundamental limitations of interactive proofs.

� V can’t run in linear time for space-intensive problems.
� They cannot be succinct.
� They are interactive.
� They are not publicly verifiable.

� All of these limitations can be addressed by combining 
interactive proofs with cryptography.
� This yields succinct non-interactive arguments.
� See tomorrow’s talks.

� There are many practically-relevant open questions about the 
best way to combine interactive proofs with cryptography.



THANK  YOU!



A Simple Triangles Protocol with Sub-
Optimal Prover Time



Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *
+
, ∑ .,/,0 ∈[(]3 !./!/0!.0 .V

� Fastest known algorithm runs in matrix-multiplication time, currently about 
56.78. as a function mapping 0,1 9:; (× 0,1 9:; ( to <.
Recall that =! denotes the multilinear extension of !.
Define the polynomial > ?, @, A = =!(?, @) =!(@, Z) =!(?, Z)
Apply the sum-check protocol to > to compute:

E
(F,G,H) ∈{I,*}3JKL M

>(N, O, P)

Costs: 
Total communication is Q(log 5), V runtime is Q 56 , P runtime is Q 57 .
V’s runtime dominated by evaluating:

> U*, U6, U7 = =!(U*, U6) =!(U6, U7) =!(U*, U7).



Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *
+
, ∑ .,/,0 ∈ ( 1 !./!/0!.0 .

� The Protocol:
� View ! as a function mapping 0,1 345 (× 0,1 345 ( to 6.
� Recall that 7! denotes the multilinear extension of !.
� Define the polynomial 8 9, :, ; = 7!(9, :) 7!(:, Z) 7!(9, Z)
� Apply the sum-check protocol to 8 to compute:

?

(@,A,B) ∈{C,*}1DEF G

8(H, I, J)

Costs: 
Total communication is K(log O), V runtime is K OP , P runtime is K OQ .
V’s runtime dominated by evaluating:

8 R*, RP, RQ = 7!(R*, RP) 7!(RP, RQ) 7!(R*, RQ).



Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *
+
, ∑ .,/,0 ∈ ( 1 !./!/0!.0 .

� The Protocol:
� View ! as a function mapping 0,1 345 (× 0,1 345 ( to 6.
� Recall that 7! denotes the multilinear extension of !.
� Define the polynomial 8 9, :, ; = 7!(9, :) 7!(:, Z) 7!(9, Z)
� Apply the sum-check protocol to 8 to compute:

?

(@,A,B) ∈{C,*}1DEF G

8(H, I, J)

� Costs: 
� Total communication is K(log O), V runtime is K OP , P runtime is K OQ .
� V’s runtime dominated by evaluating:

8 R*, RP, RQ = 7!(R*, RP) 7!(RP, RQ) 7!(R*, RQ).


