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Goal: 
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Quantum query complexity: Minimum number of uses of 𝑂( in a quantum circuit 
that for every input 𝑥, outputs 𝑓(𝑥)with error ≤ 1/3. 𝑄 𝑓

Example: .

Then 𝑄 OR1 = 𝑄 AND1 = Θ 𝑛� [Grover96, Bennett-Bernstein-Brassard-Vazirani97]  

Classically, we need Θ 𝑛 queries for both problems.

𝑂(𝑈9 𝑂(𝑈: 𝑈;
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Algorithmic motivation

Complexity	theoretic	motivation
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Positive-weights adversary method Negative-weights adversary method

Polynomial method
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Approximate degree: Minimum degree of a polynomial 𝑝(𝑥:, … , 𝑥1) with real 
coefficients such that ∀𝑥 ∈ −1,1 1, 𝑓 𝑥 − 𝑝 𝑥 ≤ 1/3. degE (𝑓)

Theorem ([Beals-Buhrman-Cleve-Mosca-de Wolf01]): For any 𝑓, 
𝑄 𝑓 ≥ :

Gdeg
E (𝑓)

degE OR1 = degE = Θ 𝑛� 𝑄 OR1 = 𝑄 = Θ 𝑛�

• For any T-query quantum algorithm 𝐴, there is a polynomial 𝑝	of degree 2T such that:
• For all 𝑥 ∈ −1,1 1, 𝑝(𝑥) equals the probability that 𝐴 outputs 1 on input 𝑥.
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Upper bounds

[Klivans-Servedio04, Klivans-Servedio06, Kalai-Klivans-Mansour-Servedio08]
[Kahn-Linial-Samorodnitsky96, Sherstov09]

[Thaler-Ullman-Vadhan12, Chandrasekaran-Thaler-Ullman-Wan14]
[Tal14, Tal17]

Lower bounds
[Sherstov07, Shi-Zhu07, Chattopadhyay-Ada08, Lee-Shraibman08,…]

[Minsky-Papert69, Beigel93, Sherstov08]
[Beigel94, Bouland-Chen-Holden-Thaler-Vasudevan16]

[Bogdanov-Ishai-Viola-Williamson16]



The image part with relationship ID rId21 was not found in the file.



The image part with relationship ID rId21 was not found in the file.The	𝑘-distinctness	problem

This generalizes element distinctness, which is 2-distinctness.

Upper bounds
[Ambainis07]

[Belovs12]

Lower bounds
[Aaronson-Shi04]

𝑘-distinctness: Given 𝑛 numbers in 𝑅 = {1, … , 𝑅}, does any number appear ≥𝑘 times?

Our result: 𝑄 DistQ = .



The image part with relationship ID rId21 was not found in the file.𝑘-junta	testing

Upper bounds
[Atıcı-Servedio07]

[Ambainis-Belovs-Regev-deWolf16]

Lower bounds
[Atıcı-Servedio07]

[Ambainis-Belovs-Regev-deWolf16]

𝑘-junta testing: Given the truth table of a Boolean function, decide if 
(YES) the function depends on at most 𝑘 variables, or 
(NO) the function is far (at least 𝛿𝑛 in Hamming distance) from having this property. 

Our result: .
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Quantum query complexity
[Beame-Machmouchi12, Sherstov15]

Approximate degree

[Aaronson-Shi04, Ambainis05, Bun-Thaler17]

[Sherstov18]

SURJ is the first natural function to have 𝑄 𝑓 ≫ ! 

Surjectivity: Given 𝑛 numbers in 𝑅 (𝑅 = Θ(𝑛)), does every 𝑟 ∈ [𝑅] appear in the list?

Our result: and a new proof of .
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Surjectivity upper bound

𝑄 SURJ = 𝑂Z(𝑛[ \⁄ )

Surjectivity lower bound

𝑄 SURJ = Ω_(𝑛[ \⁄ )

𝑘-distinctness

𝑄 DistQ = Ω_(𝑛
[
\	`	

:
GQ)

Image size testing

𝑄 IST = Ω_( 𝑛� )

𝑘-junta testing

𝑄 JuntaQ = Ω_( 𝑘� )

Statistical distance

𝑄 SDU = Ω_( 𝑛� )

Shannon entropy

𝑄 Entropy = Ω_( 𝑛� )

Intuition and ideas

Reduction
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Example: What is the Approximate Degree of ANDn?

gdeg(ANDn) = ⇥(
p
n).

Upper bound: Use Chebyshev Polynomials.

Markov’s Inequality: Let G(t) be a univariate polynomial s.t.
deg(G)  d and maxt2[�1,1] |G(t)|  1. Then

max
t2[�1,1]

|G0(t)|  d2.

Chebyshev polynomials are the extremal case.
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Example: What is the Approximate Degree of ANDn?

gdeg(ANDn) = O(
p
n).

After shifting a scaling, can turn degree O(
p
n) Chebyshev

polynomial into a univariate polynomial Q(t) that looks like:

!"#$%&'()*+*&',*

Define n-variate polynomial p via p(x) = Q(
Pn

i=1

xi/n).

Then |p(x)�ANDn(x)|  1/3 8x 2 {�1, 1}n.
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[NS92] gdeg(ANDn) = ⌦(
p
n).

Lower bound: Use symmetrization.

Suppose |p(x)�ANDn(x)|  1/3 8x 2 {�1, 1}n.
There is a way to turn p into a univariate polynomial psym

that looks like this:

!"#$%&'()*+*&',*

Claim 1: deg(psym)  deg(p).

Claim 2: Markov’s inequality =) deg(psym) = ⌦(n1/2).
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Beyond Symmetrization

Symmetrization is “lossy”: in turning an n-variate poly p into
a univariate poly psym, we throw away information about p.

Challenge Problem: What is gdeg(AND-ORn)?

1/2

1/2

1/2
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History of the AND-OR Tree

Theorem
gdeg(AND-ORn) = ⇥(n1/2).

Tight Upper Bound of O(n1/2)

[HMW03] via quantum algorithms
[BNRdW07] di↵erent proof of O(n1/2 · log n) (via error reduction+composition)
[She13] di↵erent proof of tight upper bound (via robustification)

Tight Lower Bound of ⌦(n1/2)

[BT13] and [She13] via the method of dual polynomials
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What is best error achievable by any degree d approximation of f?
Primal LP (Linear in ✏ and coe�cients of p):

minp,✏ ✏

s.t. |p(x)� f(x)|  ✏ for all x 2 {�1, 1}n

deg p  d

Dual LP:

max 
X

x2{�1,1}n
 (x)f(x)

s.t.
X

x2{�1,1}n
| (x)| = 1

X

x2{�1,1}n
 (x)q(x) = 0 whenever deg q  d
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Dual Characterization of Approximate Degree

Theorem: deg✏(f) > d i↵ there exists a “dual polynomial”
 : {�1, 1}n ! R with

(1)
X

x2{�1,1}n
 (x)f(x) > ✏ “high correlation with f”

(2)
X

x2{�1,1}n
| (x)| = 1 “L

1

-norm 1”

(3)
X

x2{�1,1}n
 (x)q(x) = 0, when deg q  d “pure high degree d”

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.

Example: 2�n · PARITYn witnesses the fact that
gdeg✏(PARITYn) = n for any ✏ < 1.

Dual Characterization of Approximate Degree

Theorem: deg✏(f) > d i↵ there exists a “dual polynomial”
 : {�1, 1}n ! R with

(1)
X

x2{�1,1}n
 (x)f(x) > ✏ “high correlation with f”

(2)
X

x2{�1,1}n
| (x)| = 1 “L

1

-norm 1”

(3)
X

x2{�1,1}n
 (x)q(x) = 0, when deg q  d “pure high degree d”

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.

Example: 2�n · PARITYn witnesses the fact that
gdeg✏(PARITYn) = n for any ✏ < 1.
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Dual Characterization of Approximate Degree

Theorem: deg✏(f) > d i↵ there exists a “dual polynomial”
 : {�1, 1}n ! R with

(1)
X

x2{�1,1}n
 (x)f(x) > ✏ “high correlation with f”

(2)
X

x2{�1,1}n
| (x)| = 1 “L

1

-norm 1”

(3)
X

x2{�1,1}n
 (x)q(x) = 0, when deg q  d “pure high degree d”

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.

Example: 2�n · PARITYn witnesses the fact that
gdeg✏(PARITYn) = n for any ✏ < 1.

Dual Characterization of Approximate Degree

Theorem: deg✏(f) > d i↵ there exists a “dual polynomial”
 : {�1, 1}n ! R with

(1)
X

x2{�1,1}n
 (x)f(x) > ✏ “high correlation with f”

(2)
X

x2{�1,1}n
| (x)| = 1 “L

1

-norm 1”

(3)
X

x2{�1,1}n
 (x)q(x) = 0, when deg q  d “pure high degree d”

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.

Example: 2�n · PARITYn witnesses the fact that
gdeg✏(PARITYn) = n for any ✏ < 1.
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Constructing a Dual Polynomial

By [NS92], there are dual polynomials

 OUT for gdeg (ANDn1/2) = ⌦(n1/4) and

 IN for gdeg (ORn1/2) = ⌦(n1/4)

Both [She13] and [BT13] combine  OUT and  IN to obtain a
dual polynomial  AND-OR for AND-OR.

The combining method was proposed in earlier work by [SZ09,
Lee09, She09].
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 AND-OR(x1, . . . , xn1/2) := C ·  OUT(. . . , sgn( IN(xi)), . . . )

n1/2Y

i=1

| IN(xi)|

(C chosen to ensure  AND-OR has L
1

-norm 1).

Must verify:

1  AND-OR has pure high degree � n1/4 · n1/4 = n1/2.X[She09]

2  AND-OR has high correlation with AND-OR. [BT13, She13]

The Combining Method [SZ09, She09, Lee09]

 AND-OR(x1, . . . , xn1/2) := C ·  OUT(. . . , sgn( IN(xi)), . . . )
n1/2Y

i=1

| IN(xi)|

(C chosen to ensure  AND-OR has L
1

-norm 1).

Must verify:

1  AND-OR has pure high degree � n1/4 · n1/4 = n1/2.

2  AND-OR has high correlation with AND-OR.

1/2

1/2

1/2
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 AND-OR(x1, . . . , xn1/2) := C ·  OUT(. . . , sgn( IN(xi)), . . . )

n1/2Y

i=1

| IN(xi)|

(C chosen to ensure  AND-OR has L
1

-norm 1).

Must verify:

1  AND-OR has pure high degree � n1/4 · n1/4 = n1/2.X[She09]
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 AND-OR(x1, . . . , xn1/2) := C ·  OUT(. . . , sgn( IN(xi)), . . . )

n1/2Y

i=1

| IN(xi)|

(C chosen to ensure  AND-OR has L
1

-norm 1).

Must verify:

1  AND-OR has pure high degree � n1/4 · n1/4 = n1/2.X[She09]

2  AND-OR has high correlation with AND-OR. [BT13, She13]
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SurjR,N: Input consists of 𝑛 = N log2(R) bits, interpreted as a list of 𝑁 numbers in 𝑅 .Does 
every 𝑟 ∈ [𝑅] appear at least once in the list?

Our result: Θ 

• Let’s start with the upper bound.
• For the upper bound, let’s change the domain and range of all functions to {0,1}𝑛 and {0,1}.
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The Õ(R1/4 ·N 1/2) Upper Bound For SURJ: First Try

Let’s start with how to achieve a (loose) bound of
gdeg(SURJR,N ) = Õ(R1/2 ·N1/2).

Let

yij =

(
1 if xj = i

0 otherwise

Then

SURJ(x)=ANDR(ORN (y1,1, . . . , y1,N ), . . . ,ORN (yR,1 . . . , yR,N )).
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x1	 x2	 x3	 x4	 x5	 x6	

y11	 y12	 y13	 y14	 y15	 y16	 y21	 y22	 y23	 y24	 y25	 y26	 y31	 y32	 y33	 y34	 y35	 y36	

AND	

OR	 OR	 OR	

(Each	xj	in	[R])	
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0	 1	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0	 0	 0	 1	 1	

AND	

OR	 OR	 OR	

2	 1	 2	 1	 3	 3	
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The Õ(R1/4 ·N 1/2) Upper Bound For SURJ: First Try

Let’s start with how to achieve a (loose) bound of
gdeg(SURJR,N ) = Õ(R1/2 ·N1/2).

Let

yij =

(
1 if xj = i

0 otherwise

Then

SURJ(x)=ANDR(ORN (y1,1, . . . , y1,N ), . . . ,ORN (yR,1 . . . , yR,N )).

The Upper Bound For SURJ: First Try

Let’s start with how to achieve a (loose) bound of
gdeg(SURJR,N ) = Õ(R1/2 ·N1/2).

Let

yij =

(
1 if xj = i

0 otherwise

Then

SURJ(x)=ANDR(ORN (y1,1, . . . , y1,N ), . . . ,ORN (yR,1 . . . , yR,N )).

Let p be a degree O(R1/2 ·N1/2) polynomial approximating
ANDR(ORN , . . . ,ORN ).
Then p(y1,1, . . . , y1,N , . . . , yR,1, . . . , yR,N ) approximates
SURJ, with degree O(deg(p) · logR) = O(R1/2 ·N1/2 · logR).
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ANDp ∘ ORr	

this function ANDp ∘ ORr r.
ANDp ∘ ORr ≠ ANDp ∘ ORr r

• degE ANDp ∘ ORr = Θ 𝑅𝑁� .
• We’ll	show	that	degE ANDp ∘ ORr r = Θ_ degE
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ANDp ∘ ORr r
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Main	Idea	for	approximating ANDp ∘ ORr r
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Polynomials are algorithms
Polynomials are not algorithms
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Idea 1: Polynomials are algorithms

Imagine that polynomials 𝑝:, 𝑝G, and 𝑝[ represent the acceptance probability of algorithms 
(that output 0 or 1) 𝐴:, 𝐴G, and 𝐴[.

Algorithm:    If 𝐴: outputs 1, then output 𝐴G, else output 𝐴[.

Polynomial:   𝑝: 𝑥 𝑝G 𝑥 + 1 − 𝑝: 𝑥 𝑝[(𝑥).

Example: Implementing an if-then-else statement

Key idea: This is well defined even if 𝑝u ∉ [0,1]
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Idea 2: Polynomials are not algorithms

×

=
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Θ	
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2 1 2 1 3 3

0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1

AND

OR OR

2 2

Sample	of	size	n3/4	

Only	approximate	the	
remaining	OR	gates	on	
inputs	of	Hamming	
weight	at	most	N1/2.

The	Construction	in	a	Picture

Approximate with degree R1/2.
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2 1 2 1 3 3

0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1

AND

OR OR

2 2

Sample	of	size	n3/4	

Only	approximate	the	
remaining	OR	gates	on	
inputs	of	Hamming	
weight	at	most	N1/2.

The	Construction	in	a	Picture

Each OR approximation can be as large 
as exp(N1/4) if fed an input of Hamming 

weight more than N1/2

Approximate with degree R1/2.



The image part with relationship ID rId21 was not found in the file.Stage	2	DetailsStage 2 Details

Lemma (Chebyshev polynomials)

There is a polynomial q of degree Õ(n1/4) such that

|q(x)�ORn(x)| ⌧ 1/n for all |x|  n1/2
.

|q(x)|  exp
⇣
Õ(n1/4)

⌘
otherwise.

Theorem

For x = (x
1

, . . . , xR), let b(x1, . . . , xR)=#{i : |xi| > n1/2}. There
is a polynomial q of degree Õ(R1/2 ·N1/4) such that:

|q(x)�ANDR �ORN (x)|  1/3 if b(x) = 0.

|p(x)|  exp
⇣
Õ(b(x) · n1/4)

⌘
otherwise.

Proof.

Let h approximate ANDR, and let p = h � q.
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degE SURJ𝑅, 𝑁 = (𝑅:/\𝑁:/G).
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Lower Bound Analysis for SURJ

Recall: to approximate SURJR,N , it is su�cient to
approximate the block-composed function
ANDR(ORN , . . . ,ORN ) on N ·R bits, on inputs of
Hamming weight exactly N .

Step 1: Show the converse.
i.e., to approximate SURJ(x), it is necessary to approximate
ANDR(ORN , . . . ,ORN ), under the promise that the input
has Hamming weight at most⇤ N .

Follows from a symmetrization argument (Ambainis 2003).
⇤To get “at most N” rather than “equal to N”, we need to
introduce a dummy range item that is ignored by the function.

[Ambainis05,	BunThaler17]



The image part with relationship ID rId21 was not found in the file.SURJ	Illustrated	(R=3,	N=6)SURJ Illustrated (R = 3, N = 6)

x1	 x2	 x3	 x4	 x5	 x6	

y11	 y12	 y13	 y14	 y15	 y16	 y21	 y22	 y23	 y24	 y25	 y26	 y31	 y32	 y33	 y34	 y35	 y36	

AND	

OR	 OR	 OR	

(Each	xj	in	[R])	
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1. We saw that degE SURJ = Ω degE ANDp ∘ ORr yr .

2. New goal: show that degE ANDp ∘ ORr yr =

3. We saw using dual block composition that 
degE ANDp ∘ ORr = Ω 𝑅𝑁� = Ω(𝑁), when 𝑅 = Θ 𝑁 .

Does the constructed dual also work for ANDp ∘ ORr yr?  No.

degE 𝑓yz > 𝑑 iff there exists 𝜓,

1. ∑ |𝜓 𝑥 |�
( = 1 (1) 𝜓 is ℓ: normalized

2. If deg 𝑞 ≤ 𝑑 then ∑ 𝜓 𝑥 𝑞 𝑥 = 0�
( (2) 𝜓 has pure high degree 𝑑

3. ∑ 𝜓 𝑥 𝑓(𝑥)�
( > 1/3.  (3) 𝜓 is well correlated with 𝑓

4. 𝜓 𝑥 = 0 if 𝑥 > 𝐻 (4) 𝜓 is only supported on the promise
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Fix 1: Use a dual witness 𝜓�� for ORr that only certifies degE ORr = Ω 𝑁:/\ and satisfies a 
“dual decay condition”, i.e., 𝜓�� 𝑥 is exponentially small for 𝑥 ≫ 𝑁:/\. Then the 
composed dual has pure high degree Ω 𝑅� � 𝑁:/\ = Ω(𝑁[/\) and “almost satisfies” condition 
(4).

Fix 2: Although condition (4) is only “almost satisfied” in our dual witness, we can postprocess 
the dual to have it be exactly satisfied [Razborov-Sherstov08].

degE 𝑓yz > 𝑑 iff there exists 𝜓,
1. ∑ |𝜓 𝑥 |�

( = 1 (1) 𝜓 is ℓ: normalized
2. If deg 𝑞 ≤ 𝑑 then ∑ 𝜓 𝑥 𝑞 𝑥 = 0�

( (2) 𝜓 has pure high degree 𝑑
3. ∑ 𝜓 𝑥 𝑓(𝑥)�

( > 1/3.  (3) 𝜓 is well correlated with 𝑓
4. 𝜓 𝑥 = 0 if 𝑥 > 𝐻 (4) 𝜓 is only supported on the promise
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Patching Attempt 1

Goal: Fix Property 3 without destroying Properties 1 or 2.

Fact (cf. Razborov and Sherstov 2008): Suppose

X

|y|>N

| AND-OR(y)| ⌧ N�D.

Then we can “post-process”  AND-OR to “zero out” any mass
it places it inputs of Hamming weight larger than N .
While ensuring that the resulting dual witness still has pure
high degree min{D,PHD( AND-OR)}.
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New Goal: Show that, for D ⇡ R1/4N1/2 ⇡ N3/4,
X

|y|>N

| AND-OR(y)| ⌧ N�D. (1)
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The image part with relationship ID rId21 was not found in the file.Looking	back	at	the	lower	bounds
How did we resolve questions that have resisted attack by the adversary method?

What is the key new ingredient in these lower bounds?

Lower bound for OR:

Any polynomial like this must 
have degree Ω 𝑛� .

Key property we exploit:

Any polynomial like this must 
still have degree Ω 𝑛� !



The image part with relationship ID rId21 was not found in the file.



The image part with relationship ID rId21 was not found in the file.Open	problems

[Ambainis07, Belovs-Špalek13]





The image part with relationship ID rId21 was not found in the file.Approximating	distance	and	entropy

Upper bounds: 𝑂Z 𝑛� for both problems [Bravyi-Harrow-Hassidim09, Li-Wu17]

Lower bounds: Ω_ 𝑛:/[ for both problems [Bravyi-Harrow-Hassidim09, Li-Wu17]

Given 𝑛 numbers in 𝑅 , where 𝑅 = Θ(𝑛), interpret them as a probability distribution:

𝑝� = the fraction of times 𝑟 ∈ [𝑅] appears in the list

Statistical distance from uniform: Compute 𝑝 − :
1 1 :

to additive error 𝜖.

Shannon entropy: Compute the Shannon entropy of 𝑝 to additive error 𝜖.

Our result: Optimal lower bound of Ω_ 𝑛� for both problems. 



The image part with relationship ID rId21 was not found in the file.Image	size	testing

Upper bounds
[Ambainis-Belovs-Regev-deWolf16]

Lower bounds
[Ambainis-Belovs-Regev-deWolf16]

Image size testing: Given 𝑛 numbers in 𝑅 , where 𝑅 = Θ(𝑛), decide if 
(YES) there are at most ℓ distinct range items 𝑟 ∈ [𝑅] in the list, or 
(NO) the input string is far (at least 𝛿𝑛 in Hamming distance) from having this property.

Our result: .  Lower bound holds for the task of distinguishing between 
(YES) every range item 𝑟 ∈ [𝑅] appears at least once, or
(NO) at most 𝛾𝑛 range items appear at least once.
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Upper	bound:	degE AND1 = 𝑂( 𝑛� )
AND1 𝑥:, … , 𝑥1 = �0, if	0 ≤ 𝑥 ≤ 𝑛 − 1

1, if	 𝑥 = 𝑛																,  where |𝑥| is the Hamming weight of 𝑥.

Proof 1. degE AND1 ≤ 2𝑄 AND1 = 𝑂( 𝑛� ) by Grover’s algorithm.

Proof 2. Say we had a univariate polynomial 
𝑞 ℎ = ∑ 𝛼Q�

Q�9 ℎQ , such that

𝑞 ℎ ≤ 1/3 for 0 ≤ ℎ ≤ 𝑛 − 1	
𝑞 ℎ ≥ 2/3 for ℎ = 𝑛

Then the polynomial 𝑝 𝑥:, … , 𝑥1 = 𝑞 ∑ 𝑥u�
u approximates AND1.
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Lower	bound:	degE AND1 = Ω( 𝑛� )

Theorem (using Markov’s inequality): Any univariate polynomial like this must have degree 
Ω 𝑛� . 

Summary of upper bound:
Univariate polynomial like this
⇒ polynomial for AND

Symmetrization [Misky-Papert69]: Polynomial for AND ⇒ univariate polynomial like this 

If 𝑝 𝑥:, … ,𝑥1 approximates a symmetric function (depends on 𝑥 only), we can obtain 
𝑝���(ℎ) approximating the same function of ℎ = 𝑥 with deg(𝑝) ≥ deg 𝑝��� .



The image part with relationship ID rId21 was not found in the file.Advantages	of	the	polynomial	method

Bonus: Polynomial method lower bounds “lift” to lower bounds in communication 
complexity! (For more, see the next two talks by Shalev Ben-David and Adam Bouland) 

For all symmetric 𝑓, 𝑄 𝑓 = Θ(degE 𝑓 ).          [BBCMdW01]
For most natural functions, 

𝑄 𝑓 = Θ(degE 𝑓 )

For , [BBCMdW01] Works for unbounded error

, [BCdWZ99] Works for small error

, [BCdWZ99] Works for zero error

[AS04]
Works when the positive-
weights adversary fails

[BCdWZ99] = Buhrman, Cleve, de Wolf, and Zalka (1999) [AS04] Aaronson and Shi (2004) 
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Fix 2: Although condition (4) is only “almost satisfied” in our dual witness, we can postprocess 
the dual to have it be exactly satisfied [Razborov-Sherstov10].

Intuition: “Large, but not too large” is sufficient for our bounds, because 𝑝(𝑥) is already 
bounded in [0,1] for Hamming weight ≤ 𝐻. So it cannot grow too large for 𝑥 > 𝐻.

4. 𝜓 𝑥 = 0 if 𝑥 > 𝐻 (4) 𝜓 is only supported on the promise

∑ |𝜓 𝑥 |�
(: ( �z = 0 𝑝(𝑥) can be unbounded when 𝑥 > 𝐻

∑ |𝜓 𝑥 |�
(: ( �z = 0.01 𝑝(𝑥) must be 𝑂(1) when 𝑥 > 𝐻

∑ |𝜓 𝑥 |�
(: ( �z 	 is small 𝑝(𝑥) can be large, but not too large


