The Polynomial Method Strikes Back:

Tight Quantum Query Bounds via Dual Polynomials
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Query complexity

Let f:{—1,1}"* - {—1,1} be a function and x € {—1,1}" be an input to f.

X = X1 X2 x3 Xn

Goal: Compute f(x) by reading as few bits of x as possible.

Equivalently, compute f(x) using a
circuit/algorithm with the least number of
uses of this oracle:

i—Ox—Xi

In the quantum setting, we have this
oracle:

|i)|b) —— Ox —— |i)]b - x;)




Quantum query complexity

Quantum query complexity: Minimum number of uses of O, 1n a quantum circuit (F)
that for every input x, outputs f (x) with error < 1/3. QU

A

IO)—UO 0, _Ul—"“O EUT

0) —

Example: Let OR,,(x) = Vj={ x; and AND,, (x) = AjLq x;.
Then Q(OR,,) = Q(AND,,) = 0(y/n) [Grover96, Bennett-Bernstein-Brassard-Vaziranio7]

Classically, we need ©@(n) queries for both problems.




Why query complexity?

Algorithmic motivation

« Algorithms often transfer to the circuit model, while the abstraction of query complexity
often gets r1d of unnecessary details.

« Most quantum algorithms are naturally phrased as query algorithms. E.g., Shor, Grover,
Hidden Subgroup, Linear systems (HHL), etc.

Complexity theoretic motivation

* We can prove statements about the power of different computational models!
(E.g., exponential separation between classical and quantum algorithms)

 Oracle separations between classes, lower bounds on restricted models, upper and lower
bounds in communication complexity, circuit complexity, data structures, etc.



Lower bounds on quantum query complexity

Positive-weights adversary method Negative-weights adversary method
Easy to use, but has many limitations. Cannot Equals (up to constants) quantum query
show any of the results of our work. complexity, but difficult to use.

In recent years, the adversary methods have become the

tools of choice for proving lower bounds.

Polynomial method

« Equals (up to constants) quantum query complexity for many natural functions.

« (Can show lower bounds for algorithms with unbounded error, small error, and no error.
« Works when the positive-weights adversary fails (e.g., the collision problem).

« Lower bounds “lift” to lower bounds 1n communication complexity!



Approximate degree

Approximate degree: Minimum degree of a polynomial p(x4, ..., x,,) with real s
coefficients such that Vx € {—1,1}", | f(x) —p(x)| < 1/3. eg(f)

deg(OR,) = deg(AND,,) = 0(yn) Q(OR,) = Q(AND,) = 0(y/n)

Theorem ([Beals-Buhrman-Cleve-Mosca-de Wolf01]): For any f, The nol 11 method
O e polynomial metho
Q) = L deg(f) o

* For any T-query quantum algorithm A, there 1s a polynomial p of degree 2T such that:
e Forall x € {—1,1}", p(x) equals the probability that A outputs 1 on input x.




Other applications of approximate degree

Upper bounds

« Learning algorithms [Klivans-Servedio04, Klivans-Servedio06, Kalai-Klivans-Mansour-Servedio08]

« Algorithmic approximations of inclusion-exclusion [Kahn-Linial-Samorodnitsky96, Sherstov09]
 Differentially private data release [Thaler-Ullman-Vadhan12, Chandrasekaran-Thaler-Ullman-Wan14]
« Formula & Graph Complexity Lower Bounds [Tal14, Tal17]

Lower bounds

e Communication Complexity [Sherstov07, Shi-Zhu07, Chattopadhyay-Ada08, Lee-Shraibman08,...]
« Circuit Complexity [Minsky-Papert69, Beigel93, Sherstov08]

 Oracle Separations [Beigel94, Bouland-Chen-Holden-Thaler-Vasudevan16]

« Secret Sharing Schemes [Bogdanov-Ishai-Viola-Williamson16]



Results



The k-distinctness problem

k-distinctness: Given n numbers in [R] = {1, ..., R}, does any number appear >k times?
This generalizes element distinctness, which 1s 2-distinctness.

Upper bounds
« Q(Disty) =0 (nk/ (k+1)), using quantum walks [Ambainis07]
. Q(Disty) = 0(n3/*+ Y eXp(k)), using learning graphs [Belovs12]

Lower bounds
« Q(Disty) = Q(Q(Disty)) = Q(nz/g), using the polynomial method [Aaronson-Shi04]

Our result: Q(Disty) = Q(n3/41/(2K),



k-junta testing

k-junta testing: Given the truth table of a Boolean function, decide 1f
(YES) the function depends on at most k variables, or

(NO) the function is far (at least 6n in Hamming distance) from having this property.

Upper bounds
« Q(Juntay) = 0(k) [Atic1-Servedio07]

* Q(Juntay) = Ov(\/%) [Ambainis-Belovs-Regev-deWolf16]

Lower bounds

Qnonadaptive(]untak) — Q(\/F) [Atic1-ServedioO7]
* Q(Juntay) = Q.(kl/ 3) [Ambainis-Belovs-Regev-deWolf16]

Our result: Q(Juntay) = ﬁ(\/%)



Summary of results

Problem Best Prior Upper Bound Our Lower Bound | Best Prior Lower Bound
k-distinctness O(n3/4=1/2 =49 [Bel12a)] Q(n3/4-1/(2k)) Q(n?/3) [AS04]
Image Size Testing O(y/nlogn) [ABRAW16] Q(y/n) 0 (n'/3) [ABRAW16]
k-junta Testing O(Vklogk) [ABRAW16] Q(Vk) Q(k/3) [ABRAW16]
SDU O(y/n) [BHH11] Q(/n) () (n'/3) [BHH11, AS04]
Shannon Entropy O(y/n) [BHH11,LW17] Q(y/n) Q(n'/3) [LW17]

Table 1: Our lower bounds on quantum query complexity and approximate degree vs. prior work.



Surjectivity

Surjectivity: Given n numbers in [R] (R = ©(n)), does every r € [R] appear in the list?

Quantum query complexity
« Q(SUR]) = 0(n) [Beame-Machmouchil2, Sherstov15]

Approximate degree

- Conjecture: deg(SUR]) = Q(n).

. (ievg(SUR]) = ((n?/3) [Aaronson-Shi04, Ambainis05, Bun-Thaler17]
. deg(SUR]) = 0 (n®/*) [Sherstov18]

Our result: deg(SUR]) = Q(n3/%) and a new proof of deg(SUR)) = 0 (n®/%).

SURYJ is the first natural function to have Q (f) > deg(f)!



Summary of results

Problem Best Prior Upper Bound Our Lower Bound Best Prior Lower Bound
k-distinctness O(n3/4=1/2"*=4)) [Bel12a)] Q(n3/4-1/(2k)) Q(n?/3) [AS04]
Image Size Testing O(y/nlogn) [ABRAW16] Q(y/n) 0 (n'/3) [ABRAW16]
k-junta Testing O(Vklogk) [ABRAW16] Q(Vk) Q(k'/3) [ABRAW16]
SDU O(y/n) [BHH11] Q(/n) 0 (n'/3) [BHH11, AS04]
Shannon Entropy O(y/n) [BHH11,LW17] Q(y/n) Q(n'/3) [LW17]

Table 1: Our lower bounds on quantum query complexity and approximate degree vs. prior work.

Problem |Best Prior Upper Bound | Our Upper Bound | Our Lower Bound | Best Prior Lower Bound
Surjectivity O(n3/*) [Shel§] O(n3/4) Q(n3/4) Q(n?/3) [AS04]

Table 2: Our bounds on the approximate degree of Surjectivity vs. prior work.



Surjectivity upper bound
Q(SUR)) = 0(n*'*)

k-junta testing

Q(Juntay) = Q(Vk)

Shannon entropy

Q (Entropy) = Q(vn)

Statistical distance

Q(SDU) = Q(V/n)

Intuition and ideas

Surjectivity lower bound

Q(SUR]) = O(n%/*)

Common

proof
strategy

k-distinctness
3 1

Q(Disty,) = Q(n% ~ 2k)

“duc liop

Reduction

Image size testing

Q(IST) = Q(v¥n)

. 00
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Getting To Know Approximate Degree



The Approximate Degree of AND,

deg(AND,,) = ©(y/n).
m Upper bound: Use Chebyshev Polynomials.

m Markov's Inequality: Let G(t) be a univariate polynomial s.t.
deg(G) < d and max;c_; 1) |G(t)] < 1. Then

max |G'(t)] < d?.
te[—1,1]

m Chebyshev polynomials are the extremal case.
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The Approximate Degree of AND,

deg(AND,,) = O(y/n).

m After shifting a scaling, can turn degree O(y/n) Chebyshev
polynomial into a univariate polynomial Q(t) that looks like:

0.5

\

Q(-1+2/n) = 2/3

m Define n-variate polynomial p via p(z) = Q> ., xi/n).
m Then |p(x) — AND,(z)| <1/3 Vze{-1,1}".



The Approximate Degree of AND,

[NS92] deg(AND,,) = Q(\/n).
m Lower bound: Use symmetrization.
m Suppose |p(z) — AND,(z)| <1/3 Vxe{-1,1}".

m Thereis a way to turn p into a univariate polynomial p>¥™
that looks like this: -
~

——

Q(-1+2/n) 2 2/3

m Claim 1: deg(p¥™) < deg(p).
m Claim 2: Markov's inequality = deg(p¥™) = Q(n'/?).



Prior Work: The Method of Dual
Polynomials and the AND-OR Tree



Beyond Symmetrization

m Symmetrization is “lossy”: in turning an n-variate poly p into
a univariate poly p>™, we throw away information about p.

m Challenge Problem: What is (/igé(AND—ORn)?

//\\ ZAN //\\

1 x 1/2



History of the AND-OR Tree

deg(AND-OR,,) = O(n1/2).

Tight Upper Bound of O(n'/?)

HMWO03]  via quantum algorithms
BNRdWO7] different proof of O(n'/? -logn) (via error reduction-+composition)
Shel3] different proof of tight upper bound (via robustification)

Tight Lower Bound of Q(n'/?)
[BT13] and [Shel3] via the method of dual polynomials




Linear Programming Formulation of Approximate Degree

What is best error achievable by any degree d approximation of f7?
Primal LP (Linear in € and coefficients of p):

min, . ¢
s.t. |p(x) — f(x)] <e for all z € {—1,1}"
degp < d
Dual LP:
max, Y. b(@)f(x)

ze{—-1,1}"

s.t. > @) =1
xe{—1,1}"

Z Y(z)q(z) =0 whenever degq < d
re{-1,1}"



Dual Characterization of Approximate Degree

Theorem: deg. (f) > d iff there exists a “dual polynomial”
Y: {—1,1}" = R with

(1) Z Y(x)f(x) > € *high correlation with f"
xe{—1,1}"

2) > @) =1 “Li-norm 1"
xe{—1,1}"

(3) Z Y(x)q(x) =0, when degg < d  “pure high degree d"
xe{—1,1}"

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.



Dual Characterization of Approximate Degree

Theorem: deg. (f) > d iff there exists a “dual polynomial”
Y: {—1,1}" = R with

(1) Z Y(x)f(x) > € *high correlation with f"
xe{—1,1}"

2) > @) =1 “Li-norm 1"
xe{—1,1}"

(3) Z Y(x)q(x) =0, when degg < d  “pure high degree d"
xe{—1,1}"

Example: 27" - PARITY,, witnesses the fact that
deg. (PARITY ) =n for any € < 1.



Goal: Construct a Dual Polynomial
for the AND-OR Tree



Constructing a Dual Polynomial

By [NS92], there are dual polynomials

wOUT for agé (ANDn1/2) — Q(n1/4) and

Yin for deg (OR,,1/2) = Q(nt/4)
Both [Shel3] and [BT13] combine ¥gyTt and N to obtain a
dual polynomial ¥Yanp.or for AND-OR.

he combining method was proposed in earlier work by [SZ09,
Lee09, She09].



The Combining Technique

nl/2

YAND-OR(Z1; - - -, p12) 1= C - Yout (- .., sgn(tin(@)), - ) T (o)l
i=1

(C' chosen to ensure Yanp-or has Li-norm 1).

AND,

//(\\
//\\ AN //\\



The Combining Technique

YAND-OR(Z1, - - -, Z,1/2) := C - Yout(. . ., sgn(vin(z;)) H [N (i)

(C' chosen to ensure Yanp-or has Li-norm 1).

Must verity:
AND-ORr has pure high degree > nl/4. pl/4 = nl/Q.\/[SheOQ]
YaND-oR has high correlation with AND-OR. [BT13, Shel3]



Our Work: Resolving the Approximate
Degree of Surjectivity



Surjectivity

Surjg n: Input consists of n = N - log,(R) bits, interpreted as a list of N numbers in [R].Does
every r € |R] appear at least once in the list?

_ o
Our result: deg(SURJy ) = & (R# - Nz).

e Let’s start with the upper bound.
* For the upper bound, let’s change the domain and range of all functionsto {0,1}" and {0,1}.



The SURJ Upper Bound: First Try

m Let's start with how to achieve a (loose) bound of
deg(SURJR n) = O(RY? . N1/?).

m lLet
Yij — :
0 otherwise

m [hen

SURJ(CC):ANDR(ORN(yl,l, ce ,yLN), c e ey ORN(yRJ ce 7yR,N))-



SURIJ lllustrated (R=3, N=6)

Yi1 | Y12 | Y13 | Yia | Yis | Yie | Y21 | Y22 | Y23 | Yoa | Yos | Yae | Y31 | Y32 | Y33 | Y3a | Y35 | Y36

X; | X3 | X3 | X4 | X5 | Xg | (Each x;in [R])




SURIJ lllustrated (R=3, N=6)




The SURJ Upper Bound: First Try

m Let's start with how to achieve a (loose) bound of
deg(SURJR n) = O(RY2 . N1/?).

m lLet
Yij — :
0 otherwise

m [hen

SURJ(CC) :ANDR(ORN(yl,l, ce 7y1>N)7 PN ORN(yRJ ce 7yR,N))-
m Let p be a degree O(RY? . N1/2) polynomial approximating
ANDR(ORN, ey ORN)

m Thenp(yi1,.--,Y1.N,---,YR.1s---, YR N) approximates
SURJ, with degree O(deg(p) -log R) = O(R'/? - N'/2 .log R).



Tight Upper Bound For SURJ



Overview of the tight upper bound

Previous slide showed that to approximate SURJy y, suffices to approximate the block-
composed function ANDy o ORy on inputs of Hamming weight exactly N.

The approximationis allowed to take arbitrary values on all other inputs!
Denote this function (ANDg o ORy)Y.

Important: ANDy o ORy # (ANDx o ORpy)Y

deg(ANDg o ORy) = O(/RN).

We'll show that deg((ANDg o ORy)Y) = 8(deg(SURJ, y)) = O(RY*N/2).



Main Idea for approximating
(ANDR O ORN)



Main Idea for approximating (ANDy o OR

THE PRIVATE MAN BEHIND THE FAMOUS FACE!
A MOVING AND REVEALING SELF-PORTRAIT—
“A MUST FOR NIMQOY FANS AND STAR TREK BUFFS!”

ILeolmrdeo
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LEONARD NIMOY

Bl satantine/Nontiction /25719/51.75




Polynomials are algorithms

Polynomials are not algorithms



Overview of the upper bound

Idea 1: Polynomials are algorithms

Polynomials can mimic algorithmic primitives like If-then-else, majority voting, reductions,
sampling, etc.

Example: Implementing an if-then-else statement

Imagine that polynomials p;, p,, and p;3 represent the acceptance probability of algorithms
(that output O or 1) A1, A, and As.

Algorithm: If A; outputs 1, then output A,, else output As.
Polynomial: py (X)p,(x) + (1 — py (x))ps (x).

Key idea: This is well defined even if p; € [0,1] and do not represent probabilities.



Overview of the upper bound

Idea 2: Polynomials are not algorithms

We can use polynomials taking values outside [0,1], even if the final polynomial must be
bounded in [0,1].

p(x)

g S2O(ﬁ)




Tight Upper Bound Details

— ~ 3
» For simplicity, fix R=N/2 for duration of talk. Need to show deg(SURJ; ) = © (N 4) .

-  We’ll approximate SURJ via a “two-stage” construction.

- Think of our construction as a two-stage query algorithm, even though it is not.

3
« Stage 1: The query algorithm randomly samples N 4 inputs.

« Any range item appearing in the sample definitely appears at least once in the input list, so
we can “remove 1t from consideration”.

« Stage 2 just needs to determine whether all range items not appearing in the sample
appear at least once in the input list.



Stage 2

« Key observation: any range item with frequency larger than T=N!? will appear in the
sample at least once with probability at least 1-exp(-N/4).

* j.e. ifarangeitem doesn’t appear in the sample, then we are really confidentthat it does
not have high frequency.

» So Stage 2 only needs an approximation p to SURJ that is accurate when no range items
have frequency larger than T.

-  When b range items have frequency more than T, p can be as large as exp(b-N/4).



The Construction in a Picture

Approximate with degree R12. ’—> AND

° Only approximate the 6
remaining OR gates on

inputs of Homming

weight at most N1/2,

o(1/0(1j0|j0f(f1jO0f1/0|0|O0O(O0O|O|O|O0O |1 1

Sample of size n3/4 I

2 | 2 2 (12 1|33
7 | |




The Construction in a Picture

Approximate with degree R12. ’—> AND

Each OR approximation can be as large
as exp(N4) if fed an input of Hamming
weight more than N2

°( Only approximate the e

! remaining OR gates on
inputs of Homming
weight at most N1/2,




Stage 2 Details

Lemma (Chebyshev polynomials)

There is a polynomial q of degree O(n'/*) such that
m [g(z) — OR,(2)| < 1/n for all |z| < n'/2.

m |g(z)] < exp (O(n1/4)) otherwise.

Theorem

Forx = (z1,...,zR), let b(x1,...,xR)=#{i: |z;| > n'/2}. There
is a polynomial q of degree O(RY? - N'/%) such that:

m |g(z) — ANDRroORy(z)| < 1/3 ifb(x) = 0.
m p(x)| <exp (O(b(x) -n1/4)) otherwise.

Proof.
Let h approximate ANDg, and let p = hogq. []



Surjectivity lower bound:

deg(SURJ ») = Q(RY*N1/%),



Reduction to a composed function

m Recall: to approximate SURJy y, it is sufficient to
approximate the block-composed function
ANDR(ORy,...,ORy) on N - R bits, on inputs of
Hamming weight exactly V.

m Step 1: Show the converse. [Ambainis05, BunThaler17]

m i.e., to approximate SURJ(x), it is necessary to approximate
ANDR(ORp,...,ORp), under the promise that the input
has Hamming weight at most™ V.

m Follows from a symmetrization argument (Ambainis 2003).
m "To get “at most N" rather than “equal to N", we need to
introduce a dummy range item that is ignored by the function.



SURIJ lllustrated (R=3, N=6)

Yi1 | Y12 | Y13 | Yia | Yis | Yie | Y21 | Y22 | Y23 | Yoa | Yos | Yae | Y31 | Y32 | Y33 | Y3a | Y35 | Y36

X; | X3 | X3 | X4 | X5 | Xg | (Each x;in [R])




Progress so far towards deg(SURJ,, ) = Q(RY*N1/2)

1. We saw that deg(SUR]) = Q(deg((ANDg o ORy)=N)).

2. New goal: show that d?g((ANDR o ORy)=N)=0Q (R%N%)
3. We saw using dual block composition that

deg(ANDg o ORy) = Q(VRN) = Q(N), when R = O(N).
Does the constructed dual also work for (ANDy o ORy)=M? No.

Dual formulation for problems where we only care about Hamming weight < H

deg(f=") > d iff there exists 1,

1. Y |vx)| =1 (1) Y is 1 normalized

2. Ifdeg(qg) < dthen),¥Y(x)g(x) =0 (2)y has pure high degree d

3. Y f(x) >1/3. (3) Y is well correlated with f

4. Yx)=0if|x|>H (4) Y is only supported on the promise






Dual witness for deg((ANDy o OR,,)=N)

Dual formulation for problems where we only care about Hamming weight < H
deg(f=) > d iff there exists 1,

1. X, |lvx)| =1 (1) Y is 1 normalized

2. Ifdeg(qg) < dthen),¥(x)g(x) =0 (2)y has pure high degree d

3. 2y )f(x) >1/3. (3) Y is well correlated with f

4. Yx)=0if|x|>H (4) Y is only supported on the promise

Fix 1: Use a dual witness g for OR that only certifies deg(ORy) = Q(N/*) and satisfies a
“dual decay condition”, i.e., [Yor(x)| is exponentially small for |x| > N1/4. Then the
composed dual has pure high degree Q(\/ﬁ NV 4) = (N 3/%) and “almost satisfies” condition
(4).

Fix 2: Although condition (4) 1s only “almost satisfied” in our dual witness, we can postprocess
the dual to have 1t be exactly satisfied [Razborov-Sherstov08].



Details of Fixes 1 and 2

m Fact (cf. Razborov and Sherstov 2008): Suppose

> |anp-or(Y)| < N”

ly|>N

m [Then we can “post-process’ 1anp-or t0 “zero out’ any mass
it places it inputs of Hamming weight larger than V.
m While ensuring that the resulting dual witness still has pure

hlgh degree min{ 7PHD(¢AND-OR)}-



Details of Fixes 1 and 2

m New Goal: Show that, for ) = N3/4,

> [vanp-or(y)| < N7 (1)
ly|[>N
m Recall:
YAND-OR(Y1; - - -, YR) == C - YanD(. . ., sgn(vor(y;)) H [Yor(Y;)]

m A dual witness ©gr for OR can be made weakly blased
toward low Hamming weight inputs.

m Specifically, can ensure:
m PHD(wor) > N/,

m For all ¢, Z|yi|:t lYor(y:)| < t72 -exp(—t/N1/4). (2)

®|YanD-OR(¥1,- - -, YR )| resembles product distribution: Hf:1|¢OR(yj)|
m So it is exponentially more biased toward low Hamming weight

inputs than Yggr itself.



Details of Fixes 1 and 2

m New Goal: Show that, for ) = N3/4,

> [vanp-or(y)| < N7 (1)
ly|[>N
m Recall:
YAND-OR(Y1; - - -, YR) == C - YanD(. . ., sgn(vor(y;)) H [Yor(Y;)]

m A dual witness ©gr for OR can be made weakly blased
toward low Hamming weight inputs.

m Specifically, can ensure:
m PHD(wor) > N/,

m For all ¢, Z|yi|:t lYor(y:)| < t72 -exp(—t/N1/4). (2)

m Intuition: By (2): the mass that HjR:lWOR(yjH places on inputs of
Hamming weight > N is dominated by inputs with |y;| = N/4 for
at least N3/4 values of i.

m Also by (2), each |y;| = N/ contributes a factor of 1/poly(IV).



Details of Fixes 1 and 2

m New Goal: Show that, for /) &~ N3/4

> [vanp-or(y)| < N7 (1)
ly|[>N
m Recall:
YAND-OR(Y1; - - -, YR) == C - YanD(. . ., sgn(vor(y;)) H [Yor(Y;)]

m A dual witness ©gr for OR can be made weakly blased
toward low Hamming weight inputs.
m Specifically, can ensure:
m PHD(¢or) > N'/*.

m For all ¢, Z|yi|:t lYor(y:)| < t72 -exp(—t/N1/4). (2)

m Intuition: By (2): the mass that HjR:lWOR(yjH places on inputs of
Hamming weight > N is dominated by inputs with |y;| = N/4 for
at least N3/4 values of i.

m So total mass on these inputs is exp(—Q(N3/4)).



Closing Thoughts



Looking back at the lower bounds

How did we resolve questions that have resisted attack by the adversary method?

What 1s the key new ingredient in these lower bounds?

Lower bound for OR: Key property we exploit:

61 - n-1n 0 1 vn n-1n

Any polynomial like this must Any polynomial like this must
have degree Q(y/n). still have degree Q(y/n)!



Open problems



Open problems

1. What is the quantum query complexity (or approximate degree) of
Triangle finding

Graph collision

Matrix product verification

k-distinctness (pin down the exponent precisely)

2. What is the approximate degree of k-sum? The quantum query complexity is @(nk/ k+1)

[Ambainis07, Belovs-Spalek13].

3. Is there a function in AC® with approximate degree Q(n)? The best known lower bound is
ﬁ(nl_z_d) for a depth-(2d) AC° function (follows from our results).

4. Do all polynomial size DNFs have approximate degree o(n)? Best lower bound 1s from k-
distinctness. What about the quantum query complexity?



Thanks!



Approximating distance and entropy

Given n numbers in [R], where R = O(n), interpret them as a probability distribution:

p, = the fraction of times r € |R] appears in the list
. . . 12 .
Statistical distance from uniform: Compute Hp - 1 H to additive error €.
1

Shannon entropy: Compute the Shannon entropy of p to additive error €.

Upper bounds: 0(y/n) for both problems [Bravyi-Harrow-Hassidim09, Li-Wu17]

Lower bounds: ﬁ(nl/ 3) for both problems [Bravyi-Harrow-Hassidim09, Li-Wu1l7]

Our result: Optimal lower bound of Q(y/n) for both problems.



Image size testing

Image size testing: Given n numbers in [R], where R = O@(n), decide if
(YES) there are at most £ distinct range items r € [R] in the list, or

(NO) the input string is far (at least 6n in Hamming distance) from having this property.

Upper bounds
« Q(IST) = 0(yn), using the adversary bound dual SDP [Ambainis-Belovs-Regev-deWolf16]

Lower bounds

« Q(IST) = ﬁ(nl/ 3), by a reduction to Collision,, [Ambainis-Belovs-Regev-deWolf16]

Our result: Q(IST) = Q(yn). Lower bound holds for the task of distinguishing between
(YES) every range itemr € [R] appears at least once, or
(NO) at most yn range items appear at least once.



Upper bound: deg(AND,,) = 0(+/n)

0, if0<|x|<n-1

ANDy (1, -y Xn) = {1 if |x| = n

, where |x| 1s the Hamming weight of x.

Proof 1. deg(AND,,) < 2Q(AND,,) = 0(y/n) by Grover’s algorithm.

Proof 2. Say we had a univariate polynomial
q(h) = Y%_, ay h*, such that

qgth) <1/3for0<h<n-1 ge
0 1 n—1n

q(th) = 2/3forh=n

Then the polynomial p(xq, ..., x,,) = q(3}; x;) approximates AND,,.



Lower bound: deg(AND,)) = Q(y/n)

Summary of upper bound:
Univariate polynomial like this
= polynomial for AND

Symmetrization [Misky-Papert69]: Polynomial for AND = univariate polynomial like this

Theorem (using Markov’s inequality): Any univariate polynomial like this must have degree

QVn).



Advantages of the polynomial method

For most natural functions,

For all symmetric f, Q(f) = 0(deg(f)). [BBCMdWO1] 0(f) = 0(deg(f))

Fore < 1/2, Q.(XOR,) = n/2. @YY OE Works for unbounded error
Fore > 1/2", Q.(OR,) = @(\/ nlog(1/€)). [BCAdWZ99] Works for small error

Works when the positive-

Q(Collision,)) = 0(n'/3). [AS04]

weights adversary fails

Bonus: Polynomial method lower bounds “lift” to lower bounds 1n communication
complexity! (For more, see the next two talks by Shalev Ben-David and Adam Bouland)

[BCAWZ99] = Buhrman, Cleve, de Wolf, and Zalka (1999) [AS04] Aaronson and Shi (2004)



Dual witness for deg((ANDy o OR,)=")

Dual formulation for problems where we only care about Hamming weight < H

4. Y(x)=0if|x|>H (4) Y is only supported on the promise

Fix 2: Although condition (4) 1s only “almost satisfied” in our dual witness, we can postprocess
the dual to have it be exactly satisfied [Razborov-Sherstov10].

Dual Primal

Zx:|x|>H Y(x)| =0 p(x) can be unbounded when |x| > H
Yi:xl> 1 P()| = 0.01 p(x) must be O(1) when |x| > H
Dix:x|>n [W(x)] is small p(x) can be large, but not too large

Intuition: “Large, but not too large™ 1s sufficient for our bounds, because p(x) 1s already
bounded in [0,1] for Hamming weight < H. So it cannot grow too large for |x| > H.



