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Abstract

Interactive proofs (IPs) and arguments are cryptographic protocols that enable an untrusted prover to provide
a guarantee that it performed a requested computation correctly. Introduced in the 1980s, IPs and arguments
represented a major conceptual expansion of what constitutes a “proof” that a statement is true.

Traditionally, a proof is a static object that can be easily checked step-by-step for correctness. In contrast,
IPs allow for interaction between prover and verifier, as well as a tiny but nonzero probability that an invalid
proof passes verification. Arguments (but not IPs) even permit there to be “proofs” of false statements, so
long as those “proofs” require exorbitant computational power to find. To an extent, these notions mimic
in-person interactions that mathematicians use to convince each other that a claim is true, without going
through the painstaking process of writing out and checking a traditional static proof.

Celebrated theoretical results from the 1980s and 1990s such as IP = PSPACE and MIP = NEXP
showed that, in principle, surprisingly complicated statements can be verified efficiently. What is more, any
argument can in principle be transformed into one that is zero-knowledge, which means that proofs reveal
no information other than their own validity. Zero-knowledge arguments have a myriad of applications in
cryptography.

Within the last decade, general-purpose zero-knowledge arguments have made the jump from theory
to practice. This has opened new doors in the design of cryptographic systems, and generated additional
insights into the power of IPs and arguments (zero-knowledge or otherwise). There are now no fewer than
five promising approaches to designing efficient, general-purpose zero-knowledge arguments. This survey
covers these approaches in a unified manner, emphasizing commonalities between them.
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Chapter 1

Introduction

This manuscript is about verifiable computing (VC). VC refers to cryptographic protocols called interactive
proofs (IPs) and arguments that enable a prover to provide a guarantee to a verifier that the prover performed
a requested computation correctly. Introduced in the 1980s, IPs and arguments represented a major concep-
tual expansion of what constitutes a “proof” that a statement is true. Traditionally, a proof is a static object
that can be easily checked step-by-step for correctness, because each individual step of the proof should
be trivial to verify. In contrast, IPs allow for interaction between prover and verifier, as well as a tiny but
nonzero probability that an invalid proof passes verification. The difference between IPs and arguments
is that arguments (but not IPs) permit the existence of “proofs” of incorrect statements, so long as those
“proofs” require exorbitant computational power to find.1

Celebrated theoretical results from the mid-1980s and early 1990s indicated that VC protocols can, at
least in principle, accomplish amazing feats. These include enabling a cell phone to monitor the execution
of a powerful but untrusted (even malicious) supercomputer, enabling computationally weak peripheral
devices (e.g., security card readers) to offload security-critical work to powerful remote servers, or letting a
mathematician obtain a high degree of confidence that a theorem is true by looking at only a few symbols
of a purported proof.2

VC protocols can be especially useful in cryptographic contexts when they possess a property called
zero-knowledge. This means that the proof or argument reveals nothing but its own validity.

To give a concrete sense of why zero-knowledge protocols are useful, consider the following quintessen-
tial example from authentication. Suppose that Alice chooses a random password x and publishes a hash
z = h(x), where h is a one-way function. This means that given z = h(x) for a randomly chosen x, enormous
computational power should be required to find a preimage of z under h, i.e., an x′ such that h(x′) = z. Later,
suppose that Alice wants to convince Bob that she is the same person who published z. She can do this
by proving to Bob that she knows an x′ such that h(x′) = z. This will convince Bob that Alice is the same
person who published z, since it means that either Alice knew x to begin with, or she inverted h (which is
assumed to be beyond the computational capabilities of Alice).

How can Alice convince Bob that she knows a preimage of z under h? A trivial proof is for Alice to
send x to Bob, and Bob can easily check that h(x) = z. But this reveals much more information than that
Alice knows a preimage of z. In particular it reveals the preimage itself. Bob can use this knowledge to

1For example, an argument, but not an IP, might make use of a cryptosystem, such that it is possible for a cheating prover to
find a convincing “proof” of a false statement if (and only if) the prover can break the cryptosystem.

2So long as the proof is written in a specific, mildly redundant format. See our treatment of probabilistically checkable proofs
(PCPs) in Chapter 9.
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impersonate Alice forevermore, since now he too knows the preimage of z.
In order to prevent Bob from learning information that can compromise the password x, it is important

that the proof reveals nothing beyond its own validity. This is exactly what the zero-knowledge property
guarantees.

A particular goal of this survey is to describe a variety of approaches to constructing so-called zero-
knowledge Succinct Non-interactive Arguments of Knowledge, or zk-SNARKs for short. “Succinct” means
that the proofs are short. “Non-interactive” means that the proof is static, consisting of a single message
from the prover. “Of Knowledge” roughly means that the protocol establishes not only that a statement
is true, but also that the prover knows a “witness” to the veracity of the statement.3 Argument systems
satisfying all of these properties have a myriad of applications throughout cryptography.

Practical zero-knowledge protocols for highly specialized statements of cryptographic relevance (such
as proving knowledge of a discrete logarithm [Sch89]) have been known for decades. However, general-
purpose zero-knowledge protocols have only recently become plausibly efficient enough for cryptographic
deployment. By general-purpose, we mean protocol design techniques that apply to arbitrary computations.
This exciting progress has involved the introduction of beautiful new protocols, and brought a surge of
interest in zero-knowledge proofs and arguments. This survey seeks to make accessible, in a unified manner,
the main ideas and approaches to the design of these protocols.

Background and context. In the mid-1980s and 1990s, theoretical computer scientists showed that IPs
and arguments can be vastly more efficient (at least, in an asymptotic sense) than traditional NP proofs,4

which are static and information-theoretically secure.5 The foundational results characterizing the power
of these protocols (such as IP=PSPACE [LFKN92, Sha92], MIP=NEXP [BFL91], and the PCP theorem
[ALM+98, AS98]) are some of the most influential and celebrated in computational complexity theory.6

Despite their remarkable asymptotic efficiency, general-purpose VC protocols were long considered
wildly impractical, and with good reason: naive implementations of the theory would have had comically
high concrete costs (trillions of years for the prover, even for very short computations). But the last decade
has seen major improvements in the costs of VC protocols, with a corresponding jump from theory to prac-
tice. Even though implementations of general-purpose VC protocols remain somewhat costly (especially
for the prover), paying this cost can often be justified if the VC protocol is zero-knowledge, since zero-
knowledge protocols enable applications that may be totally impossible without them. Moreover, emerging
applications to public blockchains have elevated the importance of proving relatively simple statements, on
which it is feasible to run modern VC protocols despite their costs.

Approaches to zero-knowledge protocol design, and philosophy of this survey. Argument systems are
typically developed in a two-step process. First, an information-theoretically secure protocol, such as an
IP, multi-prover interactive proof (MIP), or probabilistically checkable proof (PCP), is developed for a
model involving one or more provers that are assumed to behave in some restricted manner (e.g., in an MIP,
the provers are assumed not to send information to each other about the challenges they receive from the
verifier). Second, the information-theoretically secure protocol is combined with cryptography to “force”

3For example, the authentication scenario above really requires a zero-knowledge proof of knowledge for the statement “there
exists a password x such that h(x) = z”. This is because the application requires that Bob be convinced not just of the fact that there
exists a preimage x of z under h (which will always be true if h is a surjective function), but also that Alice knows x.

4We formally define notions such as NP and IP in Section 3.3.
5The term information-theoretically secure here refers to the fact that NP proofs (like IPs, but unlike arguments) are secure

against computationally unbounded provers.
6The results IP=PSPACE and MIP=NEXP are both covered in this survey (see Sections 4.5.5 and 8.5 respectively).
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a (single) prover to behave in the restricted manner, thereby yielding an argument system. This second
step also often endows the resulting argument system with important properties, such as zero-knowledge,
succinctness, and non-interactivity. If the resulting argument satisfies all of these properties, then it is in fact
a zk-SNARK.

By now, there are a variety of promising approaches to developing efficient zk-SNARKs, which can
be categorized by the type of information-theoretically secure protocol upon which they are based. These
include (1) IPs, (2) MIPs, (3) PCPs, or more precisely a related notion called interactive oracle proofs
(IOPs), which is a hybrid between an IP and a PCP, and (4) linear PCPs. Sections 1.2.1-1.2.3 below give a
more detailed overview of these models. This survey explains in a unified manner how to design efficient
protocols in all four information-theoretically secure models, emphasizing commonalities between them.

IPs, MIPs, and PCPs/IOPs can all be transformed into succinct interactive arguments by combining them
with a cryptographic primitive called a polynomial commitment scheme; the interactive arguments can then
be rendered non-interactive and publicly verifiable by applying a cryptographic technique called the Fiat-
Shamir transformation (Section 5.2), yielding a SNARK. Transformations from linear PCPs to arguments
are somewhat different, though closely related to certain polynomial commitment schemes. As with the
information-theoretically secure protocols themselves, this survey covers these cryptographic transforma-
tions in a unified manner.

Because of the two-step nature of zk-SNARK constructions, it is often helpful to first understand proofs
and arguments without worrying about zero-knowledge, and then at the very end understand how to achieve
zero-knowledge as an “add on” property. Accordingly, we do not discuss zero-knowledge until relatively
late in this survey (Chapter 11). Earlier chapters are devoted to describing efficient protocols in each of the
information-theoretically secure models, and explaining how to transform them into succinct arguments.

By now, zk-SNARKs have been deployed in a number of real-world systems, and there is a large and
diverse community of researchers, industry professionals, and open source software developers working to
improve and deploy the technology. This survey assumes very little formal mathematical background—
mainly comfort with modular arithmetic, some notions from the theory of finite fields and groups, and
basic probability theory—and is intended as a resource for anyone interested in verifiable computing and
zero-knowledge. However, it does require significant mathematical maturity and considerable comfort with
theorems and proofs. Also helpful (but not strictly necessary) is knowledge of standard complexity classes
like P and NP, and complexity-theoretic notions such as NP-completeness.

Ordering of information-theoretically secure models in this survey. We first cover IPs, then MIPs, then
PCPs and IOPs, then linear PCPs. This ordering roughly follows the chronology of the models’ introduction
to the research literature. Perhaps ironically, the models have been applied to practical SNARK design in
something resembling reverse chronological order. For example, the first practical SNARKs were based
on linear PCPs. In fact, this is not a coincidence: a primary motivation for introducing linear PCPs in the
first place was the goal of obtaining simpler and more practical succinct arguments, and specifically the
impracticality of arguments derived from PCPs.

Chapter-by-chapter outline. Chapter 2 familiarizes the reader with randomness and the power of proba-
bilistic proof systems, through two easy but important case studies. Chapter 3 introduces technical notions
that will be useful throughout the survey. Chapters 4 describes state-of-the-art interactive proofs. Chapter
5 describes the Fiat-Shamir transformation, a key technique that is used to remove interaction from cryp-
tographic protocols. Chapter 7 introduces the notion of a polynomial commitment scheme, and combines
it with the IPs of Chapter 4 and the Fiat-Shamir transformation of Chapter 5 to obtain the first SNARK
covered in the survey. Chapter 8 describes state-of-the-art MIPs and SNARKs derived thereof. Chapters
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9-10 describe PCPs and IOPs, and SNARKs derived thereof.
Chapter 6 is a standalone chapter describing techniques for representing computer programs in formats

amenable to application of such SNARKs.
Chapter 11 introduces the notion of zero-knowledge. Chapter 12 describes a particularly simple type of

zero-knowledge argument called Σ-protocols, and uses them to derive commitment schemes. These com-
mitment schemes serve as important building blocks for more complicated protocols covered in subsequent
chapters. Chapter 13 describes efficient techniques for transforming non-zero-knowledge protocols into
zero-knowledge ones. Chapters 14-16 cover practical polynomial commitment schemes, which can be used
to turn any IP, MIP, or IOP into a succinct zero-knowledge argument of knowledge (zkSNARK). Chapter 17
covers our final approach to designing zkSNARKs, namely through linear PCPs. Chapter 18 describes how
to recursively compose SNARKs to improve their costs and achieve important primitives such as so-called
incrementally verifiable computation. Finally, Chapter 19 provides a taxonomy of design paradigms for
practical zkSNARKs, and delineates the pros and cons of each approach.

Suggestions for reading the manuscript. The manuscript may happily be read from start to finish, but
non-linear paths may offer a faster route to a big-picture understanding of SNARK design techniques. Sug-
gestions to this effect are as follows.

Chapters 2 and 3 introduce basic technical notions used throughout all subsequent chapters (finite fields,
IPs, arguments, low-degree extensions, the Schwartz-Zippel lemma, etc.), and should not be skipped by
readers unfamiliar with these concepts.

Readers may next wish to read the final chapter, Chapter 19, which provides a birds-eye view of all
SNARK design approaches and how they relate to each other. Chapter 19 uses some terminology that may
be unfamiliar to the reader at this point, but it should nonetheless be understandable and it provides context
that is helpful to have in mind when working through more technical chapters.

After that, there are many possible paths through the manuscript. Readers specifically interested in the
SNARKs that were the first to be deployed in commercial settings can turn to Chapter 17 on linear PCPs.
This chapter is essentially self-contained but for its use of pairing-based cryptography that is introduced
in Section 15.1 (and, at the very end, its treatment of zero-knowledge, a concept introduced formally in
Chapter 11).

Otherwise, readers should turn to understanding the alternative approach to SNARK design, namely to
combine a polynomial IOP (of which IPs, MIPs, and PCPs are special cases) with a polynomial commitment
scheme.

To quickly understand polynomial IOPs, we suggest a careful reading of Section 4.1 on the sum-check
protocol, followed by Section 4.6 on the GKR interactive proof protocol for circuit evaluation, or Section
8.2 giving a 2-prover MIP for circuit satisfiability. Next, the reader can turn to Chapter 7, which explains
how to combine such protocols with polynomial commitments to obtain succinct arguments.

To understand polynomial commitment schemes, the reader can either tackle Sections 10.4 and 10.5 to
understand IOP-based polynomial commitments, or instead turn to Chapters 12 and 14-16 (in that order) to
understand polynomial commitments based on the discrete logarithm problem and pairings.

A compressed overview of polynomial IOPs and polynomial commitments is provided in a sequence of
three talk videos posted on this manuscript’s webpage7. Readers may find it useful to watch these videos
prior to a detailed reading of Chapters 4-10.

Material that can be skipped on a first reading. Sections 4.2-4.5 are devoted to detailed example appli-
cations of the sum-check protocol and explaining how to efficiently implement the prover within it. While

7https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
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these sections contain interesting results and are useful for familiarizing oneself with the sum-check proto-
col, subsequent chapters do not depend on them. Similarly, Chapter 5 on the Fiat-Shamir transformation and
Chapter 6 on front-ends are optional on a first reading. Sections 9.3 and 9.4 provide PCPs that are mainly of
historical interest and can be skipped.

Chapters 11 and 13 offer treatments of zero-knowledge that largely stand on their own. Similarly,
Chapter 18 discusses SNARK composition and stands on its own.

1.1 Mathematical Proofs

This survey covers different notions of mathematical proofs and their applications in computer science and
cryptography. Informally, what we mean by a proof is anything that convinces someone that a statement is
true, and a “proof system” is any procedure that decides what is and is not a convincing proof. That is, a
proof system is specified by a verification procedure that takes as input any statement and a claimed “proof”
that the statement is true, and decides whether or not the proof is valid.

What properties do we want in a proof system? Here are four obvious ones.

• Any true statement should have a convincing proof of its validity. This property is typically referred
to as completeness.

• No false statement should have a convincing proof. This property is referred to as soundness.

• Ideally, the verification procedure will be “efficient”. Roughly, this means that simple statements
should have short (convincing) proofs that can be checked quickly.

• Ideally, proving should be efficient too. Roughly, this means that simple statements should have short
(convincing) proofs that can be found quickly.

Traditionally, a mathematical proof is something that can be written and checked line-by-line for correct-
ness. This traditional notion of proof is precisely the one captured by the complexity class NP.8 However,
over the last 30+ years, computer scientists have studied much more general and exotic notions of proofs.
This has transformed computer scientists’ notions of what it means to prove something, and has led to major
advances in complexity theory and cryptography.

1.2 What kinds of non-traditional proofs will we study?

All of the notions of proofs that we study in this survey will be probabilistic in nature. This means that the
verification procedure will make random choices, and the soundness guarantee will hold with (very) high
probability over those random choices. That is, there will be a (very) small probability that the verification
procedure will declare a false statement to be true.

8Roughly speaking, the complexity class NP contains all problems for which the correct answer on any input is either YES or
NO, and for all YES instances, there is an efficiently-checkable (traditional) proof that the correct answer is YES. See Section 3.3
for details.
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Figure 1.1: Depiction of an interactive proof or argument used to check that a cloud computing provider is storing and
processing a user’s data correctly.

1.2.1 Interactive Proofs (IPs)

To understand what an interactive proof is, it is helpful to think of the following application. Imagine a
business (verifier) that is using a commercial cloud computing provider to store and process its data. The
business sends all of its data up to the cloud (prover), which stores it, while the business stores only a very
small “secret” summary of the data (meaning that the cloud does not know the user’s secret summary). Later,
the business asks the cloud a question about its data, typically in the form of a computer program f that the
business wants the cloud to run on its data using the cloud’s vast computing infrastructure. The cloud does
so, and sends the user the claimed output of the program, f (data). Rather than blindly trust that the cloud
executed the program on the data correctly, the business can use an interactive proof system (IP) to obtain a
formal guarantee that the claimed output is correct.

In the IP, the business interrogates the cloud, sending a sequence of challenges and receiving a sequence
of responses. At the end of the interrogation, the business must decide whether to accept the answer as valid
or reject it as invalid. See Figure 1.1 for a diagram of this interaction.

Completeness of the IP means that if the cloud correctly runs the program on the data and follows
the prescribed protocol, then the user will be convinced to accept the answer as valid. Soundness of the
IP means that if the cloud returns the wrong output, then the user will reject the answer as invalid with
high probability no matter how hard the cloud works to trick the user into accepting the answer as valid.
Intuitively, the interactive nature of the IP lets the business exploit the element of surprise (i.e., the fact that
the cloud cannot predict the business’s next challenge) to catch a lying cloud in a lie.

It is worth remarking on an interesting difference between IPs and traditional static proofs. Static proofs
are transferrable, meaning that if Peggy (prover) hands Victor (verifier) a proof that a statement is true,
Victor can turn around and convince Tammy (a third party) that the same statement is true, simply by
copying the proof. In contrast, an interactive proof may not be transferrable. Victor can try to convince
Tammy that the statement is true by sending Tammy a transcript of his interaction with Peggy, but Tammy
will not be convinced unless Tammy trusts that Victor correctly represented the interaction. This is because
soundness of the IP only holds if, every time Peggy sends a response to Victor, Peggy does not know what
challenge Victor will respond with next. The transcript alone does not give Tammy a guarantee that this
holds.
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1.2.2 Argument Systems

Argument systems are IPs, but where the soundness guarantee need only hold against cheating provers that
run in polynomial time.9 Argument systems make use of cryptography. Roughly speaking, in an argument
system a cheating prover cannot trick the verifier into accepting a false statement unless it breaks some
cryptosystem, and breaking the cryptosystem is assumed to require superpolynomial time.

1.2.3 Multi-Prover Interactive Proofs, Probabilistically Checkable Proofs, etc.

An MIP is like an IP, except that there are multiple provers, and these provers are assumed not to share
information with each other regarding what challenges they receive from the verifier. A common analogy
for MIPs is placing two or more criminal suspects in separate rooms before interrogating them, to see if they
can keep their story straight. Law enforcement officers may be unsurprised to learn that the study of MIPs
has lent theoretical justification to this practice. Specifically, the study of MIPs has revealed that if one locks
the provers in separate rooms and then interrogates them separately, they can convince their interrogators of
much more complicated statements than if they are questioned together.

In a PCP, the proof is static as in a traditional mathematical proof, but the verifier is only allowed to read a
small number of (possibly randomly chosen) characters from the proof.10 This is in analogy to a lazy referee
for a mathematical journal, who does not feel like painstakingly checking the proofs in a submitted paper for
correctness. The PCP theorem [ALM+98, AS98] essentially states that any traditional mathematical proof
can be written in a format that enables this lazy reviewer to obtain a high degree of confidence in the validity
of the proof by inspecting just a few words of it.

Philosophically, MIPs and PCPs are extremely interesting objects to study, but they are not directly
applicable in most cryptographic settings, because they make unrealistic or onerous assumptions about the
prover(s). For example, soundness of any MIP only holds if the provers do not share information with
each other regarding what challenges they receive from the verifier. This is not directly useful in most
cryptographic settings, because typically in these settings there is only a single prover, and even if there is
more than one, there is no way to force the provers not to communicate. Similarly, although the verifier only
reads a few characters of a PCP, a direct implementation of a PCP would require the prover to transmit the
whole proof to the verifier, and this would be the dominant cost in most real-world scenarios (the example
of a lazy journal referee notwithstanding). That is, once the prover transmits the whole proof to the verifier,
there is little real-world benefit to having the verifier avoid reading the whole proof.

However, by combining MIPs and PCPs with cryptography, we will see how to turn them into argument
systems, and these are directly applicable in cryptographic settings. For example, we will see in Section 9.2
how to turn a PCP into an argument system in which the prover does not have to send the whole PCP to the
verifier.

Section 10.2 of this survey in fact provides a unifying abstraction, called polynomial IOPs, of which all
of the IPs, MIPs, and PCPs that we cover are a special case. It turns out that any polynomial IOP can be
transformed into an argument system with short proofs, via a cryptographic primitive called a polynomial
commitment scheme.

9Roughly speaking, this means that if the input has size n, then the prover’s runtime (for sufficiently large values of n) should
be bounded above by some constant power of n, e.g., n10.

10More precisely, a PCP verifier is allowed to read as much of the proof as it wants. However, for the PCP to be considered
efficient, it must be the case that the verifier only needs to read a tiny fraction of the proof to ascertain with high confidence whether
or not the proof is valid.
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Chapter 2

The Power of Randomness: Fingerprinting
and Freivalds’ Algorithm

2.1 Reed-Solomon Fingerprinting

The proof systems covered in this survey derive much of their power and efficiency from their use of ran-
domness. Before we discuss the details of such proof systems, let us first develop an appreciation for how
randomness can be exploited to dramatically improve the efficiency of certain algorithms. Accordingly,
in this section, there are no untrusted provers or computationally weak verifiers. Rather, we consider two
parties, Alice and Bob, who trust each other and want to cooperate to jointly compute a certain function of
their inputs.

2.1.1 The Setting

Alice and Bob live across the country from each other. They each hold a very large file, each consisting
of n characters (for concreteness, suppose that these are ASCII characters, so there are m = 128 possible
characters). Let us denote Alice’s file as the sequence of characters (a1, . . . ,an), and Bob’s as (b1, . . . ,bn).
Their goal is to determine whether their files are equal, i.e., whether ai = bi for all i= 1, . . . ,n. Since the files
are large, they would like to minimize communication, i.e., Alice would like to send as little information
about her file to Bob as possible.

A trivial solution to this problem is for Alice to send her entire file to Bob, and Bob can check whether
ai = bi for all i = 1, . . . ,n. But this requires Alice to send all n characters to Bob, which is prohibitive if n is
very large. It turns out that no deterministic procedure can send less information than this trivial solution.11

However, we will see that if Alice and Bob are allowed to execute a randomized procedure that might
output the wrong answer with some tiny probability, say at most 0.0001, then they can get away with a much
smaller amount of communication.

2.1.2 The Communication Protocol

The High-Level Idea. The rough idea is that Alice is going to pick a hash function h at random from a
(small) family of hash functions H. We will think of h(x) as a very short “fingerprint” of x. By fingerprint,

11The interested reader is directed to [KN97, Example 1.21] for a proof of this fact, based on the so-called fooling set method
in communication complexity.
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we mean that h(x) is a “nearly unique identifier” for x, in the sense that for any y ̸= x, the fingerprints of x
and y differ with high probability over the random choice of h, i.e.,

for all x ̸= y, Pr
h∈H

[h(x) = h(y)]≤ 0.0001.

Rather than sending a to Bob in full, Alice sends h and h(a) to Bob. Bob checks whether h(a) = h(b).
If h(a) ̸= h(b), then Bob knows that a ̸= b, while if h(a) = h(b), then Bob can be very confident (but not
100% sure) that a = b.

The Details. To make the above outline concrete, fix a prime number p ≥ max{m,n2}, and let Fp denote
the set of integers modulo p. For the remainder of this section, we assume that all arithmetic is done modulo
p without further mention.12 This means that all numbers are replaced with their remainder when divided
by p. So, for example, if p = 17, then

(
2 ·32 +4

)
(mod 17) = 22 (mod 17) = 5.

The reason p must be chosen larger than n2 is that the error probability of the protocol we are about to
describe is less than n/p, and we wish this quantity to be bounded above by 1/n (larger choices of p will
result in yet smaller error probabilities). The reason p must be chosen larger than the number of possible
characters m is that the protocol will interpret Alice and Bob’s inputs as vectors in Fn

p and check whether
these vectors are equal. This means that we need a way to associate each possible character in Alice and
Bob’s inputs with a different element of Fp, which is possible if and only if p is greater than or equal to m.

For each r ∈ Fp, define hr(a1, . . . ,an) = ∑
n
i=1 ai · ri−1. The family H of hash functions we will consider

is

H= {hr : r ∈ Fp}. (2.1)

Intuitively, each hash function hr interprets its input (a1, . . . ,an) as the coefficients of a degree n− 1
polynomial, and outputs the polynomial evaluated at r. That is, in our communication protocol, Alice picks
a random element r from Fp, computes v= hr(a), and sends v and r to Bob. Bob outputs EQUAL if v= hr(b),
and outputs NOT-EQUAL otherwise.

2.1.3 The Analysis

We now prove that this protocol outputs the correct answer with very high probability. In particular:

• If ai = bi for all i = 1, . . . ,n, then Bob outputs EQUAL for every possible choice of r.

• If there is even one i such that ai ̸= bi, then Bob outputs NOT-EQUAL with probability at least
1− (n−1)/p, which is at least 1−1/n by choice of p≥ n2.

The first property is easy to see: if a = b, then obviously hr(a) = hr(b) for every possible choice of r.
The second property relies on the following crucial fact, whose validity we justify later in Section 2.1.6.

Fact 2.1. For any two distinct (i.e., unequal) polynomials pa, pb of degree at most n with coefficients in Fp,
pa(x) = pb(x) for at most n values of x in Fp.

12The reason to perform all arithmetic modulo p rather than over the integers is to ensure that all numbers arising in the protocol
can always be represented using just log2(p) = O(log(n)+ log(m)) bits. If arithmetic were performed over the integers rather than
modulo p, then the protocol covered in this section would require Alice to send to Bob an integer that may have magnitude more
than 2n, which would require more than n bits to represent. This is nearly as expensive as having Alice send her entire input to Bob.
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Let pa(x) = ∑
n
i=1 ai · xi−1 and similarly pb(x) = ∑

n
i=1 bi · xi−1. Observe that both pa and pb are polyno-

mials in x of degree at most n− 1. The value v that Alice sends to Bob in the communication protocol is
precisely pa(r), and Bob compares this value to pb(r).

By Fact 2.1, if there is even one i such that ai ̸= bi, then there are at most n− 1 values of r such that
pa(r) = pb(r). Since r is chosen at random from Fp, the probability that Alice picks such an r is thus at most
(n−1)/p. Hence, Bob outputs NOT-EQUAL with probability at least 1− (n−1)/p (where the probability
is over the random choice of r).

2.1.4 Cost of the Protocol

Alice sends only two elements of Fp to Bob in the above protocol, namely v and r. In terms of bits, this is
O(logn) bits assuming p≤ nc for some constant c. This is an exponential improvement over the n · logm bits
sent in the deterministic protocol (all logarithms in this manuscript are to base 2 unless the base is explicitly
specified otherwise). This is an impressive demonstration of the power of randomness.13

2.1.5 Discussion

We refer to the above protocol as Reed-Solomon fingerprinting because pa(r) is actually a random entry in
an error-corrected encoding of the vector (a1, . . . ,an). The encoding is called the Reed-Solomon encoding.
Several other fingerprinting methods are known. Indeed, all that we really require of the hash family H
used in the protocol above is that for any x ̸= y, Prh∈H[h(x) = h(y)] is small. Many hash families are known
to satisfy this property,14 but Reed-Solomon fingerprinting will prove particularly relevant in our study of
probabilistic proof systems, owing to its algebraic structure.

A few sentences on finite fields. A field is any set equipped with addition, subtraction, multiplication, and
division operations, and such that these operations behave roughly the same as they do over the rational
numbers.15 So, for example, the set of real numbers is a field, because for any two real numbers c and d, it
holds that c+d, c−d, c ·d, and (assuming d ̸= 0) c/d are themselves all real numbers. The same holds for
the set of complex numbers, and the set of rational numbers. In contrast, the set of integers is not a field,
since dividing two integers does not necessarily yield another integer.

13Readers familiar with cryptographic hash functions such as SHA-3 may be in the habit of thinking of such a hash function
as a fixed, deterministic function, and hence perplexed by the characterization of our protocol as randomized (as Alice just sends
the hash function h and the evaluation h(a) to Bob, where a is Alice’s input vector). To this, we offer two clarifications. First,
the communication protocol in this section actually does not require a cryptographic hash function. Rather, it uses a function
chosen at random from the hash family given in Equation (2.1), which is in fact far simpler than any cryptographic hash family,
e.g., it is not collision-resistant or one-way. Second, cryptographic hash functions such as SHA-3 really should be modeled as
having been sampled at random from some large family. Otherwise, properties such as collision-resistance would be broken
against non-uniform adversaries (i.e., adversaries permitted unlimited pre-processing). For example, collision-resistance of any
fixed deterministic function h is broken by simply “hard-coding” into the adversary two distinct inputs x,x′ such that h(x) = h(x′).
This pre-processing attack does not work if h is chosen at random from a large family of functions, and the pre-processing has to
occur prior to the random selection of h.

14Such hash families are called universal. The excellent Wikipedia article on universal hashing contains many constructions
https://en.wikipedia.org/wiki/Universal_hashing.

15In more detail, the addition and multiplication operations in any field must be associative and commutative. They must also
satisfy the distributive law, i.e., a · (b+c) = a ·b+a ·c. Moreover, there must be two special elements in the field, denoted 0 and 1,
that are additive and multiplicative identity elements, i.e., for all field elements a, it must hold that a+0 = a and a ·1 = a. Every
field element a must have an additive inverse, i.e., a field element −a such that a+(−a) = 0. This ensures that subtraction can
be defined in terms of addition of an additive inverse, i.e., b− a is defined as b+(−a). And every nonzero field element a must
have a multiplicative inverse a−1 such that a · a−1 = 1. This ensures that division by a nonzero field element a can be defined as
multiplication by a−1.
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For any prime number p, Fp is also a field (a finite one). Here, the field operations are simply addition,
subtraction, multiplication, and division modulo p. What we mean by division modulo p requires some
explanation: for every a ∈ Fp \{0}, there is a unique element a−1 ∈ Fp such that a ·a−1 = 1. For example,
if p = 5 and a = 3, then a−1 = 2, since 3 · 2 (mod 5) = 6 (mod 5) = 1. Division by a in Fp refers to
multiplication by a−1. So if p = 5, then in Fp, 4/3 = 4 ·3−1 = 4 ·2 = 3.

Much later in this manuscript (e.g., Section 15.1), we will exploit the fact that for any prime power (i.e.,
pk for some prime p and positive integer k), there is a unique finite field of size pk, denoted Fpk .16

2.1.6 Establishing Fact 2.1

Fact 2.1 is implied by (in fact, equivalent to) the following fact.

Fact 2.2. Any nonzero polynomial of degree at most n over any field has at most n roots.

A simple proof of Fact 2.2 can be found online at [hp]. To see that Fact 2.2 implies Fact 2.1, observe
that if pa and pb are distinct polynomials of degree at most n, and pa(x) = pb(x) for more than n values of
x ∈ Fp, then pa− pb is a nonzero polynomial of degree at most n with more than n roots.

2.2 Freivalds’ Algorithm

In this section, we see our first example of an efficient probabilistic proof system.

2.2.1 The Setting

Suppose we are given as input two n×n matrices A and B over Fp, where p> n2 is a prime number. Our goal
is to compute the product matrix A ·B. Asymptotically, the fastest known algorithm for accomplishing this
task is very complicated, and runs in time roughly O(n2.37286) [LG14, AW21]. Moreover, the algorithm is
not practical. But for the purposes of this manuscript, the relevant question is not how fast can one multiply
two matrices—it’s how efficiently can one verify that two matrices were multiplied correctly. In particular,
can verifying the output of a matrix multiplication problem be done faster than the fastest known algorithm
for actually multiplying the matrices? The answer, given by Freivalds in 1977 [Fre77], is yes.

Formally, suppose someone hands us a matrix C, and we want to check whether or not C = A ·B. Here
is a very simple randomized algorithm that will let us perform this check in O(n2) time.17 This is only a
constant factor more time than what is required to simply read the matrices A,B, and C.

2.2.2 The Algorithm

First, choose a random r ∈ Fp, and let x = (1,r,r2, . . . ,rn−1). Then compute y =Cx and z = A ·Bx, outputting
YES if y = z and NO otherwise.

16More precisely, all finite fields of size pk are isomorphic, roughly meaning they have the exact same structure, though they
may not assign names to elements in the same manner.

17Throughout this manuscript, we assume that addition and multiplication operations in finite fields take constant time.
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2.2.3 Runtime

We claim that the entire algorithm runs in time O(n2). It is easy to see that generating the vector x =
(1,r,r2, . . . ,rn−1) can be done with O(n) total multiplication operations (r2 can be computed as r · r, then r3

can be computed as r ·r2, then r4 as r ·r3, and so on). Since multiplying an n×n matrix by an n-dimensional
vector can be done in O(n2) time, the remainder of the algorithm runs in O(n2) time: computing y involves
multiplying C by the vector x, and computing A ·Bx involves multiplying B by x to get a vector w = Bx, and
then multiplying A by w to compute A ·Bx.

2.2.4 Completeness and Soundness Analysis

Let D = A ·B, so that our goal is to determine whether the claimed product matrix C actually equals the true
product matrix D. Letting [n] denote the set {1,2, . . . ,n}, we claim that the above algorithm satisfies the
following two conditions:

• If C = D, then the algorithm outputs YES for every possible choice of r.

• If there is even one (i, j)∈ [n]× [n] such that Ci, j ̸= Di, j, then Bob outputs NO with probability at least
1− (n−1)/p.

The first property is easy to see: if C = D, then clearly Cx = Dx for all vectors x, so the algorithm will
output YES for every choice of r. To see that the second property holds, suppose that C ̸= D, and let Ci and
Di denote the ith row of C and D respectively. Obviously, since C ̸= D, there is some row i such that Ci ̸= Di.
Recalling that x = (1,r,r2, . . . ,rn−1), observe that (Cx)i is precisely pCi(r), the Reed-Solomon fingerprint of
Ci as in the previous section. Similarly, (A ·B · x)i = pDi(r). Hence, by the analysis of Section 2.1.3, the
probability that (Cx)i ̸= (A ·B · x)i is at least 1− (n−1)/p, and in this event the algorithm outputs NO.

2.2.5 Discussion

Whereas fingerprinting saved communication compared to a deterministic protocol, Freivalds’ algorithm
saves runtime compared to the best known deterministic algorithm. We can think of Freivalds’ algorithm
as our first probabilistic proof system: here, the proof is simply the answer C itself, and the O(n2)-time
verification procedure simply checks whether Cx = A ·Bx.

Freivalds actually described his algorithm with a perfectly random vector x ∈ Fn
p, rather than x =

(1,r,r2, . . . ,rn−1) for a random r ∈ Fp (see Exercise 3.1). We chose x = (1,r,r2, . . . ,rn−1) to ensure that
(Cx)i is a Reed-Solomon fingerprint of row i of C, thereby allowing us to invoke the analysis from Section
2.1.

2.3 An Alternative View of Fingerprinting and Freivalds’ Algorithm

Recall from Section 2.1.5 that the fingerprinting protocol for equality testing can be viewed as follows. Alice
and Bob replace their length-n vectors a,b ∈ Fn

p with so-called Reed-Solomon encodings of these vectors.
These encodings are vectors of length p≫ n. They interpret a and b as specifying polynomials pa and pb
over Fp, and for each r ∈ Fp, the r’th entry of the encodings of a and b are respectively pa(r) and pb(r). See
Figure 2.1 for an example.

The Reed-Solomon encoding of a vector a is a much larger vector than a itself—whereas a has length
n, the encoding of a has length p. The encoding is distance-amplifying: if a and b differ on even a single
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Figure 2.1: On the left is the vector a = (2,1,1) of length 3 with entries interpreted as elements of the field F11, as well
as its Reed-Solomon encoding. The Reed-Solomon encoding interprets a as the polynomial pa(x) = 2+ x+ x2 and
lists all evaluations of pa over the field F11. On the right is the vector b = (2,1,0) and its Reed-Solomon encoding.

coordinate, then their encodings will differ on a 1−(n−1)/p fraction of coordinates.18 Due to the distance-
amplifying nature of the code, it is enough for Alice to pick a single random entry of the encoding of her
vector a and send it to Bob, who compares it to the corresponding entry of b’s encoding.

Hence, checking equality of two vectors a and b was reduced to checking equality of a single (randomly
chosen) entry of the encodings. Note that while the encodings of a and b are huge vectors, neither Alice
nor Bob ever needed to materialize the full encodings—they both only needed to “access” a single random
entry of each encoding.

Similarly, Freivalds’ algorithm can be thought of as evaluating a single randomly chosen entry of the
Reed-Solomon encoding of each row of the claimed answer C and the true answer D, and comparing the
results. Evaluating just a single entry of the encoding of each row of D can be done in just O(n2) time,
which is much faster than any known algorithm to compute D from scratch.

In summary, both protocols reduced the task of checking equality of two large objects (the vectors a and b
in the fingerprinting protocol, and the claimed answer matrix and true answer matrix in Freivalds’ algorithm)
to checking equality of just a single random entry of distance-amplified encodings of those objects. While
deterministically checking equality of the two large objects would be very expensive in terms of either
communication or computation time, evaluating a single entry of the each object’s encoding can be done
with only logarithmic communication or in just linear time.

2.4 Univariate Lagrange Interpolation

The Reed-Solomon encoding of a vector a = (a1, . . . ,an) ∈ Fn described in Section 2.3 interprets a as the
coefficients of a univariate polynomial pa of degree n−1, i.e., pa(X) = ∑

n
i=1 aiX i−1. There are other ways to

interpret a as the description of a univariate polynomial qa of degree n−1. The most natural such alternative
is to view a1, . . . ,an as the evaluations of qa over some canonical set of inputs, say, {0,1, . . . ,n−1}. Indeed,

18Reed-Solomon codes, and other encoding procedures used in this manuscript, are typically called error-correcting codes
rather than distance-amplifying codes. Distance-amplification of the encodings in fact implies error-correcting properties, meaning
that if some entries of an encoding are corrupted, the “true” encoding can be recovered. However, no parties in any of the protocols
in this manuscript ever need to correct errors—only the distance-amplifying properties of the encoding procedure are exploited by
the protocols.
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as we now explain, for any list of n (input, output) pairs, there is a unique univariate polynomial of degree
n−1 consistent with those pairs. The process of defining this polynomial qa is called Lagrange interpolation
for univariate polynomials.

Lemma 2.3 (Univariate Lagrange Interpolation). Let p be a prime larger than n and Fp be the field of
integers modulo p. For any vector a = (a1, . . . ,an) ∈ Fn, there is a unique univariate polynomial qa of
degree at most n−1 such that

qa(i) = ai+1 for i = 0, . . . ,n−1. (2.2)

Proof. We give an explicit expression for the polynomial qa with the behavior claimed in Equation (2.2).
To do so, we introduce the notion of Lagrange basis polynomials.

Lagrange basis polynomials. For each i ∈ {0, . . . ,n− 1}, define the following univariate polynomial δi

over Fp:

δi(X) = ∏
k=0,1,...,n−1: k ̸=i

(X− k)/(i− k). (2.3)

It is straightforward to check that δi(X) has degree at most n− 1, since the product on the right hand
side of Equation (2.3) has n−1 terms, each of which is a polynomial in X of degree 1. Moreover, it can be
checked that δi maps i to 1 and maps all other points in {0,1, . . . ,n− 1} to 0.19 In this way, δi acts as an
“indicator function” for input i, in that it maps i to 1 and “kills” all other inputs in {0,1, . . . ,n− 1}. δi is
referred to as the i’th Lagrange basis polynomial.

For example, if n = 4, then

δ0(X) =
(X−1) · (X−2) · (X−3)
(0−1) · (0−2) · (0−3)

=−6−1 · (X−1)(X−2)(X−3), (2.4)

δ1(X) =
(X−0) · (X−2) · (X−3)
(1−0) · (1−2) · (1−3)

= 2−1 ·X(X−2)(X−3), (2.5)

δ2(X) =
(X−0) · (X−1) · (X−3)
(2−0) · (2−1) · (2−3)

=−2−1 ·X(X−1)(X−3), (2.6)

and

δ3(X) =
(X−0) · (X−1) · (X−2)
(3−0) · (3−1) · (3−2)

= 6−1 ·X(X−1)(X−2). (2.7)

Expressing qa in terms of the Lagrange basis polynomials. Recall that we wish to identify a polynomial
qa of degree n− 1 such that qa(i) = ai+1 for i ∈ {0,1, . . . ,n− 1}. We can define such a polynomial qa in
terms of the Lagrange basis polynomials as follows:

qa(X) =
n−1

∑
j=0

a j+1 ·δ j(X). (2.8)

19Note, however, that δi(r) does not equal 0 for any points r ∈ Fp \{0,1, . . . ,n−1}.
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Indeed, for any i ∈ {0,1, . . . ,n−1}, every term in the sum on the right hand side of Equation (2.8) other
than the i’th evaluates to 0, because δ j(i) = 0 for j ̸= i. Meanwhile, the i’th term evaluates to ai+1 ·δi(i) =
ai+1 as desired. See Figure 2.2 for examples.

Establishing uniqueness. The fact that qa defined in Equation (2.8) is the unique polynomial of degree at
most n−1 satisfying Equation (2.2) holds because any two distinct polynomials of degree at most n−1 can
agree on at most n−1 inputs. Since Equation (2.2) specifies the behavior of qa on n inputs, this means that
there cannot be two distinct polynomials of degree at most n−1 that satisfy the equation.

Specifying a polynomial via evaluations vs. coefficients. Readers are likely already comfortable with
univariate polynomials p of degree (n−1) that are specified via coefficients in the standard monomial basis,
meaning c0, . . . ,cn−1 such that

p(X) = c0 + c1X + · · ·+ cn−1Xn−1.

As indicated before the statement of Lemma 2.3, the n evaluations {p(0), p(1), . . . , p(n−1)} can be thought
of as an alternative specification of p. Just as the standard coefficients c0,c1, . . . ,cn−1 uniquely specify p, so
do prescribed evaluations at the n inputs 0,1, . . . ,n−1.

In fact, Equation (2.8) shows that these n evaluations of p can themselves be interpreted as coefficients
for p, not over the standard monomial basis {1,X ,X2, . . . ,Xn−1}, but rather over the Lagrange polynomial
basis {δ0,δ1, . . . ,δn−1}. In other words, for i ∈ {0,1, . . . ,n− 1}, p(i) is the coefficient of δi in the unique
representation of p as a linear combination of Lagrange basis polynomials.

A coding-theoretic view. Given a vector a = (a1, . . . ,an) ∈ Fn
p, the polynomial qa given in Lemma 2.3

is often called the univariate low-degree extension of a.20 The viewpoint underlying this terminology is as
follows. Consider the vector LDE(a) of length p = |Fp| whose ith entry is qa(i). If p≫ n, then LDE(a)
is vastly longer than a itself. But LDE(a) contains a as a sub-vector, since, by design, qa(i) = ai+1 for
i ∈ {0, . . . ,n−1}. One thinks of LDE(a) as an “extension” of a: LDE(a) “begins” with a itself, but includes
a large number of additional entries. See Figure 2.2.

Such encoding functions, in which the vector a is a subset of its encoding LDE(a) are called systematic.
The systematic nature of the low-degree extension encoding turns out to render it more useful in the context
of interactive proofs and arguments than the Reed-Solomon encoding of Section 2.3 (see, for example,
Section 10.3.2).

Exactly as for the Reed-Solomon code in Section 2.3, LDE(a) is a distance-amplified encoding of a,
in the sense that, for any two vectors a,b ∈ Fn

p that differ in even a single coordinate, LDE(a) and LDE(b)
differ in at least a 1− (n−1)/p fraction of entries. This fraction is very close to 1 if p≫ n.

A note on terminology. In the coding theory literature, a is referred to as a message and the encoding
LDE(a) is called as the codeword corresponding to message a. Many authors use the term Reed-Solomon
encoding and low-degree extension encoding interchangeably. Often, the distinction does not matter, as the
set of codewords is the same regardless, namely the set of all evaluation tables of polynomials of degree at
most n−1 over Fp. All that differs between the two is the correspondence between messages and codewords,

20Actually, many authors refer to any “reasonably low-degree” polynomial q satisfying q(i) = ai+1 for i ∈ {0,1, . . . ,n− 1} as
a low-degree extension of a (however, there is always a unique extension polynomial qa of a of degree at most n−1). What “rea-
sonably low-degree” means varies by context, but typically the asymptotic costs of probabilistic proof systems that use univariate
extension polynomials are unchanged so long as the extension polynomial has degree O(n). At the bare minimum, the degree of
the extension polynomial should be smaller than the size of the field over which the polynomial is defined. Otherwise, encoding a
via the evaluation table of the extension polynomial will not be a distance-amplifying procedure.

20



2

1

1

2

1

1

2

4

7

0

5

0

7

4

2

1

0

2

1

0

10

9

8

7

6

5

4

3

! "

#$ % = % − 1 % − 2 − % % − 2 + 2+,%(% − 1) #/ % = % − 1 % − 2 − % % − 2 = 2 − %

Figure 2.2: On the left is the vector a = (2,1,1) of length 3 with entries interpreted as elements of the field F11, as
well as its univariate low-degree extension encoding. This encoding interprets a as the evaluations of a univariate
polynomial qa over the input set {0,1,2} ⊆ F11, and the encoding lists all evaluations of qa over the field F11. On the
right is the vector b = (2,1,0) and its low-degree extension encoding.

i.e., whether the message is interpreted as the coefficients of a polynomial of degree n− 1, vs. as the
evaluations of the polynomial over a canonical set of inputs such as {0,1, . . . ,n−1}.

Algorithms for evaluating qa(r). Suppose that, given a vector a ∈ Fn
p, one wishes to evaluate the univari-

ate low-degree extension qa at some input r ∈ F. How quickly can this be done? It turns out that O(n) field
additions, multiplications, and inversions are sufficient.21

If r ∈ {0,1, . . . ,n− 1}, then by definition, qa(r) = ar+1. So let us assume henceforth that r ∈ F \
{0,1, . . . ,n−1}.

Equation (2.8) offers an expression for qa(r) in terms of the Lagrange basis polynomials, namely

qa(r) =
n−1

∑
j=0

a j+1 ·δ j(r). (2.9)

There are only n terms of this sum. However, evaluating the j’th term requires evaluating δ j(r), and if this
is done directly via its definition (Equation (2.3)), this requires O(n) field operations per term, for a total
time bound of O(n ·n) = O(n2).

Fortunately, it turns out that the n values δ0(r),δ1(r), . . . ,δn−1(r) can all be evaluated using just O(n)
additions, multiplications, and inversions in total. Once these values are all computed, the right hand side
of Equation (2.9) can be computed with O(n) additional field operations.

Here is how to evaluate δ0(r),δ1(r), . . . ,δn−1(r) with O(n) additions, multiplications, and inversions.
First, δ0(r) can be evaluated with O(n) such operations directly via its definition (Equation (2.3)).

Then, for each i > 0, given δi−1(r), δi(r) can be computed with a constant number of additional field
subtractions, multiplications, and inversions. This is because the products defining δi(r) and δi−1(r) involve

21A single field inversion is a slower operation than a field addition or multiplication operation, often performed via the so-called
Extended Euclidean algorithm. However, there are batch inversion algorithms that can perform n field inversions with roughly 3n
field multiplications and one field inversion.
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almost all of the same terms. For example, relative to

δ0(r) =

(
∏

k=1,...,n−1
(r− k)

)(
∏

k=1,...,n−1
(0− k)−1

)
,

the definition of

δ1(r) =

(
∏

k=0,2,3,...,n−1
(r− k)

)
·
(

∏
k=0,2,3,...,n−1

(1− k)−1

)

is “missing” a factor of
(r−1) · (−(n−1))−1 ,

and has an “extra” factor of
(r−0)(1−0)−1 = r.

In other words, δ1(r) = δ0(r) · r · (r−1)−1 · (−(n−1)). In general, for i≥ 1, the following key equation en-
sures that δi(r) can be computed from δi−1(r) with just O(1) field additions, multiplications, and inversions:

δi(r) = δi−1(r) · (r− (i−1)) · (r− i)−1 · i−1 · (−(n− i)). (2.10)

Theorem 2.4. Let p ≥ n be a prime number. Given as input a1, . . . ,an ∈ Fp, and r ∈ Fp, there is an
algorithm that performs O(n) additions, multiplications, and inversions over Fp, and outputs q(r) for the
unique univariate polynomial q of degree at most n−1 such that q(i) = ai+1 for i ∈ {0,1, . . . ,n−1}.

A worked example of Equation (2.10). When n = 4, explicit expressions for δ0, δ1, δ2, and δ3 were
given in Equations (2.4)-(2.7). One can check that Equation (2.10) holds for each of these Lagrange basis
polynomials. Indeed,

δ0(r) =−6−1 · (r−1)(r−2)(r−3),

δ1(r) = 2−1 · r(r−2)(r−3) = δ0(r) · r · (r−1)−1 ·1−1 · (−(n−1)),

δ2(r) =−2−1 · r(r−1)(r−3) = δ1(r) · (r−1) · (r−2)−1 ·2−1 · (−(n−2)),

and
δ3(r) = 6−1 · r(r−1)(r−2) = δ2(r) · (r−2) · (r−3)−1 ·3−1 · (−(n−3)).

22



Chapter 3

Definitions and Technical Preliminaries

3.1 Interactive Proofs

Given a function f mapping {0,1}n to a finite rangeR, a k-message interactive proof system (IP) for f con-
sists of a probabilistic verifier algorithm V running in time poly(n) and a prescribed (“honest”) deterministic
prover algorithm P .2223 Both V and P are given a common input x ∈ {0,1}n, and at the start of the protocol
P provides a value y claimed to equal f (x). Then P and V exchange a sequence of messages m1,m2, . . . ,mk
that are determined as follows. The IP designates one of the parties, either P or V , to send the first message
m1. The party sending each message alternates, meaning for example that if V sends m1, then P sends m2,
V sends m3, P sends m4, and so on.24

Both P and V are thought of as “next-message-computing algorithms”, meaning that when it is V’s
(respectively, P’s) turn to send a message mi, V (respectively, P) is run on input (x,m1,m2, . . . ,mi−1) to
produce message mi. Note that since V is probabilistic, any message mi sent by V may depend on both
(x,m1,m2, . . . ,mi−1) and on the verifier’s internal randomness.

The entire sequence of k messages t := (m1,m2, . . . ,mk) exchanged by P and V , along with the claimed
answer y, is called a transcript. At the end of the protocol, V must output either 0 or 1, with 1 indicating that
the verifier accepts the prover’s claim that y = f (x) and 0 indicating that the verifier rejects the claim. The
value output by the verifier at the end of the protocol may depend on both the transcript t and the verifier’s
internal randomness.

Denote by out(V,x,r,P) ∈ {0,1} the output of verifier V on input x when interacting with deterministic
prover strategy P , with V’s internal randomness equal to r. For any fixed value r of V’s internal randomness,
out(V,x,r,P) is a deterministic function of x (as we have restricted our attention to deterministic prover
strategies P).

Definition 3.1. An interactive proof system (V,P) is said to have completeness error δc and soundness error
δs if the following two properties hold.

22In general, one may consider defining IPs to permit probabilistic prover strategies. However, as explained in Section 3.3, it is
without loss of generality to restrict attention to deterministic prover strategies.

23The choice of domain {0,1}n in this chapter is not essential, but rather made by convention and for convenience. One reason
{0,1}n is a convenient domain is that, in order to express a proof system’s costs (e.g., prover time and verifier time) in terms of the
size of the input, we need a well-defined notion of input size, and if the input domain is all n-bit strings, then n is the natural such
measure.

24Without loss of generality, the final message mk is sent by the prover. There is no point in having the verifier send a message
to the prover if the prover is not going to respond to it.
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1. (Completeness) For every x ∈ {0,1}n,

Pr
r
[out(V,x,r,P) = 1]≥ 1−δc.

2. (Soundness) For every x ∈ {0,1}n and every deterministic prover strategy P ′, if P ′ sends a value
y ̸= f (x) at the start of the protocol, then

Pr
r
[out(V,x,r,P ′) = 1]≤ δs.

An interactive proof system is valid if δc,δs ≤ 1/3.

Intuitively, for any input x, the completeness condition requires that there be a convincing proof for what
is the value of f on input x. The soundness condition requires that false statements of the form “ f (x) = y”
for any y ̸= f (x) lack a convincing proof. That is, there is no cheating prover strategy P ′ that can convince
V to accept a false claim with probability more than 1/3.

The two costs of paramount importance in any interactive proof are P’s runtime and V’s runtime, but
there are other important costs as well: P’s and V’s space usage, the total number of bits communicated,
and the total number of messages exchanged. If V and P exchange k messages, then ⌈k/2⌉ is referred to as
the round complexity of the interactive proof system.25 The round complexity is the number of “back-and-
forths” in the interaction between P and V . If k is odd, then the final “back-and-forth” in the interaction is
really just a “back” with no “forth”, i.e., it consists of only one message from prover to verifier.

Interactive proofs were introduced in 1985 by Goldwasser, Micali, and Rackoff [GMR89] and Babai
[Bab85].26

3.2 Argument Systems

Definition 3.2. An argument system for a function f is an interactive proof for f in which the soundness
condition is only required to hold against prover strategies that run in polynomial time.

The notion of soundness in Definition 3.2 is called computational soundness. Computational soundness
should be contrasted with the notion of soundness in Definition 3.1, which is required to hold even against
computationally unbounded provers P ′ that might be devoting enormous computational resources to trying
to trick V into accepting an incorrect answer. The soundness notion from Definition 3.1 is referred to as
statistical soundness or information-theoretic soundness.

Argument systems were introduced by Brassard, Chaum, and Crépeau in 1986 [BCC88]. They are
sometimes referred to as computationally sound proofs, but in this manuscript we will mainly use the term
“proof” to refer to statistically sound protocols.27 Unlike interactive proofs, argument systems are able to
utilize cryptographic primitives. While a super-polynomial time prover may be able to break the primitive

25Be warned that the literature is not consistent with regard to the meaning of the term “rounds”. Vexingly, many papers use the
terms rounds and messages interchangeably.

26More precisely, [GMR89] introduced IPs, while Babai (with different motivations) introduced the so-called Arthur-Merlin
class hierarchy, which captures constant-round interactive proof systems, with the additional requirement that the verifier’s ran-
domness is public—that is, any coin tossed by V is made visible to the prover as soon as it is tossed. See Section 3.3 for discussion
of public vs. private verifier randomness.

27The main exception is in Chapter 18, where we use the term “SNARK proof π” to refer to a string π that convinces the verifier
of a non-interactive argument system to accept. This terminology is unambiguous because the acronym SNARK, which is short for
Succinct Non-interactive ARgument of Knowledge, clarifies that the protocol at hand is an argument system.
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and thereby trick the verifier into accepting an incorrect answer, a polynomial time prover will be unable to
break the primitive. The use of cryptography often allows argument systems to achieve additional desirable
properties that are unattainable for interactive proofs, such as reusability (i.e., the ability for the verifier to
reuse the same “secret state” to outsource many computations on the same input), public verifiability, etc.
These properties will be discussed in more detail later in this survey.

3.3 Robustness of Definitions and the Power of Interaction

At first glance, it may seem that a number of aspects of Definitions 3.1 and 3.2 are somewhat arbitrary or
unmotivated. For example, why does Definition 3.1 insist that the soundness and completeness errors be at
most 1/3, and not some smaller number? Why does the completeness condition in Definition 3.1 demand
that the honest prover is deterministic? And so forth. As we explain in this section, many of these choices
are made for convenience or aesthetic reasons—the power of IPs and arguments are largely unchanged if
different choices are made in the definitions.28 The remarks in this section are somewhat technical and may
be skipped with no loss of continuity.

• (Perfect vs. Imperfect Completeness) While Definition 3.1 required that the completeness error
δc < 1/3, all of the interactive proofs that we will see in this manuscript actually satisfy perfect
completeness, meaning that δc = 0. That is, the honest prover in our IPs and arguments will always
convince the verifier that it is honest.

It is actually known [FGM+89] that any IP for a function f with δc ≤ 1/3 can be transformed into
an IP for f with perfect completeness, with a polynomial blowup in the verifier’s costs (e.g., verifier
time, round complexity, communication complexity).29 We will not need such transformations in this
manuscript, because the IPs we give will naturally satisfy perfect completeness.

• (Soundness Error) While Definition 3.1 required the soundness error δs to be at most 1/3, the constant
1/3 is merely chosen by convention. In all of the interactive proofs that we see in this survey, the
soundness error will always be proportional to 1/|F|, where F is the field over which the interactive
proof is defined. In practice, the field will typically be chosen large enough so that the soundness
error is astronomically small (e.g., smaller than, say, 2−128). Such tiny soundness error is essential in
cryptographic applications, where a cheating prover successfully tricking a verifier to accept a false
claim can have catastrophic effects. Soundness error of any IP or argument can also be generically
reduced from δs to δ k

s by repeating the protocol Θ(k) times in sequence and rejecting unless the
verifier accepts in a majority of the repetitions.30

• (Public vs. Private Randomness) In an interactive proof system, V’s randomness is internal, and in
particular is not visible to the prover. This is referred to in the literature as private randomness. One
can also consider IPs in which the verifier’s randomness is public—that is, any coin tossed by V is
made visible to the prover as soon as it is tossed. We will see that such public-coin IPs are particularly

28Generally speaking, robustness to tweaks in the definition is a hallmark of a “good” notion or model in complexity theory.
If the power of a model is highly sensitive to idiosyncratic or arbitrary choices in its definition, then the model may have limited
utility and be unlikely to capture fundamental real-world phenomena. After all, the real world is messy and evolving—the hardware
people use to compute is complicated and changes over time, protocols get used in a variety of different settings, etc. Robustness
of a model to various tweaks helps ensure that any protocols in the model are useful in a variety of different settings and will not be
rendered obsolete by future changes in technology.

29The transformation does not necessarily preserve the prover’s runtime.
30For perfectly complete protocols, the verifier may reject unless every repetition of the base protocol leads to acceptance.
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useful, because they can be combined with cryptography to obtain argument systems with important
properties (see Chapter 5 on the Fiat-Shamir transformation).

Goldwasser and Sipser [GS86] showed that the distinction between public and private coins is not
crucial: any private coin interactive proof system can be simulated by a public coin system (with a
polynomial blowup in costs for the verifier, and a small increase in the number of rounds). As with
perfect vs. imperfect completeness, we will not need to utilize such transformations in this manuscript
because all of the IPs that we give are naturally public coin protocols.

• (Deterministic vs. Probabilistic Provers) Definition 3.1 demands that the honest prover strategy P be
deterministic, and only requires soundness to hold against deterministic cheating prover strategies P ′.
Restricting attention to deterministic prover strategies in this manner is done only for convenience,
and does not alter the power of interactive proofs.

Specifically, if there is a probabilistic prover strategy P ′ that convinces the verifier V to accept with
probability at least p (with the probability taken over both the prover’s internal randomness and the
verifier’s internal randomness), then there is a deterministic prover strategy achieving the same. This
follows from an averaging argument over the prover’s randomness: if a probabilistic prover P ′ con-
vinces V to accept a claim “ f (x) = y” with probability p, there must be at least one setting of the
internal randomness r′ of P ′ such that the deterministic prover strategy obtained by fixing the ran-
domness of P ′ to r′ also convinces the verifier to accept the claim “ f (x) = y” with probability p.
(Note that the value r′ may depend on x). In this manuscript, the honest prover in all of our IPs and ar-
guments will naturally be deterministic, so we will have no need to exploit this generic transformation
from randomized to deterministic prover strategies.31

Interactive Proofs for Languages Versus Functions. Complexity theorists often find it convenient to
study decision problems, which are functions f with range {0,1}. We think of decision problems as “yes-
no questions”, in the following manner: any input x to f is interpreted as a question, namely: “Does f (x)
equal 1?”. Equivalently, we can associate any decision problem f with the subset L ⊆ {0,1}n consisting of
“yes-instances” for f . Any subset L ⊆ {0,1}n is called a language.

The formalization of IPs for languages differs slightly from that for functions (Definition 3.1). We briefly
describe this difference because celebrated results in complexity theory regarding the power of IPs and their
variants (e.g., IP = PSPACE and MIP = NEXP) refer to IPs for languages.

In an interactive proof for the language L, given a public input x ∈ {0,1}n, the verifier V interacts with a
prover P in exactly the same manner as in Definition 3.1 and at the end of the protocol V must output either
0 or 1, with 1 corresponding to “accept” and 0 corresponding to “reject”. The standard requirements of an
IP for the language L are:

• Completeness. For any x ∈ L, there is some prover strategy that will cause the verifier to accept with
high probability.

• Soundness. For any x ̸∈ L, then for every prover strategy, the verifier rejects with high probability.

Given a language L, let fL : {0,1}n→ {0,1} be the corresponding decision problem, i.e., fL(x) = 1 if
x is in L, and fL(x) = 0 if x is not in L. Note that for x ̸∈ L, the above definition of an IP for L does not

31An important caveat is that for most of the zero-knowledge proofs and arguments considered in Chapters 11-17 in this
manuscript, the prover will be randomized. This randomization of the proof has no bearing on the completeness or soundness
of the protocol, but rather is incorporated as a means of ensuring that the proof leaks no information to the verifier (other than its
own validity).
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require that there be a “convincing proof” of the fact that fL(x) = 0. This is in contrast to the definition of
IPs for the function fL (Definition 3.1), for which the completeness requirement insists that for every input x
(even those for which fL(x) = 0), there be a prover strategy that convinces the verifier of the value of f (x).

The motivation behind the above formalization of IPs for languages is as follows. One may think of
inputs in the language L as true statements, and inputs not in the language as false statements. The above
completeness and soundness properties require that all true statements have convincing proofs, and all false
statements do not have convincing proofs. It is natural not to require that false statements have convincing
refutations (i.e., convincing proofs of their falsity).

While the notions of interactive proofs for languages and functions are different, they are related in the
following sense: given a function f , an interactive proof for f is equivalent to an interactive proof for the
language L f := {(x,y) : y = f (x)}.

As indicated above, in this manuscript we will primarily be concerned with interactive proofs for func-
tions instead of languages. We only talk about interactive proofs for languages when referring to complexity
classes such as NP and IP, defined next.

NP and IP. Let IP be the class of all languages solvable by an interactive proof system with a polynomial
time verifier. The class IP can be viewed as an interactive, randomized variant of the classical complex-
ity class NP (NP is the class obtained from IP by restricting the proof system to be non-interactive and
deterministic, meaning that the completeness and soundness errors are 0).

We will see soon that the class IP is in fact equal to PSPACE, the class of all languages solvable by
algorithms using polynomial space (and possibly exponential time). PSPACE is believed to be a vastly
bigger class of languages than NP, so this is one formalization of the statement that “interactive proofs are
far more powerful than classical static (i.e, NP) proofs”.

By Your Powers Combined, I am IP. The key to the power of interactive proofs is the combination
of randomness and interaction. If randomness is disallowed (equivalently, if perfect soundness δs = 0 is
required), then interaction is pointless, because the prover can predict the verifier’s messages with certainty,
and hence there is no reason for the verifier to send the messages to the prover. In more detail, the proof
system can be rendered non-interactive by demanding that the (non-interactive) prover send a transcript of
the interactive protocol that would cause the (interactive) verifier to accept, and the (non-interactive) verifier
can check that indeed the (interactive) verifier would have accepted this transcript. By perfect soundness of
the interactive protocol, this non-interactive proof system is perfectly sound.

On the other hand if no interaction is allowed, but the verifier is allowed to toss random coins and accept
an incorrect proof with small probability, the resulting complexity class is known as MA (short for Merlin-
Arthur). This class is widely believed to be equal to NP (see for example [IW97]), which as stated above is
believed by many researchers to be a much smaller class of problems than IP = PSPACE.32

32More precisely, it is widely believed that for every non-interactive randomized proof system (V,P) for a language L, there
is a non-interactive deterministic proof system (V ′,P ′) for L in which the runtime of the deterministic verifier V ′ is at most
polynomially larger than that of the randomized verifier V . This would not necessarily mean that the deterministic verifier V ′ is just
as fast as the randomized verifier V . See for example Freivald’s non-interactive randomized proof system for matrix multiplication
in Section 2.2—the verifier there runs in O(n2) time, which is faster than any known deterministic verifier for the same problem, but
“only” by a factor of about O(n0.3728639), which is a (small) polynomial in the input size. This is in contrast to the transformation
of the preceding paragraph from deterministic interactive proofs to non-interactive proofs, which introduces no overhead for either
the verifier or the prover.
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3.4 Schwartz-Zippel Lemma

Terminology. For an m-variate polynomial g, the degree of a term of g is the sum of the exponents of the
variables in the term. For example if g(x1,x2) = 7x2

1x2 +6x4
2, then the degree of the term 7x2

1x2 is 3, and the
degree of the term 6x4

2 is 4. The total degree of g is the maximum of the degree of any term of g, which in
the preceding example is 4.

The lemma itself. Interactive proofs frequently exploit the following basic property of polynomials, which
is commonly known as the Schwartz-Zippel lemma [Sch80, Zip79].

Lemma 3.3 (Schwartz-Zippel Lemma). Let F be any field, and let g : Fm → F be a nonzero m-variate
polynomial of total degree at most d. Then on any finite set S⊆ F,

Pr
x←Sm

[g(x) = 0]≤ d/|S|.

Here, x← Sm denotes an x drawn uniformly at random from the product set Sm, and |S| denotes the size of
S. In words, if x is chosen uniformly at random from Sm, then the probability that g(x) = 0 is at most d/|S|.
In particular, any two distinct polynomials of total degree at most d can agree on at most a d/|S| fraction of
points in Sm.

We will not prove the lemma above, but it is easy to find a proof online (see, e.g., the wikipedia article
on the lemma, or an alternative proof due to Moshkovitz [Mos10]). An easy implication of the Schwartz-
Zippel lemma is that for any two distinct m-variate polynomials p and q of total degree at most d over F,
p(x) = q(x) for at most a d/|F| fraction of inputs. Section 2.1.1 on Reed-Solomon fingerprinting exploited
precisely this implication in the special case of univariate polynomials (i.e., m = 1).

3.5 Low Degree and Multilinear Extensions

Motivation and comparison to univariate Lagrange interpolation. In Section 2.4, we considered any
univariate function f mapping {0,1, . . . ,n−1} to Fp, and studied the univariate low-degree extension of f .
This was the unique univariate polynomial g over Fp of degree at most n− 1 such that g(x) = f (x) for all
x∈ {0,1, . . . ,n−1}. In this section, we consider multivariate functions f , more specifically defined over the
v-variate domain {0,1}v. Note that when v = logn, the domain {0,1}v has the same size as the univariate
domain {0,1, . . . ,n−1}.

As we will see, functions defined over the domain {0,1}v have extension polynomials that have much
lower degree than in the univariate case. Specifically, any function f mapping {0,1}v→ F has an extension
polynomial that is multilinear, meaning it has degree at most 1 in each variable. This implies that the total
degree of the polynomial is at most v, which is logarithmic in the domain size 2v. In contrast, univariate
low-degree extensions over a domain of size n require degree n− 1. Multivariate polynomials with ultra-
low degree in each variable turn out to be especially useful when designing interactive proofs with small
communication and fast verification.

Details of polynomial extensions for multivariate functions. Let F be any finite field, and let f : {0,1}v→
F be any function mapping the v-dimensional Boolean hypercube to F. A v-variate polynomial g over F is
said to be an extension of f if g agrees with f at all Boolean-valued inputs, i.e., g(x)= f (x) for all x∈{0,1}v.
Here, the domain of the v-variate polynomial g over F is Fv, and 0 and 1 are respectively associated with the
additive and multiplicative identity elements of F.
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As with univariate low-degree extensions, one can think of a (low-degree) extension g of a function
f : {0,1}v→ F as a distance-amplifying encoding of f : if two functions f , f ′ : {0,1}v→ F disagree at even
a single input, then any extensions g, g′ of total degree at most d must differ almost everywhere, assuming
d≪ |F|.33 This is made precise by the Schwartz-Zippel lemma above, which guarantees that g and g′ agree
on at most d/|F| fraction of points in Fv. As we will see throughout this survey, these distance-amplifying
properties give the verifier surprising power over the prover.34

Definition 3.4. A multivariate polynomial g is multilinear if the degree of the polynomial in each variable
is at most one.

For example, the polynomial g(x1,x2) = x1x2 +4x1 +3x2 is multilinear, but the polynomial h(x1,x2) =
x2

2 +4x1 +3x2 is not. Throughout this survey, we will frequently use the following fact.

Fact 3.5. Any function f : {0,1}v→ F has a unique multilinear extension (MLE) over F, and we reserve the
notation f̃ for this special extension of f .

That is, f̃ is the unique multilinear polynomial over F satisfying f̃ (x) = f (x) for all x ∈ {0,1}v. See
Figure 3.2 for an example of a function and its multilinear extension.

The first step in the proof of Fact 3.5 is to establish the existence of a multilinear polynomial extending
f . In fact, we give an explicit expression for this polynomial, via Lagrange interpolation. This is analogous
to Lemma 2.3 in Section 2.3, which considered the case of univariate rather than multilinear polynomials.

Lemma 3.6 (Lagrange interpolation of multilinear polynomials). Let f : {0,1}v→ F be any function. Then
the following multilinear polynomial f̃ extends f :

f̃ (x1, . . . ,xv) = ∑
w∈{0,1}v

f (w) ·χw(x1, . . . ,xv), (3.1)

where, for any w = (w1, . . . ,wv),

χw(x1, . . . ,xv) :=
v

∏
i=1

(xiwi +(1− xi)(1−wi)). (3.2)

The set {χw : w ∈ {0,1}v} is referred to as the set of multilinear Lagrange basis polynomials with
interpolating set {0,1}v.

Proof. For any vector w ∈ {0,1}v, χw satisfies χw(w) = 1, and χw(y) = 0 for all other vectors y ∈ {0,1}v.
To see that the latter property holds, observe that if wi ̸= yi, then either wi = 1 and yi = 0 or wi = 0 and
yi = 1. Either way, the ith term on the right hand side of Equation (3.2), namely (xiwi +(1− xi)(1−wi)),
equals 0. This ensures that the entire product on the right hand side of Equation (3.2) equals 0.

33As with Footnote 20 in the univariate setting, precisely how small d must be for a degree-d extension polynomial g to be
called “low-degree” is deliberately left vague and may be context-dependent. At a minimum, d should be less than |F| to ensure
that the probability d/|F| appearing in the Schwartz-Zippel lemma is less than 1; otherwise, the Schwartz-Zippel lemma is vacuous.
When a low-degree extension g is used in interactive proofs or arguments, various costs of the protocol, such as proof size, verifier
time, or prover time, often grow linearly with the degree d of g, and hence the smaller d is, the lower these costs are.

34In fact, the use of low-degree extensions in many of the interactive proofs and arguments we describe in this survey could in
principle be replaced with different distance-amplifying encodings that do not correspond to polynomials at all (see for example
[Mei13, RR19] for papers in this direction). However, we will see that low-degree extensions have nice structure that enables
the prover and verifier to run especially efficiently when we use low-degree extensions rather than general distance-amplifying
encodings. It remains an important research direction to obtain IPs and arguments with similar (or better!) efficiency by using
non-polynomial encodings—Section 10.5 of this survey covers one result in this vein.
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It follows that ∑w∈{0,1}v f (w) · χw(y) = f (y) for all Boolean vectors y ∈ {0,1}v. In addition, the right
hand side of Equation (3.1) is a multilinear polynomial in (x1, . . . ,xv), as each term of the sum is clearly
a multilinear polynomial, and a sum of multilinear polynomials is itself multilinear. Putting these two
statements together, the right hand side of Equation (3.1) is a multilinear polynomial extending f .

Lemma 3.6 demonstrated that for any function f : {0,1}v → F, there is some multilinear polynomial
that extends f . To complete the proof of Fact 3.5, we must establish that there is only one such polynomial.

Completing the proof of Fact 3.5. To show that there is a unique multilinear polynomial extending f , we
show that if p and q are two multilinear polynomials such that p(x) = q(x) for all x ∈ {0,1}v, then p and
q are in fact the same polynomial, i.e., p(x) = q(x) for all x ∈ Fv. Equivalently, we want to show that the
polynomial h := p−q is the identically 0 polynomial.

Observe that h is also multilinear, because it is the difference of two multilinear polynomials. Further-
more, the assumption that p(x) = q(x) for all x ∈ {0,1}v implies that h(x) = 0 for all x ∈ {0,1}v. We now
show that any such polynomial is identically 0.

Assume that h is a multilinear polynomial that vanishes on {0,1}v, meaning that h(x) = 0 for all x ∈
{0,1}v. If h is not the identically zero polynomial, then consider any term t in h of minimal degree. h must
have at least one such term since h is not identically 0. For example, if h(x1,x2,x3) = x1x2x3 +2x1x2, then
the term 2x1x2 is of minimal degree, since it has degree 2, and h has no terms of degree 1 or 0.

Now consider the input z obtained by setting all of the variables in t to 1, and all other variables to 0 (in
the example above, z = (1,1,0)). At input z, term t is nonzero because all of the variables appearing in term
t are set to 1. For instance, in the example above, the term 2x1x2 evaluates to 2 at input (1,1,0)).

Meanwhile, by multilinearity of h, all other terms of h contain at least one variable that is not in term t
(otherwise, t would not be of minimal degree in h). Since z sets all variables not in t to 0, this means that all
terms in h other than t evaluate to 0 at z. It follows that h(z) ̸= 0 (e.g., in the example above, h(z) = 2).

This contradicts the assumption that h(x) = 0 for all x ∈ {0,1}v. We conclude that any multilinear
polynomial h that vanishes on {0,1}v must be identically zero, as desired.

While any function f : {0,1}v → F has many polynomials that extend it, Fact 3.5 states that exactly
one of those extension polynomials is multilinear. For example, if f (x) = 0 for all x ∈ {0,1}v, then the
multilinear extension of f is just the 0 polynomial. But p(x1, . . . ,xv) = x1 · (1− x1) is one example of a
non-multilinear polynomial that also extends f .

Algorithms for evaluating the multilinear extension of f . Suppose that the verifier is given as input
the values f (w) for all n = 2v Boolean vectors w ∈ {0,1}v. Equation (3.1) yields two efficient methods
for evaluating f̃ at any point r ∈ Fv, The first method was described in [CTY11]: it requires O(n logn)
time, and allows V to make a single streaming pass over the f (w) values while storing just v+1 = O(logn)
field elements. The second method is due to Vu et al. [VSBW13]: it shaves a logarithmic factor off of V’s
runtime, bringing it down to linear time, i.e., O(n), but increases V’s space usage to O(n).

Lemma 3.7 ( [CTY11]). Fix a positive integer v and let n = 2v. Given as input f (w) for all w ∈ {0,1}v

and a vector r ∈ Flogn, V can compute f̃ (r) in O(n logn) time and O(logn) words of space35 with a single
streaming pass over the input (regardless of the order in which the f (w) values are presented).

35A “word of space” refers to the amount of data processed by a machine in one step. It is often 64 bits on modern processors.
For simplicity, we assume throughout that a field element can be stored using a constant number of machine words.
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Figure 3.1: All evaluations of a function f mapping {0,1}2

to the field F5.
Figure 3.2: All evaluations of the multilinear extension, f̃ ,
of f over F5. Via Lagrange interpolation (Lemma 3.6),
f̃ (x1,x2) = (1− x1)(1− x2) + 2(1− x1)x2 + x1(1− x2) +
4x1x2.

Proof. V can compute the right hand side of Equation (3.1) incrementally from the stream by initializing
f̃ (r)← 0, and processing each update (w, f (w)) via:

f̃ (r)← f̃ (r)+ f (w) ·χw(r).

V only needs to store f̃ (r) and r, which requires O(logn) words of memory (one for each entry of r).
Moreover, for any w, χw(r) can be computed in O(logn) field operations (see Equation (3.2)), and thus V
can compute f̃ (r) with one pass over the stream, using O(logn) words of space and O(logn) field operations
per update.

The algorithm of Lemma 3.7 computes f̃ (r) by evaluating each term on the right hand side of Equation
(3.1) independently in O(v) time and summing the results. This results in a total runtime of O(v ·2v). The
following lemma gives an even faster algorithm, running in time O(2v). Its speedup relative to Lemma 3.7 is
obtained by not treating each term of the sum independently. Rather, using dynamic programming, Lemma
3.8 computes χw(r) for all 2v vectors w ∈ {0,1}v in time O(2v).

Lemma 3.8 ( [VSBW13]). Fix a positive integer v, and let n = 2v. Given as input f (w) for all w ∈ {0,1}v

and a vector r = (r1, . . . ,rv) ∈ Flogn, V can compute f̃ (r) in O(n) time and O(n) space.

Proof. Notice the right hand side of Equation (3.1) expresses f̃ (r) as the inner product of two n-dimensional
vectors, where (associating {0,1}v and {0, . . . ,2v− 1} in the natural way) the w’th entry of the first vector
is f (w) and the w’th entry of the second vector is χw(r). This inner product can be computed in O(n) time
given a table of size n whose wth entry contains the quantity χw(r). Vu et al. show how to build such a table
in time O(n) using memoization.

The memoization procedure consists of v = logn stages, where Stage j constructs a table A( j) of size
2 j, such that for any (w1, . . . ,w j) ∈ {0,1} j, A( j)[(w1, . . . ,w j)] = ∏

j
i=1 χwi(ri). Notice A( j)[(w1, . . . ,w j)] =

A( j−1)[(w1, . . . ,w j−1)] ·(w jr j +(1−w j)(1− r j)), and so the jth stage of the memoization procedure requires
time O(2 j). The total time across all logn stages is therefore O(∑

logn
j=1 2 j) = O(2logn) = O(n). An example

of this memoization procedure for v = 3 is given in Figure 3.3.
Conceptually, the above algorithm in Stage 1 evaluates all one-variate multilinear Lagrange basis poly-

nomials at the input r1. There are two such basis polynomials, namely χ0(x1) = x1 and χ1(x1) = (1− x1),
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Figure 3.3: Evaluating all eight three-variate Lagrange basis polynomials at input r = (r1,r2,r3) ∈ F3 via the mem-
oization procedure in the proof of Lemma 3.8. The algorithm uses 12 field multiplications in total. In contrast, the
algorithm given in Lemma 3.7 independently evaluates each Lagrange basis polynomial at r independently. This re-
quires 2 field multiplications per basis polynomial, or 8 ·2 = 16 multiplications in total.

and hence the algorithm in Stage 1 computes and stores two values: r1 and (1−r1). In Stage 2, the algorithm
evaluates all two-variate multilinear Lagrange basis polynomials at the input (r1,r2). There are four such
values, namely r1r2, r1(1− r2), (1− r1)r2 and (1− r1)(1− r2). In general, Stage i of the algorithm evaluates
all i-variate multilinear Lagrange basis polynomials at the input (r1,r2, . . . ,ri). Figure 3.3 illustrates the
entire procedure when the number of variables is v = 3.

3.6 Exercises

Exercise 3.1. Let A,B,C be n× n matrices over a field F. In Section 2.2, we presented a randomized
algorithm for checking that C = A ·B. The algorithm picked a random field element r, let x = (r,r2, . . . ,rn),
and output EQUAL if Cx = A · (Bx), and output NOT-EQUAL otherwise. Suppose instead that each entry of
the vector x is chosen independently and uniformly at random from F. Show that:

• If Ci j = (AB)i j for all i = 1, . . . ,n, j = 1, . . . ,n, then the algorithm outputs EQUAL for every possible
choice of x.

• If there is even one (i, j) ∈ [n]× [n] such that Ci j ̸= (AB)i j, then the algorithm outputs NOT-EQUAL
with probability at least 1−1/|F|.

Exercise 3.2. In Section 2.1, we described a communication protocol of logarithmic cost for determining
whether Alice’s and Bob’s input vectors are equal. Specifically, Alice and Bob interpreted their inputs as
degree-n univariate polynomials pa and pb, chose a random r ∈ F with |F| ≫ n, and compared pa(r) to
pb(r). Give a different communication protocol in which Alice and Bob interpret their inputs as multilinear
rather than univariate polynomials over F. How large should F be to ensure that the probability Bob outputs
the wrong answer is at most 1/n? What is the communication cost in bits of this protocol?

Exercise 3.3. Let p= 11. Consider the function f : {0,1}2→Fp given by f (0,0) = 3, f (0,1) = 4, f (1,0) =
1 and f (1,1) = 2. Write out an explicit expression for the multilinear extension f̃ of f . What is f̃ (2,4)?

Now consider the function f : {0,1}3 → Fp given by f (0,0,0) = 1, f (0,1,0) = 2, f (1,0,0) = 3,
f (1,1,0) = 4, f (0,0,1) = 5, f (0,1,1) = 6, f (1,0,1) = 7, f (1,1,1) = 8. What is f̃ (2,4,6)? How many field
multiplications did you perform during the calculation? Can you work through a calculation of f̃ (2,4,6)
that uses “just” 20 multiplication operations? Hint: see Lemma 3.8.

Exercise 3.4. Fix some prime p of your choosing. Write a Python program that takes as input an array of
length 2ℓ specifying all evaluations of a function f : {0,1}ℓ→ Fp and a vector r ∈ Fℓ

p, and outputs f̃ (r).
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Chapter 4

Interactive Proofs

The first interactive proof that we cover is the sum-check protocol, due to Lund, Fortnow, Karloff, and
Nisan [LFKN92]. The sum-check protocol has served as the single most important “hammer” in the design
of efficient interactive proofs. Indeed, after introducing the sum-check protocol in Section 4.1, the remaining
sections of this chapter apply the protocol in clean (but non-trivial) ways to solve a variety of important
problems.

4.1 The Sum-Check Protocol

Suppose we are given a v-variate polynomial g defined over a finite field F. The purpose of the sum-check
protocol is for prover to provide the verifier with the following sum:

H := ∑
b1∈{0,1}

∑
b2∈{0,1}

. . . ∑
bv∈{0,1}

g(b1, . . . ,bv). (4.1)

Summing up the evaluations of a polynomial over all Boolean inputs may seem like a contrived task
with limited practical utility. But to the contrary, later sections of this chapter will show that many natural
problems can be directly cast as an instance of Equation (4.1).

Remark 4.1. In full generality, the sum-check protocol can compute the sum ∑b∈Bvg(b) for any B⊆ F, but
most of the applications covered in this survey will only require B = {0,1}.

What does the verifier gain by using the sum-check protocol? The verifier could clearly compute H via
Equation (4.1) on her own by evaluating g at 2v inputs (namely, all inputs in {0,1}v), but we are thinking
of 2v as an unacceptably large runtime for the verifier. Using the sum-check protocol, the verifier’s runtime
will be

O(v+ [the cost to evaluate g at a single input in Fv]).

This is much better than the 2v evaluations of g required to compute H unassisted.
It also turns out that the prover in the sum-check protocol can compute all of its prescribed messages

by evaluating g at O(2v) inputs in Fv. This is only a constant factor more than what is required simply to
compute H without proving correctness.

For presentation purposes, we assume for the rest of this section that the verifier has oracle access to
g, i.e., V can evaluate g(r1, . . . ,rv) for a randomly chosen vector (r1, . . . ,rv) ∈ Fv with a single query to an
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oracle.36 A self-contained description of the sum-check protocol is provided in the codebox below. This is
followed by a more intuitive, recursive description of the protocol.

Description of Sum-Check Protocol.

• At the start of the protocol, the prover sends a value C1 claimed to equal the value H defined in
Equation (4.1).

• In the first round, P sends the univariate polynomial g1(X1) claimed to equal

∑
(x2,...,xv)∈{0,1}v−1

g(X1,x2, . . . ,xv).

V checks that
C1 = g1(0)+g1(1),

and that g1 is a univariate polynomial of degree at most deg1(g), rejecting if not. Here, deg j(g)
denotes the degree of g(X1, . . . ,Xv) in variable X j.

• V chooses a random element r1 ∈ F, and sends r1 to P .

• In the jth round, for 1 < j < v, P sends to V a univariate polynomial g j(X j) claimed to equal

∑
(x j+1,...,xv)∈{0,1}v− j

g(r1, . . . ,r j−1,X j,x j+1, . . . ,xv).

V checks that g j is a univariate polynomial of degree at most deg j(g), and that g j−1(r j−1) =
g j(0)+g j(1), rejecting if not.

• V chooses a random element r j ∈ F, and sends r j to P .

• In Round v, P sends to V a univariate polynomial gv(Xv) claimed to equal

g(r1, . . . ,rv−1,Xv).

V checks that gv is a univariate polynomial of degree at most degv(g), rejecting if not, and also
checks that gv−1(rv−1) = gv(0)+gv(1).

• V chooses a random element rv ∈ F and evaluates g(r1, . . . ,rv) with a single oracle query to g.
V checks that gv(rv) = g(r1, . . . ,rv), rejecting if not.

• If V has not yet rejected, V halts and accepts.

Description of the Start of the Protocol. At the start of the sum-check protocol, the prover sends a value
C1 claimed to equal the true answer (i.e., the quantity H defined in Equation (4.1)). The sum-check protocol
proceeds in v rounds, one for each variable of g. At the start of the first round, the prover sends a polynomial
g1(X1) claimed to equal the polynomial s1(X1) defined as follows:

s1(X1) := ∑
(x2,...,xv)∈{0,1}v−1

g(X1,x2, . . . ,xv). (4.2)

s1(X1) is defined to ensure that

H = s1(0)+ s1(1). (4.3)

36This will not be the case in the applications described in later sections of this chapter. In our applications, V will either be
able to efficiently evaluate g(r1, . . . ,rv) unaided, or if this is not the case, V will ask the prover to tell her g(r1, . . . ,rv), and P will
subsequently prove this claim is correct via further applications of the sum-check protocol.
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Accordingly, the verifier checks that C1 = g1(0)+ g1(1), i.e., the verifier checks that g1 and the claimed
answer C1 are consistent with Equation (4.3).

Throughout, let degi(g) denote the degree of variable i in g. If the prover is honest, the polynomial g1(X1)
has degree deg1(g). Hence g1 can be specified with deg1(g)+1 field elements, for example by sending the
evaluation of g1 at each point in the set {0,1, . . . ,deg1(g)}, or by specifying the d +1 coefficients of g1.

The Rest of Round 1. Recall that the polynomial g1(X1) sent by the prover in round 1 is claimed to
equal the polynomial s1(X1) defined in Equation (4.2). The idea of the sum-check protocol is that V will
probabilistically check this equality of polynomials holds by picking a random field element r1 ∈ F, and
confirming that

g1(r1) = s1(r1). (4.4)

Clearly, if g1 is as claimed, then this equality holds for all r1 ∈ F (i.e., this probabilistic protocol for checking
that g1 = s1 as formal polynomials is complete). Meanwhile, if g1 ̸= s1, then with probability at least
1− deg1(g)/|F| over the verifier’s choice of r1, Equation (4.4) fails to hold. This is because two distinct
degree d univariate polynomials agree on at most d inputs. This means that this protocol for checking that
g1 = s1 by confirming that equality holds at a random input r1 is sound, so long as |F| ≫ deg1(g).

The remaining issue is the following: can V efficiently compute both g1(r1) and s1(r1), in order to check
that Equation (4.4) holds? Since P sends V an explicit description of the polynomial g1, it is possible for
V to evaluate g1(r1) in O(deg1(g)) time.37 In contrast, evaluating s1(r1) is not an easy task for V , as s1 is
defined as a sum over 2v−1 evaluations of g. This is only a factor of two smaller than the number of terms in
the sum defining H (Equation (4.1)). Fortunately, Equation (4.2) expresses s1 as the sum of the evaluations
of a (v− 1)-variate polynomial over the Boolean hypercube (the polynomial being g(r1,X2, . . . ,Xv) that is
defined over the variables X2, . . . ,Xv). This is exactly the type of expression that the sum-check protocol
is designed to check. Hence, rather than evaluating s1(r1) on her own, V instead recursively applies the
sum-check protocol to evaluate s1(r1).

Recursive Description of Rounds 2, . . . ,v. The protocol thus proceeds in this recursive manner, with one
round per recursive call. This means that in round j, variable X j gets bound to a random field element
r j chosen by the verifier. This process proceeds until round v, in which the prover is forced to send a
polynomial gv(Xv) claimed to equal sv := g(r1, . . . ,rv−1,Xv). When the verifier goes to check that gv(rv) =
sv(rv), there is no need for further recursion: since the verifier is given oracle access to g, V can evaluate
sv(rv) = g(r1, . . . ,rv) with a single oracle query to g.

Iterative Description of the Protocol. Unpacking the recursion described above, here is an equivalent de-
scription of what happens in round j of the sum-check protocol. At the start of round j, variables X1, . . . ,X j−1
have already been bound to random field elements r1, . . . ,r j−1. The prover sends a polynomial g j(X j), and
claims that

g j(X j) = ∑
(x j+1,...,xv)∈{0,1}v− j

g(r1, . . . ,r j−1,X j,x j+1, . . . ,xv). (4.5)

The verifier compares the two most recent polynomials by checking

g j−1(r j−1) = g j(0)+g j(1), (4.6)

37One may wonder, if the prover specifies g1 via its evaluations at each input i ∈ {0, . . . ,deg1(g)} rather than via its coefficients,
how efficiently can the verifier evaluate g1(r1)? This is just Lagrange interpolation of a univariate polynomial (Section 2.4), which
costs O(deg(g1)) field additions, multiplications, and inversions. In practical applications of the sum-check protocol, g will often
have degree at most 2 or 3 in each of its variables, and hence this is very fast.
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and rejecting otherwise (for round j = 1, the left hand side of Equation (4.6) is replaced with the claimed
answer C1). The verifier also rejects if the degree of g j is too high: each g j should have degree at most
deg j(g), the degree of variable x j in g. If these checks pass„ V chooses a value r j uniformly at random from
F and sends r j to P .

In the final round, the prover has sent gv(Xv) which is claimed to be g(r1, . . . ,rv−1,Xv). V now checks that
gv(rv) = g(r1, . . . ,rv) (recall that we assumed V has oracle access to g). If this check succeeds, and so do all
previous checks, then the verifier is convinced that H = g1(0)+g1(1).

Example Execution of the Sum-Check Protocol. Let g(X1,X2,X3) = 2X3
1 +X1X3+X2X3. The sum of g’s

evaluations over the Boolean hypercube is H = 12. When the sum-check protocol is applied to g, the honest
prover’s first message in the protocol is the univariate polynomial s1(X1) equal to:

g(X1,0,0)+g(X1,0,1)+g(X1,1,0)+g(X1,1,1)

= (2X3
1 )+(2X3

1 +X1)+(2X3
1 )+(2X3

1 +X1 +1) = 8X3
1 +2X1 +1.

The verifier checks that s1(0)+ s1(1) = 12, and then sends the prover r1. Suppose that r1 = 2. The honest
prover would then respond with the univariate polynomial

s2(X2) = g(2,X2,0)+g(2,X2,1) = 16+(16+2+X2) = 34+X2.

The verifier checks that s2(0) + s2(1) = s1(r1), which amounts in this example to confirming that 34+
(34+ 1) = 8 · (23)+ 4+ 1; indeed, both the left hand side and right hand side equal 69. The verifier then
sends the prover r2. Suppose that r2 = 3. The honest prover would respond with the univariate polynomial
s3(X3) = g(2,3,X3) = 16+ 2X3 + 3X3 = 16+ 5X3, and the verifier confirms that s3(0) + s3(1) = s2(r2),
which amounts in this example to confirming that 16+21 = 37. The verifier picks a random field element
r3. Suppose that r3 = 6. The verifier confirms that s3(6) = g(2,3,6) by making one oracle query to g.

Completeness and Soundness. The following proposition formalizes the completeness and soundness
properties of the sum-check protocol.

Proposition 4.1. Let g be a v-variate polynomial of degree at most d in each variable, defined over a finite
field F. For any specified H ∈ F, let L be the language of polynomials g (given as an oracle) such that

H = ∑
b1∈{0,1}

∑
b2∈{0,1}

. . . ∑
bv∈{0,1}

g(b1, . . . ,bv).

The sum-check protocol is an interactive proof system for L with completeness error δc = 0 and sound-
ness error δs ≤ vd/|F|.

Proof. Completeness is evident: if the prover sends the prescribed polynomial g j(X j) at all rounds j, then
V will accept with probability 1. We offer two proofs of soundness, the first of which reasons in a manner
analogous to the iterative description of the protocol, and the second of which reasons in a manner analogous
to the recursive description.

Non-Inductive Proof of Soundness. One way to prove soundness conceptually follows the iterative de-
scription of the sum-check protocol. Specifically, if H ̸= ∑(x1,...,xv)∈{0,1}v g(x1,x2, . . . ,xv), then the only way
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the prover can convince the verifier to accept is if there is at least one round i such that the prover sends a
univariate polynomial gi(Xi) that does not equal the prescribed polynomial

si(Xi) = ∑
(xi+1,...,xv)∈{0,1}v−i

g(r1,r2, . . . ,ri−1,Xi,xi+1, . . . ,xv),

and yet gi(ri) = si(ri). For every round i, gi and si both have degree at most d, and hence if gi ̸= si, the
probability that gi(ri) = si(ri) is at most d/|F|. By a union bound over all v rounds, the probability that there
is any round i such that the prover sends a polynomial gi ̸= si yet gi(ri) = si(ri) is at most dv/|F|.

Inductive Proof of Soundness. A second way to prove soundness is by induction on v (this analysis
conceptually follows the recursive description of the sum-check protocol). In the case v = 1, P’s only
message specifies a degree d univariate polynomial g1(X1). If g1(X1) ̸= g(X1), then because any two distinct
degree d univariate polynomials can agree on at most d inputs, g1(r1) ̸= g(r1) with probability at least
1− d/|F| over the choice of r1, and hence V’s final check will cause V to reject with probably at least
1−d/|F|.

For v≥ 2, assume by way of induction that for all v−1-variate polynomials of degree at most d in each
variable, the sum-check protocol has soundness error at most (v−1)d/|F|. Let

s1(X1) = ∑
x2,...,xv∈{0,1}v−1

g(X1,x2, . . . ,xv).

Suppose P sends a polynomial g1(X1) ̸= s1(X1) in Round 1. Then because any two distinct degree d univari-
ate polynomials can agree on at most d inputs, g1(r1) = s1(r1) with probability at most d/|F|. Conditioned
on this event, P is left to prove the false claim in Round 2 that g1(r1)=∑(x2,...,xv)∈{0,1}v−1 g(r1,x2, . . . ,xv). Since
g(r1,x2, . . . ,xv) is a (v−1)-variate polynomial of degree at most d in each variable, the inductive hypothesis
implies that V will reject at some subsequent round of the protocol with probability at least 1−d(v−1)/|F|.
Therefore, V will reject with probability at least

Pr[s1(r1) ̸= g1(r1)]− (1−Pr[V rejects in some Round j > 1|s1(r1) ̸= g1(r1)])

≥
(

1− d
|F|

)
− d(v−1)

|F| = 1− dv
|F| .

Discussion of costs. There is one round in the sum-check protocol for each of the v variables of g. The
total prover-to-verifier communication is ∑

v
i=1 (degi(g)+1) = v+∑

v
i=1 degi(g) field elements, and the total

verifier-to-prover communication is v field elements (one per round).38 In particular, if degi(g) = O(1) for
all j, then the communication cost is O(v) field elements.39

The running time of the verifier over the entire execution of the protocol is proportional to the total
communication, plus the cost of a single oracle query to g to compute g(r1, . . . ,rv).

38More precisely, the verifier does not need to send to the prover the random field element rv chosen in the final round. However,
when the sum-check protocol is used as a “subroutine” in a more involved protocol (e.g., the GKR protocol of Section 4.6), the
verifier will often have to send that last field element to the prover to “continue” the more involved protocol.

39In practical applications of the sum-check protocol, F will often be a field of size between 2128 and 2256, meaning that any
field element can be specified with between 16 and 32 bytes. These field sizes are large enough to ensure very low soundness error
of the sum-check protocol, while being small enough that field operations remain fast.
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Communication Rounds V time P time
O(∑v

i=1 degi(g)) v O(v+∑
v
i=1 degi(g)) + T O

(
∑

v
i=1 degi(g) ·2v−i ·T

)

field elements = O(2v ·T ) if degi(g) = O(1) for all i

Table 4.1: Costs of the sum-check protocol when applied to a v-variate polynomial g over F. Here, degi(g) denotes
the degree of variable i in g, and T denotes the cost of an oracle query to g.

Determining the running time of the prover is less straightforward. Recall that P can specify g j by
sending for each i ∈ {0, . . . ,deg j(g)} the value:

g j(i) = ∑
(x j+1,...,xv)∈{0,1}v− j

g(r1, . . . ,r j−1, i,x j+1, . . . ,xv). (4.7)

An important insight is that the number of terms defining the value g j(i) in Equation (4.7) falls geomet-
rically with j: in the jth sum, there are only (1+deg j(g)) ·2v− j terms, with the 2v− j factor due to the number
of vectors in {0,1}v− j. Thus, the total number of terms that must be evaluated over the course of the proto-
col is ∑

v
j=1(1+deg j(g))2

v− j. If deg j(g) = O(1) for all j, this is O(1) ·∑v
j=1 2v− j = O(1) · (2v−1) = O(2v).

Consequently, if P is given oracle access to g, then P will require just O(2v) time.
In all of the applications covered in this survey, P will not have oracle access to the evaluation table of

g, and the key to many of the results in this survey is to show that P can nonetheless evaluate g at all of the
necessary points in close to O(2v) total time.

The costs of the sum-check protocol are summarized in Table 4.1. Since P and V will not be given
oracle access to g in applications, the table makes the number of oracle queries to g explicit.

Remark 4.2. An important feature of the sum-check protocol is that the the verifier’s messages to the prover
are simply random field elements, and hence entirely independent of the input polynomial g. In fact, the
only information V needs about the polynomial g to execute its part of the protocol is an upper bound on the
degree of g in each of its v variables, and the ability to evaluate g at a random point r ∈ Fv.40

This means that V can apply the sum-check protocol even without knowing the polynomial g to which
the protocol is being applied, so long as V knows an upper bound on the degree of the polynomial in each
variable, and later obtains the ability to evaluate g at a random point r ∈ Fv. In contrast, the prover does need
to know the precise polynomial g in order to compute each of its messages over the course of the sum-check
protocol.

Preview: Why multilinear extensions are useful: ensuring a fast prover. We will see several scenarios
where it is useful to compute H =∑x∈{0,1}v f (x) for some function f : {0,1}v→F derived from the verifier’s
input. We can compute H by applying the sum-check protocol to any low-degree extension g of f . When g
is itself a product of a small number of multilinear polynomials, then the prover in the sum-check protocol
applied to g can be implemented extremely efficiently. Specifically, as we show later in Lemma 4.5, Lemma
3.6 (which gave an explicit expression for f̃ in terms of Lagrange basis polynomials) can be exploited
to ensure that enormous cancellations occur in the computation of the prover’s messages, allowing fast
computation.

40And g(r) is needed by V only in order for the verifier to perform its final check of the prover’s final message in the protocol.
All other checks that V performs on the messages sent by P can be performed with no knowledge of g.
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Preview: Why using multilinear extensions is not always possible: ensuring a fast verifier. Although
the use of the MLE f̃ typically ensures fast computation for the prover, f̃ cannot be used in all applications.
The reason is that the verifier has to be able to evaluate f̃ at a random point r ∈ Fv to perform the final check
in the sum-check protocol, and in some settings, this computation would be too costly.

Lemma 3.8 gives a way for V to evaluate f̃ (r) in time O(2v), given all evaluations of f at Boolean inputs.
This might or might not be an acceptable runtime, depending on the relationship between v and the verifier’s
input size n. If v ≤ log2 n+O(log logn), then O(2v) = Õ(n),41 and the verifier runs in quasilinear time42.
But we will see some applications where v = c logn for some constant c > 1, and others where v = n (see,
e.g., the #SAT protocol in Section 4.2). In these settings, O(2v) runtime for the verifier is unacceptable, and
we will be forced to use an extension g of f that has a succinct representation, enabling V to compute g(r)
in much less than 2v time. Sometimes f̃ itself has such a succinct representation, but other times we will be
forced to use a higher-degree extension of f . See Exercise 4.2 and Exercise 4.3 (Parts (d) and (e)) for further
details.

4.2 First Application of Sum-Check: #SAT ∈ IP

Boolean formulas and circuits. A Boolean formula over variables x1, . . . ,xn is a binary tree with each
leaf labeled by a variable xi or its negation, and each non-leaf node computing the AND or OR of its two
children. Each node of the tree is also called a gate. The root of the tree is the output gate of the formula.
The size S of the formula is the number of leaves of the tree. Note that many leaves of the formula may
be labeled by the same variable xi or its negation, so S may be much larger than n (see Figure 4.1 for an
example).

A Boolean formula is identical to a Boolean circuit, except that in a formula, non-output gates are
required to have fan-out 1, while in a circuit the fan-out of each gate can be unbounded. Here, the fan-out of
a gate g in a circuit or formula refers to the number of other gates that g feeds into, i.e., the number of gates
for which g is itself an input. See Figure 4.2 for an example of a Boolean circuit.43

This means that circuits can “reuse intermediate values”, in the sense that the value computed by one
gate can be fed to multiple downstream gates. Whereas if a formula wants to reuse a value, it must recompute
it from scratch, owing to the requirement that every AND and OR gate have fan-out 1. Visualized graph-
theoretically, formulas have a binary-tree wiring pattern, while circuits can be arbitrary directed acyclic
graphs. See Figure 4.2 for an example of a Boolean circuit.

The #SAT problem. Let φ be any Boolean formula on n variables of size S = poly(n).44 Abusing notation,
we will use φ to refer to both the formula itself and the function on {0,1}n that it computes. In the #SAT
problem, the goal is to compute the number of satisfying assignments of φ . Equivalently, the goal is to
compute

∑
x∈{0,1}n

φ(x). (4.8)

41The notation Õ(·) hides polylogarithmic factors. So, for example, n log4 n = Õ(n).
42Quasilinear time means time Õ(n); i.e., at most a polylogarithmic factor more than linear.
43By convention, variable negation in Boolean circuits is typically depicted via explicit NOT gates, whereas in formulas, variable

negation is depicted directly at the leaves.
44S = poly(n) means that S is bounded above by O(nk) for some constant k ≥ 0. We will assume S ≥ n to simplify statements

of protocol costs—this will always be the case if φ depends on all n input variables.
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Figure 4.1: A Boolean formula φ over 4 variables
of size 8. Here, ∨ denotes OR, ∧ denotes AND,
and xi denotes the negation of variable xi.
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Figure 4.2: A Boolean circuit over 4 input vari-
ables. Here, ∨ denotes OR, ∧ denotes AND, and
¬ denotes negation.

#SAT is believed to be a very difficult problem, with the fastest known algorithms requiring time ex-
ponential in the number of variables n. This means that known algorithms do not do much better than the
“brute force” approach of spending time O(S) to evaluate the formula gate-by-gate at each of the 2n possible
assignments to the inputs. Even determining whether there exists one or more satisfying assignments to the
formula is widely believed to require exponential time.45 Nonetheless, there is an interactive proof protocol
for #SAT in which the verifier runs in polynomial time.

The interactive proof for #SAT. Equation (4.8) sums up the evaluations of φ over all vectors in {0,1}n.
This is highly reminiscent of the kind of function that Lund et al. [LFKN92] designed the sum-check pro-
tocol to compute, namely the sum of g’s evaluations over {0,1}n for some low-degree polynomial g. In
order to apply the sum-check protocol to compute Equation (4.8), we need to identify a polynomial exten-
sion g of φ of total degree poly(S) over a suitable finite field F. The fact that g extends φ will ensure that
∑x∈{0,1}n g(x) = ∑x∈{0,1}n φ(x).46 Moreover, we need the verifier to be able to evaluate g at a random point
r in polynomial time. Together with the fact that g has total degree poly(S), this will ensure that the verifier
in the sum-check protocol applied to g runs in time poly(S). We define g as follows.

Let F be a finite field of size at least, say, S4. In the application of the sum-check protocol below,
the soundness error will be at most S/|F|, so the field should be big enough to ensure that this quantity
is acceptably small. If |F| ≈ S4, then the soundness error is at most 1/S3. Bigger fields will ensure even
smaller soundness error.

We can turn φ into an arithmetic circuit ψ over F that computes the desired extension g of φ . Here, an
arithmetic circuit C has input gates, output gates, intermediate gates, and directed wires between them. Each
gate computes addition or multiplication over a finite field F. The process of replacing the Boolean formula

45Readers familiar with the notion of NP-completeness will recognize formula satisfiability as an NP-complete problem, mean-
ing that it has a polynomial time algorithm if and only if P = NP.

46More precisely, if the field F is of some prime size p, then ∑x∈{0,1}n g(x) will equal the number of satisfying assignments of φ

modulo p. There are a number of ways to address this issue if the exact number of satisfying assignments is desired. The simplest
is to choose p larger than the maximum number of possible satisfying assignments, namely 2n. This will still ensure a polynomial
time verifier, as elements of a field of this size can be written down and operated upon in time polynomial in n. Similar overflow
issues arise frequently when designing proof systems that work over finite fields yet are meant to capture integer arithmetic. For
other examples, see Footnote 54 and Sections 6.5.4.1 and 6.6.3.
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φ with an arithmetic circuit ψ computing an extension polynomial of φ is called arithmetization.
For any gate in φ computing the AND of two inputs y,z, ψ replaces AND(y,z) with multiplication of y

and z over F. It is easy to check that the bivariate polynomial y · z extends the Boolean function AND(y,z),
i.e., AND(y,z) = y · z for all y,z ∈ {0,1}. Likewise, ψ replaces any gate computing OR(y,z) by y+ z− y · z.
Any formula leaf of the form ȳ (i.e., the negation of variable y) is replaced by 1− y, This transformation is
depicted in Figures 4.3 and 4.4. It is easy to check that ψ(x) = φ(x) for all x ∈ {0,1}n, and that the number
of gates in the arithmetic circuit ψ is at most 3S.

For the polynomial g computed by ψ , ∑
n
i=1 degi(g) ≤ S.47 Thus, the total communication cost of the

sum-check protocol applied to g is O(S) field elements, and V requires O(S) time in total to check the first
n−1 messages from P . To check P’s final message, V must also evaluate g(r) for the random point r ∈ Fn

chosen during the sum-check protocol. V can clearly evaluate g(r) gate-by-gate in time O(S). Since the
polynomial g has n variables and ∑

n
i=1 degi(g) ≤ S, the soundness error of the sum-check protocol applied

to g is at most S/|F|.
As explained in Section 4.1, the prover runs in time (at most) 2n ·T · (∑n

i=1 degi(g)), where T is the cost
of evaluating g at a point. Since g can be evaluated at any point in time O(S) by evaluating ψ gate-by-gate,
the prover in the #SAT protocol runs in time O(S2 ·2n). The costs of this protocol are summarized in Table
4.2.

IP = PSPACE. The above #SAT protocol comes quite close to establishing a famous result, namely that
IP = PSPACE [LFKN92, Sha92].48 That is, the class of problems solvable by interactive proofs with a
polynomial-time verifier is exactly equal to the class of problems solvable in polynomial space. Here, we
briefly discuss how to prove both directions of this result, i.e., that IP⊆ PSPACE and that PSPACE⊆ IP.

To show that IP⊆ PSPACE, one needs to show that for any constant c > 0 and any language L solvable
by an interactive proof in which the verifier’s runtime is at most O(nc) there is an algorithm A that solves
the problem in space at most, say, O(n3c). Since c is a constant independent of n, so is 3c (albeit a larger
one), and hence the space bound O(n3c) is a polynomial in n.

Note that the resulting space-O(n3c) algorithm might be extremely slow, potentially taking time expo-
nential in n. That is, the inclusion IP⊆ PSPACE does not state that any problem solvable by an interactive
proof with an efficient verifier necessarily has a fast algorithm, but does state that the problem has a reason-
ably small-space algorithm.

Very roughly speaking, the algorithmA on input x will determine whether x∈L by ascertaining whether
or not there is a prover strategy that causes the verifier to accept with probability at least 2/3. It does this
by actually identifying an optimal prover strategy, i.e., finding the prover that maximizes the probability the
verifier accepts on input x, and determining exactly what that probability is.

In slightly more detail, it suffices to show that for any interactive proof protocol with the verifier running
in time O(nc), that (a) an optimal prover strategy can be computed in space O(n3c) and (b) the verifier’s
acceptance probability when the prover executes that optimal strategy can also be computed in space O(n3c).

47Here is an inductive proof of this fact. It is clearly true if φ consists of just one leaf. Suppose by way of induction that it is
true when φ consists of at most S/2 leaves, and suppose that the output gate of φ is an AND gate (a similar argument applies if
the output gate is an OR gate). The two in-neighbors of the output gate partition φ into two disjoint subformulas φ1, φ2 of sizes
S1,S2 such that S1 +S2 = S and φ(x) = AND(φ1(x),φ2(x)). By the induction hypothesis, arithmetizing the two subformulas yields
extension polynomials g1,g2 such that for j = 1,2, ∑

n
i=1 degi(g j) ≤ S j. The arithmetization of φ is g = g1 · g2, which satisfies

∑
n
i=1 degi(g)≤ S1 +S2 = S.

48Here, PSPACE is the class of decision problems that can be solved by some algorithm whose memory usage is bounded by
some constant power of n.
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Figure 4.3: A Boolean formula φ over 4 variables
of size 4. Here, ∨ denotes OR, ∧ denotes AND,
and x1 denotes the negation of variable x1.
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Figure 4.4: An arithmetic circuit ψ computing a
polynomial extension g of φ over a finite field F.

Communication Rounds V time P time
O(S) field elements n O(S) O

(
S2 ·2n

)

Table 4.2: Costs of the #SAT protocol of Section 4.2 when applied to a Boolean formula φ : {0,1}n→{0,1} of size S.

Together, (a) and (b) imply that IP ⊆ PSPACE because x ∈ L if and only if the optimal prover strategy
induces the verifier to accept input x with probability at least 2/3.

Property (b) holds simply because for any fixed prover strategy P and input x, the probability the verifier
accepts when interacting with P can be computed in space O(nc) by enumerating over every possible setting
of the verifier’s random coins and computing the fraction of settings that lead the verifier to accept. Again,
note that this enumeration procedure is extremely slow—requiring time exponential in n—but can be done
in space just O(nc), because if the verifier runs in time O(nc) then it also uses space at most O(nc). For a
proof of Property (a), the interested reader is directed to [Koz06, Lecture 17].49

The more challenging direction is to show that PSPACE ⊆ IP. The #SAT protocol of Lund et al.
[LFKN92] described above already contains the main ideas necessary to prove this. Shamir [Sha92] ex-
tended the #SAT protocol to the PSPACE-complete language TQBF, and Shen [She92] gave a simpler
proof. We do not cover Shamir or Shen’s extensions of the #SAT protocol here, since later (Section 4.5.5),
we will provide a different and quantitatively stronger proof that PSPACE⊆ IP.

4.3 Second Application: A Simple IP for Counting Triangles in Graphs

Section 4.2 used the sum-check protocol to give an IP for the #SAT problem, in which the verifier runs in
time polynomial in the input size, and the prover runs in time exponential in the input size. This may not
seem particularly useful, because in the real-world an exponential-time prover simply will not scale to even
moderately-sized inputs. Ideally, we want provers that run in polynomial rather than exponential time, and

49As stated in [Koz06, Lecture 17], the result that IP ⊆ PSPACE is attributed to a manuscript by Paul Feldman in a paper by
Goldwasser and Siper [GS86], and also follows from the analysis in [GS86].
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3 5 7 9

4 6 8 10

! ∈ #$×$

%& 0,0,0,0 = 1
%& 0,0,0,1 = 3
%& 0,0,1,0 = 5
%& 0,0,1,1 = 7
%& 0,1,0,0 = 2
%& 0,1,0,1 = 4
%& 0,1,1,0 = 6
%& 0,1,1,1 = 8
%& 1,0,0,0 = 3
%& 1,0,0,1 = 5
%& 1,0,1,0 = 7
%& 1,0,1,1 = 9
%& 1,1,0,0 = 4
%& 1,1,0,1 = 6
%& 1,1,1,0 = 8
%& 1,1,1,1 = 10

Figure 4.5: Example of how to view an n× n matrix A with entries from F as a function fA mapping the domain
{0,1}log2(n)×{0,1}log2(n) to F, when n = 4. Note that there are n2 entries of A, and n2 vectors in {0,1}log2(n)×
{0,1}log2(n). The entries of A are interpreted as the list of all n2 evaluations of fA.

we want verifiers that run in linear rather than polynomial time. IPs achieving such time costs are often
called doubly-efficient, with the terminology chosen to highlight that both the verifier and prover are highly
efficient. The remainder of this chapter is focused on developing doubly-efficient IPs.

As a warmup, in this section, we apply the sum-check protocol in a straightforward manner to give
a simple, doubly-efficient IP for an important graph problem: counting triangles. We give an even more
efficient (but less simple) IP for this problem in Section 4.5.1.

To define the problem, let G = (V,E) be a simple graph on n vertices.50 Here, V denotes the set of
vertices of G, and E denotes the edges in G. Let A ∈ {0,1}n×n be the adjacency matrix of G, i.e., Ai, j = 1 if
and only if (i, j) ∈ E. In the counting triangles problem, the input is the adjacency matrix A, and the goal is
to determine the number of unordered node triples (i, j,k) ∈V ×V ×V such that i, j, and k are all connected
to each other, i.e., (i, j), ( j,k) and (i,k) are all edges in E.

At first blush, it is totally unclear how to express the number of triangles in G as the sum of the evalua-
tions of a low-degree polynomial g over all inputs in {0,1}v, as per Equation (4.1). After all, the counting
triangles problem itself makes no reference to any low-degree polynomial g, so where will g come from?
This is where multilinear extensions come to the rescue.

For it to make sense to talk about multilinear extensions, we need to view the adjacency matrix A not as
a matrix, but rather as a function fA mapping {0,1}logn×{0,1}logn to {0,1}. The natural way to do this is
to define fA(x,y) so that it interprets x and y as the binary representations of some integers i and j between
1 and n, and outputs Ai, j. See Figure 4.5 for an example.51

50A simple graph is one that is undirected and unweighted, with no self-loops or repeat edges.
51Figure 4.5 depicts a matrix A with arbitrary entries from some field F. In the counting triangles problem as defined above,

each entry of A is either 0 or 1, not an arbitrary field element.
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Then the number of triangles, ∆, in G can be written:

∆ =
1
6 ∑

x,y,z∈{0,1}logn

fA(x,y) · fA(y,z) · fA(x,z). (4.9)

To see that this equality is true, observe that the term for x,y,z in the above sum is 1 if edges (x,y), (y,z),
and (x,z) all appear in G, and is 0 otherwise. The factor 1/6 comes in because the sum over ordered node
triples (i, j,k) counts each triangle 6 times, once for each permutation of i, j, and k.

Let F be a finite field of size p≥ 6n3, where p is a prime, and let us view all entries of A as elements of
F. Here, we are choosing p large enough so that 6∆ is guaranteed to be in {0,1, . . . , p−1}, as the maximum
number of triangles in any graph on n vertices is

(n
3

)
≤ n3. This ensures that, if we associate elements of

F with integers in {0,1, . . . , p− 1} in the natural way, then Equation (4.9) holds even when all additions
and multiplications are done in F rather than over the integers. (Choosing a large field to work over has the
added benefit of ensuring good soundness error, as the soundness error of the sum-check protocol decreases
linearly with field size.)

At last we are ready to describe the polynomial g to which we will apply the sum-check protocol to com-
pute 6∆. Recalling that f̃A is the multilinear extension of fA over F, define the (3logn)-variate polynomial
g to be:

g(X ,Y,Z) = f̃A(X ,Y ) · f̃A(Y,Z) · f̃A(X ,Z).

Equation (4.9) implies that:
6∆ = ∑

x,y,z∈{0,1}logn

g(x,y,z),

so applying the sum-check protocol to g yields an IP computing 6∆.

Example. Consider the smallest non-empty graph, namely the two-vertex graph with a single undirected
edge connecting the two vertices. There are no triangles in this graph. This is because there are fewer than
three vertices in the entire graph, and there are no self-loops. That is, by the pigeonhole principle, for every
triple of vertices (i, j,k), at least two of the vertices are the same vertex (i.e., at least one of i = j, j = k,
or i = k holds), and since there are no self-loops in the graph, these two vertices are not connected to each
other by an edge. In this example, the adjacency matrix is

A =

[
0 1
1 0

]
.

In this case,
f̃A(a,b) = a · (1−b)+b · (1−a),

and g is the following 3-variate polynomial:

g(X ,Y,Z) = (X · (1−Y )+Y · (1−X))(Y · (1−Z)+Z · (1−Y ))(X · (1−Z)+Z · (1−X)) .

It is not hard to see that g(x,y,z) = 0 for all (x,y,z)∈ {0,1}3, and hence applying the sum-check protocol
to g reveals that the number of triangles in the graph is 1

6 ·∑(x,y,z)∈{0,1}3 g(x,y,z) = 0.

Costs of the Protocol. Since the polynomial g is defined over 3 logn variables, there are 3 logn rounds.
Since g has degree at most 2 in each of its 3 logn variables, the total number of field elements sent by the
prover in each round is at most 3. This means that the communication cost is O(logn) field elements (9 logn
elements sent from prover to verifier, and at most 3 logn sent from verifier to prover).
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The verifier’s runtime is dominated by the time to perform the final check in the sum-check proto-
col. This requires evaluating g at a random input (r1,r2,r3) ∈ Flogn×Flogn×Flogn, which in turn requires
evaluating f̃A(r1,r2), f̃A(r2,r3) and f̃A(r1,r3). Each of these 3 evaluations can be computed in O(n2) field
operations using Lemma 3.8, which is linear in the size of the input matrix A.

The prover’s runtime is clearly at most O(n5). This is because, since there are 3 log2 n rounds of the
protocol, it is sufficient for the prover to evaluate g at O(n3) inputs (see Table 4.1), and as explained in the
previous paragraph, g can be evaluated at any input in F3logn in O(n2) time. In fact, more sophisticated
algorithmic insights introduced in the next section can bring the prover runtime down to O(n3), which is
competitive with the naive unverifiable algorithm for counting triangles that iterates over every triple of
vertices and checks if they form a triangle. We omit further discussion of how to achieve prover time O(n3)
in the protocol of this section, as Section 4.5.1 gives a different IP for counting triangles, in which the
prover’s runtime is much less than O(n3).

A Bird’s Eye View. Hopefully the above protocol for counting triangles gives a sense of how problems
that people care about in practice can be expressed as instances of Equation (4.1) in non-obvious ways. The
general paradigm works as follows. An input x of length n is viewed as a function fx mapping {0,1}logn

to some field F. And then the multilinear extension f̃x of fx is used in some way to construct a low-degree
polynomial g such that, as per Equation (4.1), the desired answer equals the sum of the evaluations of g over
the Boolean hypercube. The remaining sections of this chapter cover additional examples of this paradigm.

4.4 Third Application: Super-Efficient IP for MATMULT

This section describes a highly optimized IP protocol for matrix multiplication (MATMULT) from [Tha13].
While this MATMULT protocol is of interest in its own right, it is included here for didactic reasons: it
displays, in a clean and unencumbered setting, all of the algorithmic insights that are exploited later in this
survey to give more general IP and MIP protocols.

Given two n×n input matrices A,B over field F, the goal of MATMULT is to compute the product matrix
C = A ·B.

4.4.1 Comparison to Freivalds’ Protocol

Recall from Section 2.2 that, in 1977, Freivalds [Fre77] gave the following verification protocol for MATMULT:
to check that A ·B =C, V picks a random vector x ∈ Fn, and accepts if A · (Bx) =Cx. V can compute A · (Bx)
with two matrix-vector multiplications, which requires just O(n2) time. Thus, in Freivelds’ protocol, P
simply finds and sends the correct answer C, while V runs in optimal O(n2) total time. Today, Freivalds’
protocol is regularly covered in introductory textbooks on randomized algorithms.

At first glance, Freivalds’ protocol seems to close the book on verification protocols for MATMULT,
since the runtimes of both V and P are optimal: P does no extra work to prove correctness of the answer
matrix C, V runs in time linear in the input size, and the protocol is even non-interactive (P just sends the
answer matrix C to V).

However, there is a sense in which it is possible to improve on Freivalds’ protocol by introducing inter-
action between P and V . In many settings, algorithms invoke MATMULT, but they are not really interested
in the full answer matrix. Rather, they apply a simple post-processing step to the answer matrix to arrive
at the quantity of true interest. For example, the best-known graph diameter algorithms repeatedly square
the adjacency matrix of the graph, but ultimately they are not interested in the matrix powers—they are
only interested in a single number. As another example, discussed in detail in Section 4.5.1, the fastest
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known algorithm for counting triangles in dense graphs invokes matrix multiplication, but is ultimately only
interested in a single number, namely the number of triangles in the graph.

If Freivalds’ protocol is used to verify the matrix multiplication steps of these algorithms, the actual
product matrices must be sent for each step, necessitating Ω(n2) communication. In practice, this can easily
be many terabytes of data, even on graphs G with a few million nodes. Also, even if G is sparse, powers of
G’s adjacency matrix may be dense.

This section describes an interactive matrix multiplication protocol from [Tha13] that preserves the
runtimes of V and P from Freivalds’ protocol, but avoids the need for P to send the full answer matrix in
the settings described above—in these settings, the communication cost of the interactive protocol is just
O(logn) field elements per matrix multiplication.

Preview: The Power of Interaction. This comparison of the interactive MATMULT protocol to Freivalds’
non-interactive one exemplifies the power of interaction in verification. Interaction buys the verifier the
ability to ensure that the prover correctly materialized intermediate values in a computation (in this case,
the entries of the product matrix C), without requiring the prover to explicitly materialize those values to
the verifier. This point will become clearer later, when we cover the counting triangles protocol in Section
4.5.1. Roughly speaking, in that protocol, the prover convinces the verifier it correctly determined the
squared adjacency matrix of the input graph, without ever materializing the squared adjacency matrix to the
verifier.

Preview: Other Protocols for MATMULT. An alternate interactive MATMULT protocol can be obtained
by applying the GKR protocol (covered later in Section 4.6) to a circuit C that computes the product C of
two input matrices A,B. The verifier in this protocol runs in O(n2) time, and the prover runs in time O(S),
where S is the number of gates in C.

The advantage of the MATMULT protocol described in this section is two-fold. First, it does not care
how the prover finds the right answer. In contrast, the GKR protocol demands that the prover compute
the answer matrix C in a prescribed manner, namely by evaluating the circuit C gate-by-gate. Second,
the prover in the protocol of this section simply finds the right answer and then does O(n2) extra work to
prove correctness. This O(n2) term is a low-order additive overhead, assuming that there is no linear-time
algorithm for matrix multiplication. In contrast, the GKR protocol introduces at least a constant factor
overhead for the prover. In practice, this is the difference between a prover that runs many times slower than
an (unverifiable) MATMULT algorithm, and a prover that runs a fraction of a percent slower [Tha13].

4.4.2 The Protocol

Given n×n input matrix A,B, recall that we denote the product matrix A ·B by C. And as in Section 4.3, we
interpret A, B, and C as functions fA, fB, fC mapping {0,1}logn×{0,1}logn to F via:

fA(i1, . . . , ilogn, j1, . . . , jlogn) = Ai j.

As usual, f̃A, f̃B, and f̃C denote the MLEs of fA, fB, and fC.
It is cleanest to describe the protocol for MATMULT as a protocol for evaluating f̃C at any given point

(r1,r2) ∈ Flogn×logn. As we explain later (see Section 4.5), this turns out to be sufficient for application
problems such as graph diameter and triangle counting.

The protocol for computing f̃C(r1,r2) exploits the following explicit representation of the polynomial
f̃C(x,y).
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Lemma 4.2. f̃C(x,y) = ∑b∈{0,1}logn f̃A(x,b) · f̃B(b,y). Here, the equality holds as formal polynomials in the
coordinates of x and y.

Proof. The left and right hand sides of the equation appearing in the lemma statement are both multilinear
polynomials in the coordinates of x and y. Since the MLE of C is unique, we need only check that the left
and right hand sides of the equation agree for all Boolean vectors i, j ∈ {0,1}logn. That is, we must check
that for Boolean vectors i, j ∈ {0,1}logn,

fC(i, j) = ∑
k∈{0,1}logn

fA(i,k) · fB(k, j). (4.10)

But this is immediate from the definition of matrix multiplication.

With Lemma 4.2 in hand, the interactive protocol is immediate: we compute f̃C(r1,r2) by applying the
sum-check protocol to the (logn)-variate polynomial g(z) := f̃A(r1,z) · f̃B(z,r2).

Example. Consider the 2×2 matrices A =

[
0 1
2 0

]
and B =

[
1 0
0 4

]
over F5. One can check that

A ·B =

[
0 4
2 0

]
.

Viewing A and B as a functions mapping {0,1}2→ F5,

f̃A(x1,x2) = (1− x1)x2 +2x1(1− x2) =−3x1x2 +2x1 + x2,

and
f̃B(x1,x2) = (1− x1)(1− x2)+4x1x2 = 5x1x2− x1− x2 +1 = 1− x1− x2,

where the final equality used the fact that we are working over F5, so the coefficient 5 is the same as the
coefficient 0.

Observe that

∑
b∈{0,1}

f̃A(x1,b) · f̃B(b,x2) = f̃A(x1,0) · f̃B(0,x2)+ f̃A(x1,1) · f̃B(1,x2)

= 2x1 · (1− x2)+(−x1 +1) · (−x2) =−x1x2 +2x1− x2. (4.11)

Meanwhile, viewing C as a function fC mapping {0,1}2→ F5, we can calculate via Lagrange Interpo-
lation:

f̃C(x1,x2) = 4(1− x1)x2 +2x1(1− x2) =−6x1x2 +2x1 +4x2 =−x1x2 +2x1− x2,

where the final equality uses that 6≡ 1 and 4≡−1 when working modulo 5. Hence, we have verified that
Lemma 4.2 indeed holds for this particular example.

4.4.3 Discussion of costs.

Rounds and communication cost. Since g is a (logn)-variate polynomial of degree 2 in each variable,
the total communication is O(logn) field elements, spread over logn rounds.

V’s runtime. At the end of the sum-check protocol, V must evaluate g(r3) = f̃A(r1,r3) · f̃B(r3,r2). To
perform this evaluation, it suffices for V to evaluate f̃A(r1,r3) and f̃B(r3,r2). Since V is given the matrices
A and B as input, Lemma 3.8 implies that both evaluations can be performed in O(n2) time.
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P’s runtime. Recall that in each round k of the sum-check protocolP sends a quadratic polynomial gk(Xk)
claimed to equal:

∑
bk+1∈{0,1}

. . . ∑
blogn∈{0,1}

g(r3,1, . . . ,r3,k−1,Xi,bk+1, . . .blogn),

and to specify gk(Xk), P can just send the values gk(0),gk(1), and gk(2). Thus, it is enough for P to evaluate
g at all points of the form

(
r3,1, . . . ,r3,k−1,{0,1,2},bk+1, . . . ,blogn

)
:
(
bk+1, . . . ,blogn

)
∈ {0,1}logn−k. (4.12)

There are 3 ·n/2k such points in round k.
We describe three separate methods to perform these evaluations. The first method is the least sophis-

ticated and requires Θ(n3) total time. The second method reduces the runtime to Θ(n2) per round, for a
total runtime bound of Θ(n2 logn) over all logn rounds. The third method is more sophisticated still—it en-
ables the prover to reuse work across rounds, ensuring that P’s runtime in round k is bounded by O(n2/2k).
Hence, the prover’s total runtime is O(∑k n2/2k) = O(n2).

Method 1. As described when bounding V’s runtime, g can be evaluated at any point in O(n2) time.
Since there are 3 ·n/2k points at which P must evaluate g in round k, this leads to a total runtime for P of
O(∑k n3/2k) = O(n3).

Method 2. To improve on the O(n3) runtime of Method 1, the key is to exploit the fact that 3 · n/2k

points at which P needs to evaluate g in round k are not arbitrary points in Flogn, but are instead highly
structured. Specifically, each such point z is in the form of Equation (4.12), and hence the trailing coor-
dinates of z are all Boolean (i.e., {0,1}-valued). As explained below, this property ensures that each en-
try Ai j of A contributes to g

(
r3,1, . . . ,r3,k−1,{0,1,2},bk+1, . . . ,blogn

)
for only one tuple (bk+1, . . . ,blogn) ∈

{0,1}logn−k, and similarly for each entry of Bi j. Hence, P can make a single pass over the matrices A
and B, and for each entry Ai j or Bi j, P only needs to update g(z) for the three relevant tuples z of the form(
r3,1, . . . ,r3,k−1,{0,1,2},bk+1, . . . ,blogn

)
.

In more detail, in order to evaluate g at any input z, it suffices for P to evaluate f̃A(r1,z) and f̃B(z,r2).
We explain the case of evaluating f̃A(r1,z) at all relevant points z, since the case of f̃B(z,r2) is identi-
cal. From Lemma 3.6 (Lagrange Interpolation), f̃A(r1,z) = ∑i, j∈{0,1}logn Ai jχ(i, j)(r1,z). For any input z
of the form

(
r3,1, . . . ,r3,k−1,{0,1,2},bk+1, . . . ,blogn

)
, notice that χi, j(r1,z) = 0 unless ( jk+1, . . . , jlogn) =

(bk+1, . . . ,blogn). This is because, for any coordinate ℓ such that jℓ ̸= bℓ, the factor ( jℓbℓ+(1− jℓ)(1−bℓ))
appearing in the product defining χ(i, j) equals 0 (see Equation (3.1)).

This enables P to evaluate f̃A(r1,z) in round k at all points z of the form of Equation (4.12) with a single
pass over A: when P encounters entry Ai j of A, P updates f̃A (z)← f̃A (z)+Ai jχi, j(z) for the three relevant
values of z.

Method 3. To shave the last factor of logn off P’s runtime, the idea is to have P reuse work across
rounds. Very roughly speaking, the key fact that enables this is the following:

Informal Fact. If two entries (i, j),(i′, j′) ∈ {0,1}logn×{0,1}logn agree in their last ℓ bits, then Ai, j and
Ai′, j′ contribute to the same three points in each of the final ℓ rounds of the protocol.

The specific points that they contribute to in each round k ≥ log(n)− ℓ are the ones of the form

z =
(
r3,1, . . . ,r3,k−1,{0,1,2},bk+1, . . . ,blogn

)
,

where bk+1 . . .blogn equal the trailing bits of (i, j) and (i′, j′). This turns out to ensure that P can treat (i, j)
and (i′, j′) as a single entity thereafter. There are only O(n2/2k) entities of interest after k variables have
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been bound (out of the 2logn variables over which f̃A is defined). So the total work that P invests over the
course of the protocol is

O

(
2logn

∑
k=1

n2/2k

)
= O(n2).

In more detail, the Informal Fact stated above is captured by the proof of the following lemma.

Lemma 4.3. Suppose that p is an ℓ-variate multilinear polynomial over field F and that A is an array of
length 2ℓ such that for each x ∈ {0,1}ℓ, A[x] = p(x).52 Then for any r1 ∈ F, there is an algorithm running in
time O(2ℓ) that, given r1 and A as input, computes an array B of length 2ℓ−1 such that for each x′ ∈ {0,1}ℓ−1,
B[x′] = p(r1,x′).

Proof. The proof is reminiscent of that of Lemma 3.8. Specifically, we can express the multilinear polyno-
mial p(x1,x2, . . . ,xℓ) via:

p(x1,x2, . . . ,xℓ) = x1 · p(1,x2, . . . ,xℓ)+(1− x1) · p(0,x2, . . . ,xℓ). (4.13)

Indeed, the right hand side is clearly a multilinear polynomial that agrees with p at all inputs in {0,1}ℓ, and
hence must equal p by Fact 3.5. The algorithm to compute B iterates over every value x′ ∈ {0,1}ℓ−1 and
sets B[x′]← r1 ·A[1,x′]+ (1− r1) ·A[0,x′].53

Lemma 4.3 captures Informal Fact because, while inputs (0,x′) and (1,x′) to p both contribute to B[x′],
they contribute to no other entries of the array B. As we will see when we apply Lemma 4.3 repeatedly to
compute the prover’s messages in the sum-check protocol, once B[x′] is computed, the prover only needs to
know B[x′], not p(0,x′) or p(1,x′) individually.

Lemma 4.4. Let h be any ℓ-variate multilinear polynomial over field F for which all evaluations of h(x) for
x ∈ {0,1}ℓ can be computed in time O(2ℓ). Let r1, . . . ,rℓ ∈ F be any sequence of ℓ field elements. Then there
is an algorithm that runs in time O(2ℓ) and computes the following quantities:

{h(r1, . . . ,ri−1,{0,1,2},bi+1, . . . ,bℓ)}i=1,...,ℓ; bi+1,...,bℓ∈{0,1} (4.14)

Proof. Let
Si = {h(r1, . . . ,ri−1,bi,bi+1, . . . ,bℓ)}bi,...,bℓ∈{0,1}.

Given all values in Si, applying Lemma 4.3 to the (ℓ−i+1)-variate multilinear polynomial p(Xi, . . . ,Xℓ)=
h(r1, . . . ,ri−1,Xi, . . . ,Xℓ) implies that all values in Si+1 can be computed in time O(2ℓ−i).

Equation (4.13) further implies

h(r1, . . . ,ri−1,2,bi+1, . . . ,bℓ) = 2 ·h(r1, . . . ,ri−1,1,bi+1, . . . ,bℓ)−h(r1, . . . ,ri−1,0,bi+1, . . . ,bℓ),

and hence the values
{h(r1, . . . ,ri−1,2,bi+1, . . . ,bℓ)}bi,...,bℓ∈{0,1}

can also be computed in O(2ℓ−i) time given the values in Si.
It follows the total time required to compute all values in Equation (4.14) is O(∑ℓ

i=1 2ℓ−i) = O(2ℓ).
52Here, we associate bit-vectors x of length ℓ with indices into the array A of length 2ℓ in the natural way.
53As in the statement of the lemma, here we associate bit-vectors x of length ℓ with indices into the array A of length 2ℓ in the

natural way, and similarly bit-vectors x′ of length ℓ−1 with indices into the array B of length 2ℓ−1.
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Figure 4.6: Depiction of the round-by-round evolution of the honest prover’s internal data structure devoted to the
polynomial pi in Lemma 4.5 in the case ℓ= 3 (recall this lemma considers the sum-check protocol applied to compute
∑x∈{0,1}ℓ p1(x) · · · · · pk(x) when each pi is multilinear). The top row is used by the prover to compute its prescribed
message in the first round, the middle row for the second round, and the bottom row for the third round.

Communication Rounds V time P time
O(logn) field elements logn O

(
n2
)

T +O(n2)

Table 4.3: Costs of the MATMULT protocol of Section 4.4 when applied to n×n matrices A and B. Here, T is the time
required by P to compute the product matrix C = A ·B.

Lemma 4.5. (Implicit in [CTY11, Appendix B], see also [Tha13, XZZ+19]) Let p1, p2, . . . , pk be ℓ-variate
multilinear polynomials. Suppose that for each pi there is an algorithm that evaluates pi at all inputs in
{0,1}ℓ in time O(2ℓ). Let g = p1 · p2 · · · · · pk be the product of these multilinear polynomials. Then when the
sum-check protocol is applied to the polynomial g, the honest prover can be implemented in O(k ·2ℓ) time.

Proof. As explained in Equation (4.12), the dominant cost in the honest prover’s computation in the sum-
check protocol lies in evaluating g at points of the form referred to in Lemma 4.4 (see Equation (4.14)). To
obtain these evaluations, it clearly suffices to evaluate p1, . . . , pk at each one of these points, and multiply
the results in time O(k) per point. Lemma 4.4 guarantees that each pi can be evaluated at the relevant points
in O(2ℓ) time, yielding a total runtime of O(k · 2ℓ). See Figure 4.6 for a depiction of the honest prover’s
computation in the case ℓ= 3.

In the matrix multiplication protocol of this section, the sum-check protocol is applied to the (log2 n)-
variate polynomial g(X3) = f̃A(r1,X3) · f̃B(X3,r2). The multilinear polynomial f̃A(r1,X3) can be evaluated at
all inputs in {0,1}logn in O(n2) time, by applying Lemma 4.4 with h = f̃A, and observing that the necessary
evaluations of f̃A(r1,X3) are a subset of the points in Equation (4.14) (with i in Equation (4.14) equal to
logn, and (r1, . . . ,rlogn) in Equation (4.14) equal to the entries of r1). Similarly, f̃B(X3,r2) can be evaluated
at all inputs in {0,1}logn in O(n2) time. Given all of these evaluations, Lemma 4.5 implies that the prover
can execute its part of the sum-check protocol in just O(n) additional time.

This completes the explanation of how the prover in the matrix multiplication protocol of this section
executes its part of the sum-check protocol in O(n2) total time.

4.5 Applications of the Super-Efficient MATMULT IP

Why does an IP for computing f̃C(r1,r2) rather than the full product matrix C = A ·B suffice in applications?
This section answers this question via several examples. With the exception of Section 4.5.5, all of the
protocols in this section enable the honest prover to run the best-known algorithm to solve the problem
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at hand, and then do a low-order amount of extra work to prove the answer is correct. We refer to such
IPs as super-efficient for the prover. There are no other known IPs or argument systems that achieve this
super-efficiency while keeping the proof length sublinear in the input size.

4.5.1 A Super-Efficient IP For Counting Triangles

Algorithms often invoke MATMULT to generate crucial intermediate values compute some product matrix
C, but are not interested in the product matrix itself. For example, the fastest known algorithm for counting
triangles in dense graphs works as follows. If A is the adjacency matrix of a simple graph, the algorithm
first computes A2 (it is known how to accomplish this in time O(n2.3728639) [LG14]), and then outputs (1/6
times)

∑
i, j∈{1,...,n}

(A2)i j ·Ai j. (4.15)

It is not hard to see that Equation (4.15) quantity is six times the number of triangles in the graph, since
(A2)i, j counts the number of common neighbors of vertices i and j, and hence A2

i j ·Ai j equals the number of
vertices k such that (i, j), ( j,k) and (k, j) are all edges in the graph.

Clearly, the matrix A2 is not of intrinsic interest here, but rather is a useful intermediate object from
which the final answer can be quickly derived. As we explain in this section, it is possible to give an IP for
counting triangles in which P essentially establishes that he correctly materialized A2 and used it to generate
the output via Equation (4.15). Crucially, P will accomplish this with only logarithmic communication (i.e.,
without sending A2 to the verifier), and while doing very little extra work beyond determining A2.

The Protocol. As in Section 4.3, let F be a finite field of size p ≥ 6n3, where p is a prime, and let us view
all entries of A as elements of F. Define the functions fA(x,y), fA2(x,y) : {0,1}logn×{0,1}logn → F that
interprets x and y as the binary representations of some integers i and j between 1 and n, and outputs Ai, j

and (A2)i, j respectively. Let f̃A and f̃A2 denote the multilinear extensions of fA and fA2 over F.
Then the expression in Equation (4.15) equals ∑x,y∈{0,1}logn f̃A2(x,y) · f̃A(x,y). This quantity can be com-

puted by applying the sum-check protocol to the multi-quadratic polynomial f̃A2 · f̃A. At the end of this pro-
tocol, the verifier needs to evaluate f̃A2(r1,r2) · f̃A(r1,r2) for a randomly chosen input (r1,r2)∈ Flogn×Flogn.
The verifier can evaluate f̃A(r1,r2) unaided in O(n2) time using Lemma 3.8. While the verifier cannot eval-
uate f̃A2(r1,r2) without computing the matrix A2 (which is as hard as solving the counting triangles problem
on her own), evaluating f̃A2(r1,r2) is exactly the problem that the MatMult IP of Section 4.4.2 was designed
to solve (as A2 = A ·A), so we simply invoke that protocol to compute f̃A2(r1,r2).

Example. Consider the example from Section 4.3, in which the input matrix is

A =

[
0 1
1 0

]
.

In this case,

A2 =

[
1 0
0 1

]
.

One can check that
f̃A(X ,Y ) = X · (1−Y )+Y · (1−X),

and
f̃A2(X ,Y ) = X ·Y +(1−Y ) · (1−X).
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The counting triangles protocol in this section first applies the sum-check protocol to the following bivariate
polynomial that has degree 2 in both of its variables:

f̃A2(X ,Y ) · f̃A(X ,Y ) = (X · (1−Y )+Y · (1−X)) · (X ·Y +(1−X) · (1−Y )) .

It is easy to check that this polynomial evaluates to 0 for all four inputs in {0,1}2, so applying the sum-check
protocol to this polynomial reveals to the verifier that ∑(x,y)∈{0,1}2 f̃A2(x,y) · f̃A(x,y) = 0.

At the end of the sum-check protocol applied to this polynomial, the verifier needs to evaluate f̃A2 and f̃A

at a randomly chosen input (r1,r2) ∈ Flogn×Flogn. The verifier evaluates f̃A(r1,r2) on its own. To compute
f̃A2(r1,r2), the matrix multiplication IP is invoked. This protocol applies the sum-check protocol a second
time, to the univariate quadratic polynomial

s(X) := f̃A(r1,X) · f̃A(X ,r2) = (r1(1−X)+(1− r1)X) · (X(1− r2)+ r2(1−X)) .

This reveals to the verifier that

f̃A2(r1,r2) = s(0)+ s(1) = r1r2 +(1− r1)(1− r2).

At the end of this second invocation of the sum-check protocol, the verifier needs to evaluate s(r3) for a
randomly chosen r3 ∈ F. To do this, it suffices to evaluate f̃A(r1,r3) and f̃A(r3,r2), both of which the verifier
computes on its own.

Costs of the Counting Triangles Protocol. The number of rounds, communication size, and verifier run-
time of the IP of this section are all identical to the counting triangles protocol we saw earlier in Section 4.3
(namely, O(logn) rounds and communication, and O(n2) time verifier). The big advantage of the protocol
of this section is in prover time: the prover in this section merely has to compute the matrix A2 (it does not
matter how P chooses to compute A2), and then does O(n2) extra work to compute the prescribed messages
in the two invocations of the sum-check protocol. Up to the additive O(n2) term, this matches the amount
of work performed by the fastest known (unverifiable) algorithm for counting triangles. The additive O(n2)
is a low-order cost for P , since computing A2 with the fastest known algorithms requires super-linear time.

Communication and Rounds. In more detail, the application of sum-check to the polynomial f̃A2 · f̃A requires
2 logn rounds, with 3 field elements sent from prover to verifier in each round. The matrix multiplication IP
used to compute f̃A2(r1,r2) requires an additional logn rounds, with 3 field elements sent from the prover
to verifier in each round. This means there are 3 logn rounds in total, with 9 logn field elements sent from
the prover to the verifier (and 3logn sent from the verifier to the prover). This round complexity and
communication cost is identical to the counting triangles protocol from Section 4.3.

Verifier runtime. The verifier is easily seen to run in O(n2) time in total–it’s runtime is dominated by the cost
of evaluating f̃A at three inputs in Flogn×Flogn, namely (r1,r2), (r2,r3), and (r1,r3). This too is identical to
the verifier cost in the counting triangles protocol from Section 4.3.

Prover runtime. Once the prover knows A2, the prover’s messages in both the sum-check protocol applied
to the polynomial f̃A2 · f̃A, and in the matrix multiplication IP of Section 4.4.2, can be derived in O(n2) time.
Specifically, Method 3 of Section 4.4.3 achieves an O(n2) time prover in the matrix multiplication IP, and
the same techniques show that, if P knows all of the entries of the matrix A2, then in O(n2) time P can
compute the prescribed messages when applying the sum-check protocol to the polynomial f̃A2 · f̃A.
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4.5.2 A Useful Subroutine: Reducing Multiple Polynomial Evaluations to One

In the counting triangles protocol just covered, at the end of the protocol the verifier needs to evaluate f̃A at
three points, (r1,r2), (r2,r3), and (r1,r3). This turns out to be a common occurrence: the sum-check protocol
is often applied to some polynomial g such that, in order to evaluate g at a single point, it is necessary to
evaluate some other multilinear polynomial W̃ at multiple points.

For concreteness, let us begin by supposing that W̃ is a multilinear polynomial over F with logn vari-
ables, and the the verifier wishes to evaluate W̃ at just two points, say b,c ∈ Flogn—we consider the case of
three or more points at the end of this section. We cover a simple one-round interactive proof with commu-
nication cost O(logn) that reduces the evaluation of W̃ (b) and W̃ (c) to the evaluation of W̃ (r) for a single
point r ∈ Flogn. What this means is that the protocol will force the prover P to send claimed values v0 and
v1 for W̃ (b) and W̃ (c), as well as claimed values for many other points chosen by the verifier V in a specific
manner. V will then pick r at random from those points, and it will be safe for V to believe that v0 = W̃ (b)
and v1 = W̃ (c) so long as P’s claim about W̃ (r) is valid. In other words, the protocol will ensure that if
either v0 ̸= W̃ (b) or v1 ̸= W̃ (c), then with high probability over the V’s choice of r, it will also be the case
that the prover makes a false claim as to the value of W̃ (r).

The protocol. Let ℓ : F→ Flogn be some canonical line passing through b and c. For example, we can
let ℓ : F→ Flogn be the unique line such that ℓ(0) = b and ℓ(1) = c. P sends a univariate polynomial q of
degree at most logn that is claimed to be W̃ ◦ ℓ, the restriction of W̃ to the line ℓ. V interprets q(0) and q(1)
as the prover’s claims v0 and v1 as to the values of W̃ (b) and W̃ (c). V picks a random point r∗ ∈ F, sets
r = ℓ(r∗), and interprets q(r∗) as the prover’s claim as to the value of W̃ (r).

A picture and an example. This technique is depicted pictorially in Figure 4.7. For a concrete example
of how this technique works, suppose that logn = 2, b = (2,4), c = (3,2), and W̃ (x1,x2) = 3x1x2 + 2x2.
Then the unique line ℓ(t) with ℓ(0) = b and ℓ(1) = c is t 7→ (t + 2,4− 2t). The restriction of W̃ to ℓ is
3(t + 2)(4− 2t)+ 2(4− 2t) = −6t2− 4t + 32. If P sends a degree-2 univariate polynomial q claimed to
equal W̃ ◦ ℓ, the verifier will interpret q(0) and q(1) as claims about the values W̃ (b) and W̃ (c) respectively.
The verifier will then pick a random r∗ ∈ F, set r = ℓ(r∗), and interpret q(r∗) as the claimed value of W̃ (r).
Observe that ℓ(r∗) = (r∗+2,4−2r∗) is a random point on the line ℓ.

The following claim establishes completeness and soundness of the above protocol.

Claim 4.6. Let W̃ be a multilinear polynomial over F in logn variables. If q = W̃ ◦ ℓ, then q(0) = W̃ (b),
q(1) = W̃ (c), and q(r∗) = W̃ (ℓ(r∗)) for all r∗ ∈ F. Meanwhile, if q ̸= W̃ ◦ ℓ, then with probability at least
1− logn/|F| over a randomly chosen r∗ ∈ F, q(r∗) ̸= W̃ (ℓ(r∗)).

Proof. The first claim is immediate from the fact that ℓ(0) = b and ℓ(1) = c. For the second claim, observe
that both q and W̃ ◦ℓ are univariate polynomials of degree at most logn. If they are not the same polynomial,
then the Schwartz-Zippel Lemma (even its simple special case for univariate polynomials) implies that when
r∗ is chosen at random from F, q(r∗) ̸= W̃ (ℓ(r∗)) with probability at least 1− log(n)/|F|.

Reducing three or more evaluations to one. If the verifier needs to evaluate W̃ at more than two points,
a similar protocol still applies. For example, suppose the verifier needs to know W̃ (a), W̃ (b), W̃ (c). This
time, let ℓ be a canonical degree-two curve passing through a, b, and c. For concreteness, we can let ℓ be the
unique degree-2 curve with ℓ(0) = a and ℓ(1) = b and ℓ(2) = c. For example, if a = (0,1), b = (2,2) and
c = (8,5), then ℓ(t) = (2t2, t2 +1).
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Figure 4.7: Schematic of how to reduce verifying claims about the values of W̃ (b) and W̃ (c) to a single claim about the
value of W̃ (r). Here, W̃ is the multilinear extension of W , ℓ is the unique line passing through b and c, and r = ℓ(r∗)
is a random point on ℓ.

Then P sends a univariate polynomial q of degree at most 2 logn that is claimed to be W̃ ◦ℓ. V interprets
q(0), q(1) q(2) as the prover’s claims as to the values of W̃ (a), W̃ (b), and W̃ (c). V picks a random point
r∗ ∈ F, sets r = ℓ(r∗), and interprets q(r∗) as the prover’s claim as to the value of W̃ (r). Compared to the
protocol for reducing two evaluations of W̃ to one, the degree of q doubled from logn to 2 logn, and hence
the prover-to-verifier communication increased by a factor of roughly 2, but remains O(logn). The protocol
remains perfectly complete, and the soundness error increases from 1− log(n)/|F to 1−2log(n)/F.

This protocol could be applied at the end of both of the counting triangles protocols that we have covered,
with W̃ equal to f̃A, to reduce the number of points at which V needs to evaluate f̃A from three to one. As
these evaluations are the dominant cost in V’s runtime, this reduces V time by a factor of essentially 3.
In the matrix powering protocol of the next section, the technique will be used to obtain more dramatic
improvements in verification costs, and it will recur in the GKR protocol for circuit evaluation of Section
4.6.

4.5.3 A Super-Efficient IP for Matrix Powers

Let A be an n× n matrix with entries from field F, and suppose a verifier wants to evaluate a single entry
of the powered matrix Ak for a large integer k. For concreteness, let’s say V is interested in learning entry
(Ak)n,n, and k and n are powers of 2. As we now explain, the MatMult IP of Section 4.4 gives a way to
do this, with O(log(k) · log(n)) rounds and communication, and a verifier that runs in O(n2 + log(k) log(n))
time.

Clearly we can express the matrix Ak as a product of smaller powers of A:

Ak = Ak/2 ·Ak/2. (4.16)

Hence, letting gℓ denote the multilinear extension of the matrix Aℓ, we can try to exploit Equation (4.16) by
applying the MatMult IP to compute (Ak)n,n = gk(1,1). Here, 1 ∈ {0,1}logn denotes the binary representa-
tion of the number n−1, so that (1,1) is meant to denote the binary string indexing the bottom-right matrix
entry.

At the end of the MatMult IP applied to two n× n matrices A′,B′, the verifier needs to evaluate f̃A′

and f̃B′ at the respective points (r1,r2) and (r2,r3), both in Flogn×Flogn. In the invocation of the MatMult
IP above, both A′ and B′ equal Ak/2. Hence, at the end of the MatMult IP, the verifier has to evaluate the
polynomial fAk/2 = gk/2 at the two points (r1,r2) and (r2,r3). Unfortunately, the verifier cannot do this since
she doesn’t know Ak/2.
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Reducing two points to one. Via the one-round interactive proof of Section 4.5.2 (see Claim 4.6 with
W̃ equal to gk/2), the verifier reduces evaluating a polynomial gk/2 at the two points to evaluating gk/2 at a
single point.

Recursion to the Rescue. After reducing two points to one, the verifier is left with the task of evaluating
gk/2 at a single input, say (r3,r4) ∈ Flogn× Flogn. Since gk/2 is the multilinear extension of the matrix
Ak/2 (viewed in the natural way as a function fAk/2 mapping {0,1}logn×{0,1}logn → F), and Ak/2 can be
decomposed as Ak/4 ·Ak/4, the verifier can recursively apply the MatMult protocol to compute gk/2(r3,r4).
This runs into the same issues as before, namely that to run the MatMult protocol, the verifier needs to
evaluate gk/4 at two points, which can in turn be reduced to the task of evaluating gk/4 at a single point. This
can again be handled recursively as above. After logk layers of recursion, there is no need to recurse further
since the verifier can evaluate g1 = f̃A at any desired input in O(n2) time using Lemma 3.8.

4.5.4 A General Paradigm for IPs with Super-Efficient Provers

Beyond algorithms for counting triangles, there are other algorithms that invoke MATMULT to compute
some product matrix C, and then apply some post-processing to C to compute an answer that is much
smaller than C itself (often the answer is just a single number, rather than an n×n matrix). In these settings,
V can apply a general-purpose protocol, such as the GKR protocol that will be presented in Section 4.6, to
verify that the post-processing step was correctly applied to the product matrix C. As we will see in Section
4.6, at the end of the application of the GKR protocol, V needs to evaluate f̃C(r1,r2) at a randomly chosen
point (r1,r2) ∈ Flogn×logn. V can do this using the MATMULT protocol described above.

Crucially, this post-processing step typically requires time linear in the size of C. So P’s runtime in this
application of the GKR protocol will be proportional to the size of (a circuit computing) the post-processing
step, which is typically just Õ(n2).

As a concrete example, consider the problem of computing the diameter of a directed graph G. Let A
denote the adjacency matrix of G, and let I denote the n×n identity matrix. Then the diameter of G is the
least positive number d such that (A+ I)d

i j ̸= 0 for all (i, j). This yields the following natural protocol for
diameter. P sends the claimed output d to V , as well as an (i, j) such that (A+ I)d−1

i j = 0. To confirm that d
is the diameter of G, it suffices for V to check two things: first, that all entries of (A+ I)d are nonzero, and
second that (A+ I)d−1

i j is indeed zero.54

The first task is accomplished by combining the MATMULT protocol with the GKR protocol as follows.
Let d j denote the jth bit in the binary representation of d. Then (A+ I)d = ∏

⌈logd⌉
j (A+ I)d j2 j

, so computing
the number of nonzero entries of D1 = (A+ I)d can be computed via a sequence of O(logd) matrix multi-
plications, followed by a post-processing step that computes the number of nonzero entries of D1. We can
apply the GKR protocol to verify this post-processing step, but at the end of the protocol, V needs to evaluate
the multilinear extension of D1 at a random point (as usual, when we refer to the multilinear extension of D1,
we are viewing D1 as a function mapping {0,1}logn×{0,1}logn→ F in the natural way). V cannot do this
without help, so V outsources even this computation to P , by using O(logd) invocations of the MATMULT

protocol described above.
The second task, of verifying that (A+ I)d−1

i j = 0, is similarly accomplished using O(logd) invocations
of the MATMULT protocol—since V is only interested in one entry of (A+I)d−1, P need not send the matrix

54If the interactive proof works over field Fp, one does need to be careful that (A+ I)d−1
i j is not positive and divisible by p. One

technique for dealing with this is to have the verifier, after the prover sends (i, j), choose p to be a random prime in an appropriate
interval. We omit further details for brevity.
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(A+ I)d−1 in full, and the total communication here is just polylog(n).
Ultimately, V’s runtime in this diameter protocol is O(m logn), where m is the number of edges in G.

P’s runtime in the above diameter protocol matches the best known unverifiable diameter algorithm up to a
low-order additive term [Sei95, Yus10], and the communication is just polylog(n).

4.5.5 An IP for Small-Space Computations (and IP = PSPACE)

In this section, we use the matrix-powering protocol to re-prove the following important result of Gold-
wasser, Kalai, and Rothblum (GKR) [GKR08]: all problems solvable in logarithmic space have an IP with
a quasilinear-time verifier, polynomial time prover, and polylogarithmic proof length.

The basic idea of the proof is that executing any Turing Machine M that uses s bits of space can be
reduced to the problem of computing a single entry of A2s

for a certain matrix A (A is in fact the configuration
graph of M). So one can just apply the matrix-powering IP to A to determine the output of M. While A is
a huge matrix (it has at least 2s rows and columns), configuration graphs are highly structured, and this
enables the verifier to evaluate f̃A at a single input in O(s ·n) time. If s is logarithmic in the input size, then
this means that the verifier in the IP runs in O(n logn) time.

The original paper of GKR proved the same result by constructing an arithmetic circuit for computing
A2s

and then applying a sophisticated IP for arithmetic circuit evaluation to that circuit (we cover this IP
in Section 4.6 and the arithmetic circuit for computing A2s

in Section 6.4). The approach described in
this section is simpler, in that it directly applies a simple IP for matrix-powering, rather than the more
complicated IP for the general circuit-evaluation problem.

Details. Let M be a Turing Machine that, when run on an m-bit input, uses at most s bits of space. Let
A(x) be the adjacency matrix of its configuration graph when M is run on input x ∈ {0,1}m. Here, the
configuration graph has as its vertex set all of the possible states and memory configurations of the machine
M, with a directed edge from vertex i to vertex j if running M for one step from configuration i on input
x causes M to move to configuration j. Since M uses s bits of space, there are O(2s) many vertices of the
configuration graph. This means that A(x) is an N×N matrix for some N = O(2s). Note that if M never
enters an infinite loop (i.e., never enters the same configuration twice), then M must trivially run in time at
most N.

We can assume without loss of generality that M has a unique starting configuration and a unique accept-
ing configuration; say for concreteness that these configurations correspond to vertices of the configuration
graph with labels 1 and N. Then to determine whether M accepts input x, it is enough to determine whether
there is a length-N path from vertex 0 to vertex N in the configuration graph of M. This is equivalent to
determining the (1,N)’th entry of the matrix (A(x))N .55

This quantity can be computed with the matrix power protocol of the previous section, which uses
O(s · logN) rounds and communication. At the end of the protocol, the verifier does need to evaluate the
MLE of the matrix A(x) at a randomly chosen input. This may seem like it should take up to O(N2) time,
since A is a N×N matrix. However, the configuration matrix of any Turing Machine is highly structured,
owing to the fact that at any time step, the machine only reads or writes to O(1) memory cells, and only
moves its read and write heads at most one cell to the left or right. This turns out to imply that the verifier
can evaluate the MLE of A in O(s ·m) time (we omit these details for brevity).

55Since the configuration graph of M is acyclic (except for all halting states having self-loops), the entries of any power of A(x)
are all 0 or 1. This means that, unlike in Footnote 54 that discussed computing the diameter of general graphs, one does not need
to worry about the possibility that (1,N)’th entry of (A(x))N is nonzero but divisible by the size p of the field over which the IP is
defined.
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In total, the costs of the IP are as follows. The rounds and number of field elements communicated is
O(s logN), the verifier’s runtime is O(s logN +m · s) and the prover’s runtime is poly(N). If s = O(logm),
then these three costs are respectively O(log2 m), O(m logm), and poly(m). That is, the communication
cost is polylogarithmic in the input size, the verifier’s runtime is quasilinear, and the prover’s runtime is
polynomial.

Note that if s = poly(m), then the verifier’s runtime in this IP is poly(m), recovering the famous result
of LFKN [LFKN92] and Shamir [Sha92] that IP = PSPACE.

Additional Discussion. One disappointing feature of this IP is that, if the runtime of M is significantly
less than N ≥ 2s, the prover will still take time at least N, because the prover has to explicitly generate
powers of the configuration graph’s adjacency matrix. This is particularly problematic if the space bound s
is superlogarithmic in the input size m, since then 2s is not even a polynomial in m. Effectively, the IP we
just presented forces the prover to explore all possible configurations of M, even though when running M
on input x, the machine will only enter a tiny fraction of such configurations. A breakthrough complexity-
theory result of [RRR16] gave a very different IP that avoids this inefficiency for P. Remarkably, their IP
also requires only a constant number of rounds of interaction.

4.6 The GKR Protocol and Its Efficient Implementation

4.6.1 Motivation

The goal of Section 4.2 was to develop an interactive proof for an intractable problem (such as #SAT
[LFKN92] or TQBF [Sha92]), in which the verifier ran in polynomial time. The perspective taken in
this section is different: it acknowledges that there are no “real world” entities that can act as the prover
in the #SAT and TQBF protocols of earlier sections, since real world entities cannot solve large instances
of PSPACE-complete or #P-complete problems in the worst case. We would really like a “scaled down”
result, one that is useful for problems that can be solved in the real world, such as problems in the com-
plexity classes P, or NC (capturing problems solvable by efficient parallel algorithms), or even L (capturing
problems solvable in logarithmic space).

One may wonder what is the point of developing verification protocols for such easy problems. Can’t
the verifier just ignore the prover and solve the problem without help? One answer is that this section
will describe protocols in which the verifier runs much faster than would be possible without a prover.
Specifically, V will run linear time, doing little more than just reading the input.5657

Meanwhile, we will require that the prover not do much more than solve the problem of interest. Ideally,
if the problem is solvable by a Random Access Machine or Turing Machine in time T and space s, we want
the prover to run in time O(T ) and space O(s), or as close to it as possible. At a minimum, P should run in
polynomial time.

56The protocols for counting triangles, matrix multiplication and powering, and graph diameter of Sections 4.3, 4.4, and 4.5
also achieved a linear-time verifier. But unlike the GKR protocol, those protocols were not general-purpose. As we will see, the
GKR protocol is general-purpose in the sense that it solves the problem of arithmetic circuit evaluation, and any problem in P can
be “efficiently” reduced to circuit evaluation (these reductions and the precise meaning of “efficiently” will be covered in Chapter
6).

57Another answer is that interactive proofs for “easy” problems can be combined with cryptography to turn them into succinct
non-interactive arguments of knowledge (SNARKs), which allow the prover to establish that it knows a witness satisfying a specified
property. In such SNARKs, the interactive proof only needs to solve the “easy” problem of checking that a purported witness
satisfies the specified property.
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Communication Rounds V time P time Soundness error
d ·polylog(S) field elements d ·polylog(S) O(n+d ·polylog(S)) poly(S) O(d log(S)/|F|)

Table 4.4: Costs of the original GKR protocol [GKR08] when applied to any log-space uniform layered arithmetic
circuit C of size S and depth d over n variables defined over field F. Section 4.6.5 describes methods from [CMT12]
for reducing P’s runtime to O(S logS), and reducing the polylog(S) terms in the remaining costs to O(logS). It is now
known how to achieve prover runtime of O(S) for arbitrary layered arithmetic circuits C (see Remark 4.5).

Can the TQBF and #SAT protocols of prior sections be scaled down to yield protocols where the verifier
runs in (quasi-)linear time for a “weak” complexity class like L? It turns out that it can, but the prover is not
efficient.

Recall that in the #SAT protocol (as well as in the TQBF protocol of [Sha92]), V ran in time O(S), and
P ran in time O(S2 ·2N), when applied to a Boolean formula φ of size S over N variables. In principle, this
yields an interactive proof for any problem solvable in space s: given an input x ∈ {0,1}n, V first transforms
x to an instance φ of TQBF (see, e.g., [AB09, Chapter 4] for a lucid exposition of this transformation, which
is reminiscent of Savitch’s Theorem [Sav70]), and then applies the interactive proof for TQBF to φ .

However, the transformation yields a TQBF instance φ over N = O(s · logT ) variables when applied to
a problem solvable in time T and space s. This results in a prover that runs in time in time 2O(s·logT ). This is
superpolynomial (i.e., nΘ(logn)), even if s = O(logn) and T = poly(n). Until 2007, this was the state of the
art in interactive proofs.

4.6.2 The GKR Protocol and Its Costs

Goldwasser, Kalai, and Rothblum [GKR08] described a remarkable interactive proof protocol that does
achieve many of the goals set forth above. The protocol is best presented in terms of the (arithmetic) circuit
evaluation problem. In this problem, V and P first agree on a log-space uniform arithmetic circuit C of fan-
in 2 over a finite field F, and the goal is to compute the value of the output gate(s) of C. A log-space uniform
circuit C is one that possesses a succinct implicit description, in the sense that there is a logarithmic-space
algorithm that takes as input the label of a gate a of C, and is capable of determining all relevant information
about that gate. That is, the algorithm can output the labels of all of a’s neighbors, and is capable of
determining if a is an addition gate or a multiplication gate.

Letting S denote the size (i.e., number of gates) of C and n the number of variables, the key feature of
the GKR protocol is that the prover runs in time poly(S). We will see that P’s time can even be made linear
in S [CMT12, Tha13, XZZ+19]. If S = 2o(n), then this is much better than the #SAT protocol that we saw
in an earlier section, where the prover required time exponential in the number of variables over which the
#SAT instance was defined.

Moreover, the costs to the verifier in the GKR protocol is O(d logS), which grows linearly with the
depth d of C, and only logarithmically with S. Crucially, this means that V can run in time sublinear in the
size S of the circuit. At first glance, this might seem impossible—how can the verifier make sure the prover
correctly evaluated C if the verifier never even “looks” at all of C? The answer is that C was assumed to have
a succinct implicit description in the sense of being log-space uniform. This enables V to “understand” the
structure of C without ever having to look at every gate individually.

Application: An IP for Parallel Algorithms. The complexity class NC consists of languages solvable
by parallel algorithms in time polylog(n) and total work poly(n). Any problem in NC can be computed by
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a log-space uniform arithmetic circuit C of polynomial size and polylogarithmic depth. Applying the GKR
protocol to C yields a polynomial time prover and a linear time verifier.

4.6.3 Protocol Overview

As described above, P and V first agree on an arithmetic circuit C of fan-in 2 over a finite field F computing
the function of interest. C is assumed to be in layered form, meaning that the circuit can be decomposed into
layers, and wires only connect gates in adjacent layers (if C is not layered it can easily be transformed into
a layered circuit C′ with at most a factor-d blowup in size).58 Suppose that C has depth d, and number the
layers from 0 to d with layer d referring to the input layer, and layer 0 referring to the output layer.

In the first message, P tells V the (claimed) output(s) of the circuit. The protocol then works its way
in iterations towards the input layer, with one iteration devoted to each layer. We describe the gates in C as
having values: the value of an addition (respectively, multiplication) gate is set to be the sum (respectively,
product) of its in-neighbors. The purpose of iteration i is to reduce a claim about the values of the gates at
layer i to a claim about the values of the gates at layer i+1, in the sense that it is safe for V to assume that
the first claim is true as long as the second claim is true. This reduction is accomplished by applying the
sum-check protocol.

More concretely, the GKR protocol starts with a claim about the values of the output gates of the circuit,
but V cannot check this claim without evaluating the circuit herself, which is precisely what she wants to
avoid. So the first iteration uses a sum-check protocol to reduce this claim about the outputs of the circuit to
a claim about the gate values at layer 2 (more specifically, to a claim about an evaluation of the multilinear
extension of the gate values at layer 2). Once again, V cannot check this claim herself, so the second iteration
uses another sum-check protocol to reduce the latter claim to a claim about the gate values at layer 3, and so
on. Eventually, V is left with a claim about the inputs to the circuit, and V can check this claim without any
help. This outline is depicted in Figures 4.8-4.11.

4.6.4 Protocol Details

Notation. Suppose we are given a layered arithmetic circuit C of size S, depth d, and fan-in two (C may
have more than one output gate). Number the layers from 0 to d, with 0 being the output layer and d being
the input layer. Let Si denote the number of gates at layer i of the circuit C. Assume Si is a power of 2 and
let Si = 2ki . The GKR protocol makes use of several functions, each of which encodes certain information
about the circuit.

Number the gates at layer i from 0 to Si− 1, and let Wi : {0,1}ki → F denote the function that takes
as input a binary gate label, and outputs the corresponding gate’s value at layer i. As usual, let W̃i denote
the multilinear extension of Wi. See Figure 4.12, which depicts an example circuit C and input to C and
describes the resulting function Wi for each layer i of C.

The GKR protocol also makes use of the notion of a “wiring predicate” that encodes which pairs of wires
from layer i+1 are connected to a given gate at layer i in C. Let in1,i, in2,i : {0,1}ki → {0,1}ki+1 denote the
functions that take as input the label a of a gate at layer i of C, and respectively output the label of the first
and second in-neighbor of gate a. So, for example, if gate a at layer i computes the sum of gates b and c at
layer i+1, then in1,i(a) = b and in2,i(a) = c.

Define two functions, addi and multi, mapping {0,1}ki+2ki+1 to {0,1}, which together constitute the
wiring predicate of layer i of C. Specifically, these functions take as input three gate labels (a,b,c), and

58Recent work gives a variant of the GKR protocol that applies directly to non-layered circuits [ZLW+21], avoiding a factor-d
blowup in prover time.
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Figure 4.8: Start of GKR Protocol.
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Figure 4.9: Iteration 1 reduces a claim about the output of
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layer.
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the MLE of gate values at layer i, to a claim about the MLE
of gate values at layer i+1.
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Figure 4.11: In the final iteration, P makes a claim about
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tries in F is interpreted as a function mapping {0,1}log2 n→
F. Any such function has a unique MLE by Fact 3.5). V
can check this claim without help, since V sees the input
explicitly.
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gates.
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return 1 if and only if (b,c) = (in1,i(a), in2,i(a)) and gate a is an addition (respectively, multiplication) gate.
As usual, let ãddi and m̃ulti denote the multilinear extensions of addi and multi.

For an example, consider the circuit depicted in Figure 4.12. Since the circuit contains no addition
gates, add0 and add1 are the constant 0 function. Meanwhile, mult0 is the function defined over domain
{0,1}× {0,1}2×{0,1}2 as follows. mult0 evaluates to 1 on the following two inputs: (0,(0,0),(0,1))
and (1,(1,0),(1,1)). On all other inputs, mult0 evaluates to zero. This is because the first and second in-
neighbors of gate 0 at layer 0 are respectively gates (0,0) and (0,1) at layer 1, and similarly the first and
second in-neighbors of gate 1 at layer 0 are respectively gates (1,0) and (1,1) at layer 1.

Similarly, mult1 is a function on domain {0,1}2×{0,1}2×{0,1}2. It evaluates to 0 on all inputs except
for the following four, on which it evaluates to 1:

• ((0,0),(0,0),(0,0)).

• ((0,1),(0,1),(0,1)).

• ((1,0),(0,1),(1,0)).

• ((1,1),(1,1),(1,1)).

Note that for each layer i, addi and multi depend only on the circuit C and not on the input x to C. In
contrast, the function Wi does depend on x. This is because Wi maps each gate label at layer i to the value of
the gate when C is evaluated on input x.

Detailed Description. The GKR protocol consists of d iterations, one for each layer of the circuit. Each
iteration i starts with P claiming a value for W̃i(ri) for some point in ri ∈ Fki .

At the start of the first iteration, this claim is derived from the claimed outputs of the circuit. Specifically,
if there are S0 = 2k0 outputs of C, let D : {0,1}k0→F denote the function that maps the label of an output gate
to the claimed value of that output. Then the verifier can pick a random point r0 ∈ Fk0 , and evaluate D̃(r0)
in time O(S0) using Lemma 3.8. By the Schwartz-Zippel lemma, if D̃(r0) = W̃0(r0) (i.e., if the multilinear
extension of the claimed outputs equals the multilinear extension of the correct outputs when evaluated at a
randomly chosen point), then it is safe for the verifier to believe that D̃ and W̃0 are the same polynomial, and
hence that all of the claimed outputs are correct. Unfortunately, the verifier cannot evaluate W̃0(r0) without
help from the prover.59

The purpose of iteration i is to reduce the claim about the value of W̃i(ri) to a claim about W̃i+1(ri+1) for
some ri+1 ∈ Fki+1 , in the sense that it is safe for V to assume that the first claim is true as long as the second
claim is true. To accomplish this, the iteration applies the sum-check protocol to a specific polynomial
derived from W̃i+1, ãddi, and m̃ulti. Our description of the protocol actually makes use of a simplification
due to Thaler [Tha15].

Applying the Sum-Check Protocol. The GKR protocol exploits an ingenious explicit expression for W̃i(ri),
captured in the following lemma.

Lemma 4.7.

W̃i(z) = ∑
b,c∈{0,1}ki+1

ãddi(z,b,c)
(
W̃i+1(b)+W̃i+1(c)

)
+ m̃ulti(z,b,c)

(
W̃i+1(b) ·W̃i+1(c)

)
(4.17)

59Throughout this survey, a statement of the form “if p(r) = q(r) for a random r, then it is safe for the verifier to believe that
p = q as formal polynomials” is shorthand for the following: if p ̸= q, then the former equality fails to hold with overwhelming
probability over the random choice of r, i.e., the prover would have to “get unreasonably lucky” to pass the check.
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Proof. It is easy to check that the right hand side is a multilinear polynomial in the entries of z, since ãddi

and m̃ulti are multilinear polynomials. (Note that, just as in the matrix multiplication protocol of the Section
4.4, the function being summed over is quadratic in the entries of b and c, but this quadratic-ness is “summed
away”, leaving a multilinear polynomial only in the variables of z).

Since the multilinear extension of a function with domain {0,1}ki is unique, it suffices to check that the
left hand side and right hand side of the expression in the lemma agree for all a ∈ {0,1}ki . To this end,
fix any a ∈ {0,1}si , and suppose that gate a in layer i of C is an addition gate (the case where gate a is a
multiplication gate is similar). Since each gate a at layer i has two unique in-neighbors, namely in1(a) and
in2(a);

addi(a,b,c) =

{
1 if (b,c) = (in1(a), in2(a))
0 otherwise

and multi(a,b,c) = 0 for all b,c ∈ {0,1}ki+1 .
Hence, since ãddi, m̃ulti, W̃i+1, and W̃i extend addi and multi, Wi+1, and Wi respectively,

∑
b,c∈{0,1}ki+1

ãddi(a,b,c)
(
W̃i+1(b)+W̃i+1(c)

)
+ m̃ulti(a,b,c)

(
W̃i+1(b) ·W̃i+1(c)

)

= W̃i+1(in1(a))+W̃i+1(in2(a)) =Wi+1(in1(a))+Wi+1(in2(a)) =Wi(a) = W̃i(a).

Remark 4.3. Lemma 4.7 is actually valid using any extensions of addi and multi that are multilinear in the
first ki variables.

Remark 4.4. Goldwasser, Kalai, and Rothblum [GKR08] use a slightly more complicated expression for
W̃i(z) than the one in Lemma 4.7. Their expression allowed them to use even more general extensions of
addi and multi. In particular, their extensions do not have to be multilinear in the first ki variables.

However, the use of the multilinear extensions ãddi and m̃ulti turns out to be critical to achieving a
prover runtime that is nearly linear in the circuit size S, rather than a much larger polynomial in S as
achieved by [GKR08] (cf. Section 4.6.5 for details).

Therefore, in order to check the prover’s claim about W̃i(ri), the verifier applies the sum-check protocol
to the polynomial

f (i)ri (b,c) = ãddi(ri,b,c)
(
W̃i+1(b)+W̃i+1(c)

)
+ m̃ulti(ri,b,c)

(
W̃i+1(b) ·W̃i+1(c)

)
. (4.18)

Note that the verifier does not know the polynomial W̃i+1 (as this polynomial is defined in terms of gate values
at layer i+1 of the circuit, and unless i+1 is the input layer, the verifier does not have direct access to the
values of these gates), and hence the verifier does not actually know the polynomial f (i)ri that it is applying
the sum-check protocol to. Nonetheless, it is possible for the verifier to apply the sum-check protocol to f (i)ri

because, until the final round, the sum-check protocol does not require the verifier to know anything about
the polynomial other than its degree in each variable (see Remark 4.2). However, there remains the issue
that V can only execute the final check in the sum-check protocol if she can evaluate the polynomial f (i)ri at
a random point. This is handled as follows.

Let us denote the random point at which V must evaluate f (i)ri by (b∗,c∗), where b∗ ∈ Fki+1 is the first ki+1
entries and c∗ ∈ Fki+1 the last ki+1 entries. Note that b∗, and c∗ may have non-Boolean entries. Evaluating
f (i)ri (b

∗,c∗) requires evaluating ãddi(ri,b∗,c∗), m̃ulti(ri,b∗,c∗), W̃i+1(b∗), and W̃i+1(c∗).
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For many circuits, particularly those whose wiring pattern displays repeated structure, V can evaluate
ãddi(ri,b∗,c∗) and m̃ulti(ri,b∗,c∗) on her own in O(ki + ki+1) time as well. For now, assume that V can
indeed perform this evaluation in poly(ki,ki+1) time, but this issue will be discussed further in Section 4.6.6.
V cannot however evaluate W̃i+1(b∗), and W̃i+1(c∗) on her own without evaluating the circuit. Instead, V

asks P to simply provide these two values, say, z1 and z2, and uses iteration i+1 to verify that these values
are as claimed. However, one complication remains: the precondition for iteration i+ 1 is that P claims a
value for W̃i+1(ri+1) for a single point ri+1 ∈ Fki+1 . So V needs to reduce verifying both W̃i+1(b∗) = z1 and
W̃i+1(c∗) = z2 to verifying W̃i+1(ri+1) at a single point ri+1 ∈ Fki+1 , in the sense that it is safe for V to accept
the claimed values of W̃i+1(b∗) and W̃i+1(c∗) as long as the value of W̃i+1(ri+1) is as claimed. As per Section
4.5.2 this is done as follows.

Reducing to Verification of a Single Point. Let ℓ : F→ Fki+1 be the unique line such that ℓ(0) = b∗

and ℓ(1) = c∗. P sends a univariate polynomial q of degree at most ki+1 that is claimed to be W̃i+1 ◦ ℓ, the
restriction of W̃i+1 to the line ℓ. V checks that q(0) = z1 and q(1) = z2 (rejecting if this is not the case),
picks a random point r∗ ∈ F, and asks P to prove that W̃i+1(ℓ(r∗)) = q(r∗). By Claim 4.6, as long as V is
convinced that W̃i+1(ℓ(r∗)) = q(r∗), it is safe for V to believe that q does in fact equal W̃i+1 ◦ ℓ, and hence
that W̃i+1(b∗) = z1 and W̃i+1(c∗) = z2 as claimed by P . See Section 4.5.2 for a picture and example of this
sub-protocol.

This completes iteration i; P and V then move on to the iteration for layer i+ 1 of the circuit, whose
purpose is to verify that W̃i+1(ri+1) has the claimed value, where ri+1 := ℓ(r∗).

The Final Iteration. At the final iteration d, V must evaluate W̃d(rd) on her own. But the vector of gate
values at layer d of C is simply the input x to C. By Lemma 3.8, V can compute W̃d(rd) on her own in O(n)
time, where recall that n is the size of the input x to C.

A self-contained description of the GKR protocol is provided in Figure 4.13.

4.6.5 Discussion of Costs and Soundness

V’s runtime. Observe that the polynomial f (i)ri defined in Equation (4.18) is a (2ki+1)-variate polynomial of
degree at most 2 in each variable, and so the invocation of the sum-check protocol at iteration i requires 2ki+1
rounds, with three field elements transmitted per round. Thus, the total communication cost is O(S0+d logS)
field elements where S0 is the number of outputs of the circuit. The time cost to V is O(n+d logS+ t +S0),
where t is the amount of time required for V to evaluate ãddi and m̃ulti at a random input, for each layer i of
C. Here the n term is due to the time required to evaluate W̃d(rd), the S0 term is the time required to read the
vector of claimed outputs and evaluate the corresponding multilinear extension, the d logS term is the time
required for V to send messages to P and process and check the messages from P . For now, let us assume
that t is a low-order cost and that S0 = 1, so that V runs in total time O(n+ d logS); we discuss this issue
further in Section 4.6.6.

P’s runtime. Analogously to the MATMULT protocol of Section 4.4, we give two increasingly sophisti-
cated implementations of the prover when the sum-check protocol is applied to the polynomial f (i)ri .
Method 1: f (i)ri is a v-variate polynomial for v = 2ki+1. As in the analysis of Method 1 for implementing
the prover in the matrix multiplication protocol from Section 4.4, P can compute the prescribed method in
round j by evaluating f (i)ri at 3 · 2v− j points. It is not hard to see that P can evaluate f (i)ri at any point in
O(Si+Si+1) time using techniques similar to Lemma 3.8. This yields a runtime for P of O(2v · (Si +Si+1)).
Over all d layers of the circuit, P’s runtime is bounded by O(S3).
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Description of the GKR protocol, when applied to a layered arithmetic circuit C of depth d and fan-in two on
input x ∈ Fn. Throughout, ki denotes log2(Si) where Si is the number of gates at layer i of C.

• At the start of the protocol, P sends a function D : {0,1}k0 → F claimed to equal W0 (the function
mapping output gate labels to output values).

• V picks a random r0 ∈ Fk0 and lets m0← D̃(r0). The remainder of the protocol is devoted to confirming
that m0 = W̃0(r0).

• For i = 0,1, . . . ,d−1:

– Define the (2ki+1)-variate polynomial

f (i)ri (b,c) := ãddi(ri,b,c)
(
W̃i+1(b)+W̃i+1(c)

)
+ m̃ulti(ri,b,c)

(
W̃i+1(b) ·W̃i+1(c)

)
.

– P claims that ∑b,c∈{0,1}ki+1 f (i)ri (b,c) = mi.

– So that V may check this claim, P and V apply the sum-check protocol to f (i)ri , up until V’s
final check in that protocol, when V must evaluate f (i)ri at a randomly chosen point (b∗,c∗) ∈
Fki+1 ×Fki+1 . See Remark (a) at the end of this codebox.

– Let ℓ be the unique line satisfying ℓ(0) = b∗ and ℓ(1) = c∗. P sends a univariate polynomial q of
degree at most ki+1 to V , claimed to equal W̃i+1 restricted to ℓ.

– V now performs the final check in the sum-check protocol, using q(0) and q(1) in place of
W̃i+1(b∗) and W̃i+1(c∗). See Remark (b) at the end of this codebox.

– V chooses r∗ ∈ F at random and sets ri+1 = ℓ(r∗) and mi+1← q(ri+1).

• V checks directly that md = W̃d(rd) using Lemma 3.8.
Note that W̃d is simply x̃, the multilinear extension of the input x when x is interpreted as the evaluation
table of a function mapping {0,1}logn→ F.

Remark a. Note that V does not actually know the polynomial f (i)ri , because V does not know the polynomial
W̃i+1 that appears in the definition of f (i)ri . However, the sum-check protocol does not require V to know
anything about the polynomial to which it is being applied, until the very final check in the protocol (see
Remark 4.2).

Remark b. We assume here that for each layer i of C, V can evaluate the multilinear extensions ãddi and m̃ulti
at the point (ri,b∗,c∗) in polylogarithmic time. Hence, given W̃i+1(b∗) and W̃i+1(c∗), V can quickly evaluate
f (i)ri (b∗,c∗) and thereby perform its final check in the sum-check protocol applied to f (i)ri .

Figure 4.13: Self-contained description of the GKR protocol for arithmetic circuit evaluation.
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Figure 4.14: Depiction of a circuit over F5 consisting entirely of multiplication gates, and the multilinear extension
encodings W̃i of each layer i when the circuit is evaluated on the length-4 input (1,2,1,4) (see Figure 3.2). Due to
there being two outputs, W̃0 is a univariate polynomial, and hence its evaluation table consists of |F5|= 5 values. The
other two layers have four gates each, and hence W̃1 and W̃2 are bivariate polynomials, the evaluations tables of which
each contain 52 = 25 values, indexed from (0,0) to (4,4). Entries of the multilinear extension encodings indexed by
Boolean vectors are highlighted in blue. In the GKR protocol applied to this circuit on this input, the prover begins by
sending the claimed values of the two output gates, thereby specifying W0, and the verifier evaluates W̃0 at a random
point. Then at the end of each iteration i of the for loop in Figure 4.13, the prover is forced to make a claim about a
single (randomly chosen) evaluation of W̃i.

Method 2: Cormode et al. [CMT12] improved on the O(S3) runtime of Method 1 by observing, just as in the
matrix multiplication protocol from Section 4.4, that the 3 ·2v− j points at whichP must evaluate f (i)ri in round
j of the sum-check protocol are highly structured, in the sense that their trailing entries are Boolean. That
is, it suffices for P to evaluate f (i)ri (z) for all points z of the form: z = (r1, . . . ,r j−1,{0,1,2},b j+1, . . . ,bv),
where v = 2ki+1 and each bk ∈ {0,1}.

For each such point z, the bottleneck in evaluating f (i)ri (z) is in evaluating ãddi(z) and m̃ulti(z). A
direct application of Lemma 3.8 implies that each such evaluation can be performed in 2v = O(S2

i+1) time.
However, we can do much better by observing that the functions addi and multi are sparse, in the sense that
addi(a,b,c) = multi(a,b,c) = 0 for all Boolean vectors (a,b,c) ∈ Fv except for the Si vectors of the form
(a, in1,i(a), in2,i(a)) : a ∈ {0,1}ki .

Thus, by Lagrange Interpolation (Lemma 3.6), we can write ãddi(z) = ∑a∈{0,1}ki χ(a,in1,i(a),in2,i(a))(z),

where the sum is only over addition gates a at layer i of C, and similarly for m̃ulti(z) (recall that the multilin-
ear Lagrange basis polynomial χ(a,in1,i(a),in2,i(a)) was defined in Equation (3.2) of Lemma 3.6). Just as in the
analysis of Method 2 for implementing the prover in the matrix multiplication protocol of Section 4.4, for
any input z of the form z = (r1, . . . ,r j−1,{0,1,2},b j+1, . . . ,bv), it holds that χ(a,in1,i(a),in2,i(a))(z) = 0 unless
the last v− j entries of z and (a, in1,i(a), in2,i(a)) are equal (here, we are exploiting the fact that the trailing
entries of z are Boolean). Hence, P can evaluate ãddi(z) at all the necessary points z in each round of the
sum-check protocol with a single pass over the gates at layer i of C: for each gate a in layer i, P only needs
to update ãddi(z)← ãddi(z)+ χ(a,in1,i(a),in2,i(a))(z) for the three values of z whose trailing v− j entries equal
the trailing entries of (a, in1,i(a), in2,i(a)).

Round complexity and communication cost. By direct inspection of the protocol description, there are
O(d logS) rounds in the GKR protocol, and the total communication cost is O(d logS) field elements.

Soundness error. The soundness error of the GKR protocol is O(d log(S)/|F|). The idea of the soundness
analysis is that, if the prover begins the protocol with a false claim as to the output value(s) C(x), then for
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the verifier to be convinced to accept, there must be at least one round j of the interactive proof in which the
following occurs. The prover sends a univariate polynomial g j that differs from the prescribed polynomial s j

that the honest prover would have sent in that round, yet g j(r j) = s j(r j), where r j is a random field element
chosen by the verifier in round j. For rounds j of the GKR protocol corresponding to a round within an
invocation of the sum-check protocol, g j and s j are polynomials of degree O(1), and hence if g j ̸= s j then
the probability (over the random choice of r j) that g j(r j) = s j(r j) is at most O(1/|F|).

In rounds j of the GKR protocol corresponding to the “reducing to verification of a single point” tech-
nique, g j and s j have degree at most O(logS), and hence if g j ̸= s j, the probability that g j(r j) = s j(r j) is at
most O(log(S)/|F|). Note that there are at most d such rounds over the course of the entire protocol, since
this technique is applied at most once per layer of C.

By applying a union bound over all rounds in the protocol, we conclude that the probability there is any
round j such that g j ̸= s j yet g j(r j) = s j(r j) is at most O(d log(S)/|F|).

Additional intuition and discussion of soundness. In summary, the GKR protocol prover begins by
sending the claimed values of the output gates, thereby specifying the vector of output values W0, and the
verifier evaluates W̃0 at a random point. Similarly, at the end of the ith iteration of the protocol, the prover is
forced to make a claim about a single randomly chosen evaluation of W̃i. In this way, the prover gradually
transitions from making a claim about (one evaluation of the multilinear extension of) the output layer to an
analogous claim about the input layer, which the verifier can check directly in linear time.

A common source of confusion is to suspect that “checking the prover’s claim” about a random evalua-
tion of W̃i is the same as selecting a random gate at layer i at confirming that the prover evaluated that one
gate correctly (e.g., if the gate is a multiplication gate, checking that the prover indeed assigned a value to
the selected gate that is equal to the product of the values assigned to the gate’s inputs). If this interpretation
were accurate, the protocol would not be sound, because a cheating prover that “alters” the value of a single
gate in the circuit would only be caught by the verifier if that gate happens to be the one selected at random
from its layer.

The above interpretation is inaccurate: these two processes would only be equivalent if each entry of ri

were chosen at random from {0,1}, rather than at random from the entire field F.
Indeed, if even a single gate value of layer i is corrupted, then by the Schwartz-Zippel lemma, almost all

evaluations of W̃i must change.60 By “spot-checking” the multilinear extension encoding of the gate values
of each layer of the circuit, the GKR verifier is able to detect even tiny deviations of the prover from correct
gate-by-gate evaluation of the circuit. See Figure 4.14 for a depiction.

4.6.6 Evaluating ãddi and m̃ulti Efficiently

The issue of the verifier efficiently evaluating ãddi and m̃ulti at a random point ω ∈ Fki+2ki+1 is a tricky one.
While there does not seem to be a clean characterization of precisely which circuits have ãddi’s and m̃ulti’s
that can be evaluated in O(logS) time, most circuits that exhibit any kind of repeated structure satisfy this
property. In particular, the papers [CMT12, Tha13] show that the evaluation can be computed in O(ki +
ki+1) = O(logS) time for a variety of common wiring patterns and specific circuits. This includes specific
circuits computing functions such as MATMULT, pattern matching, Fast Fourier Transforms, and various
problems of interest in the streaming literature, like frequency moments and distinct elements (see Exercise
4.4). In a similar vein, Holmgren and Rothblum [HR18, Section 5.1] show that as long as addi and multi are
computable within a computational model called read-once branching programs, then ãddi and m̃ulti can be

60So long as the field size is significantly larger than the logarithm of the number of gates at layer i of the circuit.
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evaluated at any desired point in logarithmic time, and observe that this condition indeed captures common
wiring patterns. Moreover, we will see in Section 4.6.7 that ãddi and m̃ulti can be evaluated efficiently for
any circuit that operates in a data parallel manner.

In addition, various suggestions have been put forth for what to do when ãddi and m̃ulti cannot be
evaluated in time O(logS). For example, as observed by Cormode et al. [CMT12], these computations
can always be done by V in O(logS) space as long as the circuit is log-space uniform. This is sufficient
in streaming applications where the space usage of the verifier is paramount [CMT12]. Moreover, these
computations can be done offline before the input is even observed, because they only depend on the wiring
of the circuit, and not on the input [GKR08, CMT12].

An additional proposal appeared in [GKR08], where Goldwasser, Kalai, and Rothblum considered the
option of outsourcing the computation of ãddi(ri,b∗,c∗) and m̃ulti(ri,b∗,c∗) themselves. In fact, this option
plays a central role in obtaining their result for general log-space uniform circuits. Specifically, GKR’s
results for general log-space uniform circuits are obtained via a two-stage protocol. First, they give a proto-
col for any problem computable in (non-deterministic) logarithmic space by applying their protocol to the
canonical circuit for simulating a space-bounded Turing machine. This circuit has a highly regular wiring
pattern for which ãddi and m̃ulti can be evaluated in O(logS) time.61 For a general log-space uniform cir-
cuit C, it is not known how to identify low-degree extensions of addi and multi that can be evaluated at ω in
polylogarithmic time. Rather, Goldwasser et al. outsource computation of ãddi(ri,b∗,c∗) and m̃ulti(ri,b∗,c∗)
themselves. Since C is log-space uniform, ãddi(ri,b∗,c∗) and m̃ulti(ri,b∗,c∗) can be computed in logarithmic
space, and the protocol for logspace computations applies directly.

A closely related proposal to deal with the circuits for which ãddi and m̃ulti cannot be evaluated in time
sublinear in the circuit size S leverages cryptography. Specifically, later in this manuscript we introduce a
cryptographic primitive called a polynomial commitment scheme and explain how this primitive can be used
to achieve the following. A trusted party (e.g., the verifier itself) can spend O(S) time in pre-processing and
produce a short cryptographic commitment to the polynomials ãddi and m̃ulti for all layers i of C. After
this pre-processing stage, the verifier V can apply the IP of this section to evaluate C on many different
inputs, and V can use the cryptographic commitment to force the prover to accurately evaluate ãddi and
m̃ulti on its behalf. Due to its use of cryptography, this proposal results in an argument system as opposed
to an interactive proof. Argument systems that handle pre-processing in this manner are sometimes called
holographic, or referred to as using computation commitments. See Sections 10.3.2 and 16.2 for details.

4.6.7 Leveraging Data Parallelism for Further Speedups

Data parallel computation refers to any setting in which the same sub-computation is applied independently
to many pieces of data, before possibly aggregating the results. The protocol of this section makes no
assumptions on the sub-computation that is being applied. In particular, it handles sub-computations com-
puted by circuits with highly irregular wiring patterns, but does assume that the sub-computation is applied
independently to many pieces of data. Figure 4.15 gives a schematic of a data parallel computation.

Data parallel computation is pervasive in real-world computing. For example, consider any counting
query on a database. In a counting query, one applies some function independently to each row of the
database and sums the results. For example, one may ask “How many people in the database satisfy Property
P?” The protocol below allows one to verifiably outsource such a counting query with overhead that depends

61In [GKR08], Goldwasser et al. actually use higher degree extensions of addi and multi obtained by arithemetizing a Boolean
formula of size polylog(S) computing these functions (see Remark 4.4). The use of these extensions results in a prover whose
runtime is a large polynomial in S (i.e., O(S4)). Cormode et al. [CMT12] observe that in fact the multilinear extensions of addi and
multi can be used for this circuit, and that with these extensions the prover’s runtime can be brought down to O(S logS).
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Figure 4.15: Schematic of a data parallel computation.

minimally on the size of the database, but that necessarily depends on the complexity of the property P. In
Section 6.5, we will see that data parallel computations are in some sense “universal”, in that efficient
transformations from high-level computer programs to circuits often yield data parallel circuits.

The Protocol and its Costs. Let C be a circuit of size S with an arbitrary wiring pattern, and let C′ be a
“super-circuit” that applies C independently to B = 2b different inputs before aggregating the results in some
fashion. For example, in the case of a counting query, the aggregation phase simply sums the results of the
data parallel phase. Assume that the aggregation step is sufficiently simple that the aggregation itself can be
verified using the techniques of Section 4.6.5.

If one naively applies the GKR protocol to the super-circuit C′, V might have to perform an expensive
pre-processing phase to evaluate the wiring predicates ãddi and m̃ulti of C′ at the necessary locations—
this would require time Ω(B · S). Moreover, when applying the basic GKR protocol to C′ using the tech-
niques of [CMT12], P would require time Θ(B ·S · log(B ·S)). A different approach was taken by Vu
et al. [VSBW13], who applied the GKR protocol B independent times, once for each copy of C. This
causes both the communication cost and V’s online check time to grow linearly with B, the number of
sub-computations, which is undesirable.

In contrast, the protocol of this section (due to [WJB+17], building on [Tha13]) achieves the best of
both worlds, in that the overheads for the prover and verifier have no dependence on the number of inputs B
to which C is applied. More specifically, the preprocessing time of the verifier is at most O(S), independent
of B. The prover runs in time O(BS+ S logS). Observe that as long as B > logS (i.e., there is a sufficient
amount of data parallelism in the computation), O(BS+ S logS) = O(B · S), and hence the prover is only
a constant factor slower than the time required to evaluate the circuit gate-by-gate with no guarantee of
correctness.

The idea of the protocol is that although each sub-computation C can have a complicated wiring pattern,
the circuit is maximally regular between sub-computations, as the sub-computations do not interact at all. It
is possible to leverage this regularity to minimize the pre-processing time of the verifier, and to significantly
speed up the prover.
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4.6.7.1 Protocol Details

Let C be an arithmetic circuit over F of depth d and size S with an arbitrary wiring pattern, and let C′ be the
circuit of depth d and size B · S obtained by laying B copies of C side-by-side, where B = 2b is a power of
2. We will use the same notation as in Section 4.6.4, using apostrophes to denote quantities referring to C′.
For example, layer i of C has size Si = 2ki and gate values specified by the function Wi, while layer i of C′
has size S′i = 2k′i = 2b+ki and gate values specified by W ′i .

Consider layer i of C′. Let a = (a1,a2) ∈ {0,1}ki ×{0,1}b be the label of a gate at layer i of C′, where
a2 specifies which “copy” of C the gate is in, while a1 designates the label of the gate within the copy.
Similarly, let b = (b1,b2) ∈ {0,1}ki+1 ×{0,1}b and c = (c1,c2) ∈ {0,1}ki+1 ×{0,1}b be the labels of two
gates at layer i+ 1. The key to achieving the speedups for data parallel circuits relative to the interactive
proof described in Section 4.6.4 is to tweak the expression in Lemma 4.7 for W̃i. Specifically, Lemma 4.7
represents W̃ ′i (z) as a sum over

(
S′i+1

)2 terms. In this section, we leverage the data parallel structure of C′ to
represent W̃ ′i (z) as a sum over S′i+1 ·Si+1 terms, which is smaller than

(
S′i+1

)2 by a factor of B.

Lemma 4.8. Let h denote the polynomial Fki×b→ F defined via

h(a1,a2) := ∑
b1,c1∈{0,1}ki+1

g(a1,a2,b1,c1),

where

g(a1,a2,b1,c1) := ãddi(a1,b1,c1)
(

W̃ ′i+1(b1,a2)+W̃ ′i+1(c1,a2)
)
+m̃ulti(a1,b1,c1)·W̃ ′i+1(b1,a2)·W̃ ′i+1(c1,a2).

Then h extends W ′i .

Proof Sketch. Essentially, Lemma 4.8 says that an addition (respectively, multiplication) gate a = (a1,a2) ∈
{0,1}ki+b of C′ is connected to gates b = (b1,b2) ∈ {0,1}ki+1+b and c = (c1,c2) ∈ {0,1}ki+1+b of C′ if and
only if a, b, and c are all in the same copy of C, and a is connected to b and c within the copy.

The following lemma requires some additional notation. Let βk′i(a,b) : {0,1}k′i ×{0,1}k′i → {0,1} be
the function that evaluates to 1 if a = b, and evaluates to 0 otherwise, and define the formal polynomial

β̃k′i(a,b) =
k′i

∏
j=1

((1−a j)(1−b j)+a jb j) . (4.19)

It is straightforward to check that β̃k′i is the multilinear extension βk′i . Indeed, β̃k′i is a multilinear polynomial.

And for a,b ∈ {0,1}k′i , it is easy to check that β̃k′i(a,b) = 1 if and only if a and b are equal coordinate-wise.

Lemma 4.9. (Restatement of [Rot09, Lemma 3.2.1].) For any polynomial h : Fk′i → F extending W ′i , the
following polynomial identity holds:

W̃ ′i (z) = ∑
a∈{0,1}k′i

β̃k′i(z,a)h(a). (4.20)

Proof. It is easy to check that the right hand side of Equation (4.20) is a multilinear polynomial in z, and that
it agrees with W ′i on all Boolean inputs. Thus, the right hand side of Equation (4.20), viewed as a polynomial
in z, must be the (unique) multilinear extension W̃ ′i of W ′i .
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Intuitively, Lemma 4.9 achieves “multi-linearization” of the higher-degree extension h. That is, it ex-
presses the multilinear extension of any function W ′i in terms of any extension h of W ′i , regardless of the
degree of h.

Combining Lemmas 4.8 and 4.9 implies that for any z ∈ Fk′i ,

W̃ ′i (z) = ∑
(a1,a2,b1,c1)∈{0,1}ki+b+2ki+1

g(i)z (a1,a2,b1,c1), (4.21)

where
g(i)z (a1,a2,b1,c1) :=

β̃k′i(z,(a1,a2))·
[
ãddi(a1,b1,c1)

(
W̃ ′i+1(b1,a2)+W̃ ′i+1(c1,a2)

)
+ m̃ulti(a1,b1,c1) ·W̃ ′i+1(b1,a2) ·W̃ ′i+1(c1,a2)

]
.

Thus, to reduce a claim about W̃ ′i (ri) to a claim about W̃ ′i+1(ri+1) for some point ri+1 ∈ Fk′i+1 , it suffices to

apply the sum-check protocol to the polynomial g(i)ri , and then use the “Reducing to Verification of a Single
Point” protocol from Section 4.5.2. That is, the protocol is the same as in Section 4.6.4, except that, at layer
i, rather than applying the sum-check protocol to the polynomial f (i)ri defined in Equation (4.18) to compute
W̃ ′i (ri), the protocol instead applies the sum-check protocol to the polynomial g(i)ri (Equation (4.21)).

Costs for V . To bound V’s runtime, observe that ãddi and m̃ulti can be evaluated at a random point in
Fki+2ki+1 in pre-processing in time O(Si) by enumerating the in-neighbors of each of the Si gates at layer i
in order to apply Lemma 3.8. Adding up the pre-processing time across all iterations i of our protocol, V’s
pre-processing time is O(∑i Si) = O(S) as claimed. Notice this pre-processing time is independent of B, the
number of copies of the subcircuit.

Outside of pre-processing, the costs to the verifier are similar to Section 4.6.5, with the main difference
being that now the verifier needs to also evaluate β̃ki at a random point at each layer i. But the verifier can
evaluate β̃ki at any input with O(logSi) additions and multiplications over F, using Equation (4.19). This
does not affect the verifier’s asymptotic runtime.

Costs for P . The insights that go into implementing the honest prover in time O(B · S+ S logS) build on
ideas related the Method 3 for implementing the prover in the Matrix Multiplication protocol of Section 4.4,
and heavily exploit the fact that Equation (4.21) represents W̃ ′i (z) as a sum over just S′i+1 ·Si+1 terms, rather
than the

(
S′i+1

)2 terms in the sum that would be obtained by applying Equation (4.17) to C′.

Remark 4.5. Recent work [XZZ+19] has shown how to use Lemma 4.5 to implement the prover in the IP
of Section 4.6.4 in time O(S) for arbitrary arithmetic circuits of size S (not just circuits with a sufficient
amount of data parallelism as in Section 4.6.7).62 For brevity, we do not elaborate here upon how to achieve
this result. The same result in fact follows (with some adaptation) from Section 8.4 in Chapter 8, where
we explain how to achieve an O(S)-time prover in a (two-prover) interactive proof for a generalization of
arithmetic circuits, called rank-one constraint systems (R1CS).

4.6.8 Tension Between Efficiency and Generality

The GKR protocol and its variants covered in this chapter is an example of a general-purpose technique for
designing VC protocols. Specifically, the GKR protocol can be used to verifiably outsource the evaluation

62To clarify, this does not address the issue discussed in Section 4.6.6 that for arbitrary arithmetic circuits, the verifier may need
time linear in the circuit size S to evaluate ãddi and m̃ulti as required by the protocol.
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Communication Rounds V time P time
O(d · log(B ·S)) O(d · (log(B ·S))) online time: O(B ·n+d · (log(B ·S))) O(B ·S+S · log(S))
field elements pre-processing time: O(S)

Table 4.5: Costs of the IP of Section 4.6.7 when applied to any log-space uniform arithmetic circuit C of size S and
depth d over n variables, that is applied B times in a data parallel manner (cf. Figure 4.15).

of an arbitrary arithmetic circuit, and as we will see in the next chapter, arbitrary computer programs can be
turned into arithmetic circuits. Such general-purpose techniques are the primary focus of this survey.

However, there is often a tension between the generality and efficiency of VC protocols. That is, the
general-purpose techniques should sometimes be viewed as heavy hammers that are capable of pounding
arbitrary nails, but are not necessarily the most efficient way of hammering any particular nail.

This point was already raised in Section 4.4.1 in the context of matrix multiplication (see the paragraph
“Preview: Other Protocols for Matrix Multiplication”). That section described an interactive proof for matrix
multiplication that is far more concretely efficient, especially in terms of prover time and communication
cost, than applying the GKR protocol to any known arithmetic circuit computing matrix multiplication.
As another example, the circuit depicted in Figures 4.8-4.11 computes the sum of the squared entries of
the input in Fn. This is an important function in the literature on streaming algorithms, called the second
frequency moment. Applying the GKR protocol to this circuit (which has logarithmic depth and size O(n))
would result in communication cost of Θ(log2 n). But the function can be computed much more directly,
and with total communication O(logn), by a single application of the sum-check protocol. Specifically, if
we interpret the input as specifying a function f : Flogn→ F in the natural way, then we can simply apply the
sum-check protocol to the polynomial

(
f̃
)2, the square of the multilinear extension of f . This requires the

verifier to evaluate
(

f̃
)2 at a single point r. The verifier can compute

(
f̃
)2
(r) by evaluating f̃ (r) in linear or

quasilinear time using Lemma 3.7 or Lemma 3.8, and then squaring the result.
To summarize, while this survey is primarily focused on general-purpose VC protocols, these do not rep-

resent the most efficient solutions in all situations. Those interested in specific functionalities may be well-
advised to consider whether less general but more efficient protocols apply to the functionality of interest.
Even when using a general-purpose VC protocol, there are typically many optimizations a protocol designer
can identify (e.g., expanding the gate set within the GKR protocol from addition and multiplication gates to
other types of low-degree operations tailored to the functionality of interest, see for example [CMT12, Sec-
tion 3.2], [XZZ+19, Section 5], and [BB20]).

4.7 Exercises

Exercise 4.1. Recall that Section 4.3 gave a doubly-efficient interactive proof for counting triangles. Given
as input the adjacency matrix A of a graph on n vertices, the IP views A as a function over domain
{0,1}log2 n×{0,1}log2 n, lets Ã denote its multlinear extension, and applies the sum-check protocol to the
(3logn)-variate polynomial

g(X ,Y,Z) = Ã(X ,Y ) · Ã(Y,Z) · Ã(X ,Z).

A 4-cycle in a graph is a quadruple of vertices (a,b,c,d) such that (a,b), (b,c), (c,d), and (a,d) are all
edges in the graph. Give a doubly-efficient interactive proof that, given as input the adjacency matrix A of a
simple graph, counts the number of 4-cycles in the graph.
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Figure 4.16: A Boolean formula φ over n = 3 variables.

Exercise 4.2. Here is yet another interactive proof for counting triangles given as input the adjacency matrix
A of a graph on n vertices: For a sufficiently large prime p, define f : {0,1}log2 n×{0,1}log2 n×{0,1}log2 n→
Fp via f (i, j,k) = Ai, j ·A j,k ·Ak,i, where here we associate vectors in {0,1}log2 n with numbers in {1, . . . ,n}
in the natural way, and interpret entries of A as elements of Fp in the natural way. Apply the sum-check
protocol to the multilinear extension f̃ . Explain that the protocol is complete, and has soundness error at
most (3log2 n)/p.

What are the fastest runtimes you can give for the prover and verifier in this protocol? Do you think the
verifier would be interested in using this protocol?

Exercise 4.3. This question has 5 parts.

• (Part a) Section 4.2 gave a technique to take any Boolean formula φ : {0,1}n→ {0,1} of size S and
turn φ into a polynomial g over field F that extends φ (the technique represents g via an arithmetic
circuit over F of size O(S)).

Apply this technique to the Boolean formula in Figure 4.16. You may specify the resulting extension
polynomial g by drawing the arithmetic circuit computing g or by writing out some other representa-
tion of g.

• (Part b) Section 4.2 gives an interactive proof for counting the number of satisfying assignments to φ

by applying the sum-check protocol to g. For the polynomial g you derived in Part a that extends the
formula in Figure 4.16, provide the messages sent by the honest prover if the random field element
chosen by the verifier in round 1 is r1 = 3 and the random field element chosen by the verifier in round
2 is r2 = 4. You may work over the field F11 of integers modulo 11.

• (Part c) Imagine you are a cheating prover in the protocol of Part b above and somehow you know
at the start of the protocol that in round 1 the random field element r1 chosen by the verifier will be
3. Give a sequence of messages that you can send that will convince the verifier that the number
of satisfying assignments of φ is 6 (the verifier should be convinced regardless of the random field
elements r2 and r3 that will be chosen by the verifier in rounds 2 and 3).

• (Part d) You may notice that the extension polynomial g derived in Part a is not multilinear. This
problem explains that there is a good reason for this.

Show that the ability to evaluate the multilinear extension φ̃ of a formula φ at a randomly chosen point
in Fn allows one to determine whether or not φ is satisfiable. That is, give an efficient randomized
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algorithm that, given φ̃(r) for a randomly chosen r ∈ Fn, outputs SATISFIABLE with probability at
least 1−n/|F| over the random choice of r if φ has one or more satisfying assignments, and outputs
UNSATISFIABLE with probability 1 if φ has no satisfying assignments. Explain why your algorithm
achieves this property.

• (Part e) Let p > 2n be a prime, and as usual let Fp denote the field of order p. This question establishes
that the ability to evaluate φ̃ at a certain specific input implies the ability not only to determine whether
or not φ is satisfiable, but in fact to count the number of satisfying assignments to φ . Specifically,
prove that

∑
x∈{0,1}n

φ(x) = 2n · φ̃(2−1,2−1, . . . ,2−1).

Hint: Lagrange Interpolation.

Exercise 4.4. One of the more challenging notions to wrap one’s head around regarding the GKR protocol
is that, when applying it to a circuit C with a “nice” wiring pattern, the verifier never needs to materialize
the full circuit. This is because the only information about the circuit’s wiring pattern of C that the verifier
needs to know in order to run the protocol is to evaluate ãddi and m̃ulti at a random point, for each layer i of
C. And ãddi and m̃ulti often have nice, simple expressions that enable them to be evaluated at any point in
time logarithmic in the size of C. (See Section 4.6.6).

This problem asks you to work through the details for a specific, especially simple, wiring pattern.
Figures 4.8-4.11 depict (for input size n = 4) a circuit that squares all of its inputs, and sums the results via
a binary tree of addition gates.

Recall that for a layered circuit of depth d, the layers are numbered from 0 to d where 0 corresponds to
the output layer and d to the input layer.

• Assume that n is a power of 2. Give expressions ãddi and m̃ulti for layers i = 1, . . . ,d−2 such that the
expressions can both be evaluated at any point in time O(logn) (layer i consists of 2i addition gates,
where for j ∈ {0,1, . . . ,2i− 1}, the jth addition gate has as its in-neighbors gates 2 j and 2 j + 1 at
layer i+1).

• Assume that n is a power of two. Give expressions for ãddd−1 and m̃ultd−1 that can both be evaluated
at any point in time O(logn). (This layer consists of n = 2d−1 multiplication gates, where the jth
multiplication gate at layer d−1 has both in-neighbors equal to the jth input gate at layer d).

Exercise 4.5. Write a Python program implementing the prover and verifier in the interactive proof for
counting triangles from Section 4.3 (say, over the prime field Fp with p = 261− 1). Recall that in this
interactive proof, the message from the prover in each round i is a univariate polynomial si of degree at
most 2. To implement the prover P , you may find it simplest for P to specify each such polynomial via its
evaluations at 3 designated inputs (say, {0,1,2}), rather than via its (at most) 3 coefficients. For example, if
si(X) = 3X2+2X +1, it may be simplest if, rather than sending the coefficients 3, 2, and 1, the prover sends
si(0) = 1, si(1) = 6 and si(2) = 17. The verifier can then evaluate si(ri) via Lagrange interpolation:

si(ri) = 2−1 · si(0) · (ri−1)(ri−2)− si(1) · ri(ri−2)+2−1 · si(2) · ri(ri−1).
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Chapter 5

Publicly Verifiable, Non-interactive
Arguments via Fiat-Shamir

Recall from Section 3.3 that in a public-coin interactive proof or argument, any coin tossed by the verifier
V is made visible to the prover P as soon as it is tossed. These coin tosses are interpreted as “random
challenges” sent by V to P , and in a public-coin protocol they are, without loss of generality, the only
messages sent from V to P .63

The Fiat-Shamir transformation [FS86] takes any public-coin protocol I and transforms it into a non-
interactive, publicly verifiable protocol Q. To describe the transformation and analyze its security, it is
helpful to introduce an idealized setting called the random oracle model.

5.1 The Random Oracle Model

The random oracle model (ROM) [FS86, BR93] is an idealized setting meant to capture the fact that cryp-
tographers have developed hash functions (e.g., SHA-3 or BLAKE3) that efficient algorithms seem totally
unable to distinguish from random functions. By a random function R mapping some domain D to the κ-bit
range {0,1}κ , we mean the following: on any input x ∈ D, R chooses its output R(x) uniformly at random
from {0,1}κ .

Accordingly, the ROM simply assumes that the prover and verifier have query access to a random func-
tion R. This means that there is an oracle (called a random oracle) such that the prover and verifier can
submit any query x to the oracle, and the oracle will return R(x). That is, for each query x ∈ D posed to the
oracle, the oracle makes an independent random choice to determine R(x) and responds with that value. It
keeps a record of its responses to make sure that it repeats the same response if x is queried again.

The random oracle assumption is not valid in the real world, as specifying a random function R requires
|D| · κ bits—essentially one must list the value R(x) for every input x ∈ D—which is totally impractical
given that |D| must be huge to ensure cryptographic security levels (e.g., |D| ≥ 2256 or larger). In the real
world, the random oracle is replaced with a concrete hash function like SHA-3, which is succinctly specified
via, e.g., a small circuit or computer program that evaluates the hash function on any input. In principle,
it may be possible for a cheating prover in the real world to exploit access to this succinct representation
to break the security of the protocol, even if the protocol is secure in the random oracle model. However,

63In a public-coin protocol, any V→P messages other than V’s random coin tosses can be omitted: they must be deterministic
functions of V’s coin tosses, and hence P can derive such messages on its own.
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protocols that are proven secure in the random oracle model are often considered secure in practice, and
indeed no deployed protocols have been broken in this manner.64

5.2 The Fiat-Shamir Transformation

Recall that the purpose of the Fiat-Shamir transformation [FS86] is to take any public-coin IP or argument
I and transform it into a non-interactive, publicly verifiable protocol Q in the random oracle model.

Some approaches that do not quite work. The Fiat-Shamir transformation mimics the transformation
described in Section 3.3 that transforms any interactive proof system with a deterministic verifier into a non-
interactive proof system. In that transformation, the non-interactive prover leverages the total predictability
of the interactive verifier’s messages to compute those messages itself on behalf of the verifier. This elim-
inates the need for the verifier to actually send any messages to the prover. In particular, it means that the
non-interactive proof can simply specify an accepting transcript from the interactive protocol (i.e., specify
the first message sent by the prover in the interactive protocol, followed by the verifier’s response to that
message, followed by the prover’s second message, and so on until the protocol terminates).

In the setting of this section, the verifier’s messages in I are not predictable. But since I is public coin,
the verifier’s messages in I come from a known distribution; specifically, the uniform distribution. So a
naive attempt to render the protocol non-interactive would be to ask the prover to determine the verifier’s
messages itself, by drawing each message at random from the uniform distribution, independent of all
previous messages sent in the protocol. But this does not work because the prover is untrusted, and hence
there is no way to force the prover to actually draw the verifier’s challenges from the appropriate distribution.

A second approach that attempts to address the above issue is to have Q use the random oracle to
determine the verifier’s message ri in round i of I. This will ensure that each challenge is indeed uniformly
distributed. A naive attempt at implementing this second approach would be to select ri in Q by evaluating
the random oracle at input i. But this attempt is also unsound. The problem is that, although this ensures
each of the verifier’s messages ri are uniformly distributed, it does not ensure that they are independent of
the prover’s messages g1, . . . ,gi from rounds 1,2, . . . , i of I. Specifically, the prover inQ can learn all of the
verifier’s messages r1,r2, . . . in advance (by simply querying the random oracle at the predetermined points
1,2, . . . ) and then choose the prover messages in I in a manner that depends on these values. Since the IP
I is not sound if the prover knows ri in advance of sending its ith message gi, the resulting non-interactive
argument is not sound.

The above issue can be made more concrete by imagining that I is the sum-check protocol applied to an
ℓ-variate polynomial g over F. Consider a cheating prover P who begins the protocol with a false claim C
for the value ∑x∈{0,1}ℓ g(x). Suppose in round one of the sum-check protocol, before sending its round-one
message polynomial g1, P knows what will be the verifier’s round-one message r1 ∈ F. Then the prover can
trick the verifier as follows. If s1 is the message that the honest prover would send in round one, P can send
a polynomial g1 such that

g1(0)+g1(1) =C and g1(r1) = s1(r1), (5.1)

64The relationship between security in the random oracle model and security in the real world has been the subject of consider-
able debate and criticism. Indeed, a series of works has established very strong negative results regarding the (lack of) implications
of random oracle model security. In particular, various protocols have been constructed that are secure in the random oracle model
but not secure when the random oracle is replaced with any concrete hash function [CGH04, BBP04, GK03, Nie02, GKMZ16].
However, these protocols and functionalities are typically contrived [KM15]. For two entertaining and diametrically opposed
perspectives, the interested reader is directed to [Gol06, KM15].
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Figure 5.1: Depiction of the Fiat-Shamir transformation. Image courtesy of Ron Rothblum [Rot19].

where recall (Equation (4.2)) that

s1(X1) := ∑
(x2,...,xv)∈{0,1}v−1

g(X1,x2, . . . ,xv).

Note that such a polynomial is guaranteed to exist so long as g1 is permitted to have degree at least one.
From that point on in I, the cheating prover P can send the same messages as the honest prover, and thereby
pass all of the verifier’s checks. In the naive attempt at implementing the second approach to obtaining a
non-interactive protocol above, the prover inQ will be able to simulate this attack on I. This is because the
prover inQ can learn r1 by simply querying the random oracle at the input 1, and then choosing g1 to satisfy
Equation (5.1) above.

To prevent this attack on soundness, the Fiat-Shamir transformation ensures that the verifier’s challenge
ri in round i of I is determined by querying the random oracle at an input that depends on the prover’s i’th
message gi. This means that the prover in Q can only simulate the aforementioned attack on I if the prover
can find a g1 satisfying Equation (5.1) with r1 equal to evaluation of the random oracle at the appropriate
query point (which, as previously mentioned, includes g1). Intuitively, for the prover in Q to find such a
g1, a vast number of queries to the random oracle are required, because the output of the random oracle is
totally random, and for each g1 there are a tiny number of values of r1 satisfying Equation (5.1).

Complete description of the Fiat-Shamir transformation. The Fiat-Shamir transformation replaces
each of the verifier’s messages from the interactive protocol I with a value derived from the random or-
acle in the following manner: in Q, the verifier’s message in round i of I is determined by querying the
random oracle, where the query point is the the list of messages sent by the prover in rounds 1, . . . , i. As in
the naive attempt above, this eliminates the need for the verifier to send any information to the prover—the
prover can simply send a single message containing the transcript of the entire protocol (i.e., a list of all
messages exchanged by the prover in the interactive protocol, with the verifier’s random coin tosses in the
transcript replaced with the random oracle evaluations just described). See Figure 5.1.

A concrete optimization. When applying the Fiat-Shamir transformation to many-round interactive pro-
tocols, it is often implemented using a technique called hash chaining. This means that, rather than choosing
the round-i verifier challenge ri in the interactive protocol to be the hash (or random oracle evaluation) of all
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preceding prover messages g1, . . . ,gi, one instead chooses ri to be a hash only of (x, i,ri−1,gi). This reduces
the cost of hashing in practice, because it keeps the inputs at which the hash function is evaluated short. This
variant of Fiat-Shamir can also be shown secure in the random oracle model.

Avoiding a common vulnerability. For the Fiat-Shamir transformation to be secure in settings where
an adversary can choose the input x to the IP or argument, it is essential that x be appended to the list
that is hashed in each round. This property of soundness against adversaries that can choose x is called
adaptive soundness. Some real-world implementations of the Fiat-Shamir transformation have missed this
detail, leading to attacks [BPW12, HLPT20]. In fact, this precise error was recently identified in several
popular SNARK deployments, leading to critical vulnerabilities65. Sometimes, the version of Fiat-Shamir
that includes x in the hashing is called strong Fiat-Shamir, while the version that omits it is called weak
Fiat-Shamir.

Here is a sketch of the attack if the adversary can choose x and x is not hashed within the Fiat-Shamir
transformation. For concreteness, consider a prover applying the GKR protocol to establish that C(x) = y.
In the GKR protocol, the verifier V completely ignores the input x ∈ Fn until the final check in the protocol,
when V checks that the multilinear extension x̃ of x evaluated at some randomly chosen point r equals some
value c derived from previous rounds. The adversary can easily generate a transcript for the Fiat-Shamir-ed
protocol that passes all of the verifier’s checks except the final one. To pass the final check, the adversary
can choose any input x ∈ Fn such that x̃(r) = c (such an input x̃ can be identified in linear time). The
transcript convinces the verifier of the Fiat-Shamir-ed protocol to accept the claim that C(x) = y. Yet there
is no guarantee that C(x) = y, as x may be an arbitrary input satisfying x̃(r) = c. See Exercise 5.2, which
asks the reader to work through the details of this attack.

Note that in this attack, the prover does not necessarily have “perfect control” over the inputs x for which
it is able to produce convincing “proofs” that C(x) = y. This is because x is constrained to satisfy x̃(r) = c
for some values r and c that depend on the random oracle. This may render the attack somewhat benign in
some applications.66 Nonetheless, practitioners should take care to avoid this vulnerability, especially since
including x in the hashing is rarely a significant cost in practice.67

5.3 Security of the Transformation

It has long been known that when the Fiat-Shamir transformation is applied to a constant-round public-coin
IP or argument I with negligible soundness error,68 the resulting non-interactive proof Q in the random

65https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-
PlonK/

66An illustrative example: in some applications the only “sensible” inputs x are bit-vectors x ∈ {0,1}n. The attack described
above will efficiently identify an x ∈ Fn along with a convincing “proof” that C(x) = y, but it may not be the case that all entries of
x are in {0,1}. This may mean that the attacker is only able to generate “convincing proofs” for false statements about “nonsense
vectors” x ∈ Fn \{0,1}n.

67More generally, if an adversary can choose some aspect of the statement being proved at will, then one should hash a descrip-
tion of that aspect of the statement. For example, suppose the adversary has complete control over the circuit C, input x and output y
when deciding to claim that C(x) = y. And suppose that the adversary provides a “proof” of this claim by applying the Fiat-Shamir
transformation to an interactive protocol. Then the first verifier challenge in the Fiat-Shamir-ed protocol should be determined by
hashing a description of C in addition to x and y. This fends off attacks whereby the attacker attempts to generate a convincing
proof of a particular false statement, and if unsuccessful, simply alters the un-hashed aspect of the statement, so that the proof is
convincing for the altered statement.

68Throughout this manuscript, negligible means any quantity smaller than the reciprocal of any fixed polynomial in the input
length n or a security parameter λ . Non-negligible means any quantity that is at least the reciprocal of some fixed polynomial in n
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oracle model is sound against cheating provers that run in polynomial time [PS00]. More quantitatively, if
I consists of t rounds, any prover P for Q that can convince the verifier to accept input x with probability
ε and runs in time T can be transformed into a prover P ′ for I that convinces the verifier to accept input
x with probability at least (ε/T )O(t). If t is constant, this is poly(1/ε,1/T ), which is non-negligible.69 In
fact, we prove this result at the end of this chapter for 3-message protocols I (Theorem 5.1). However, the
runtime of P ′ grows exponentially with the number of rounds t in I, and the IPs covered in this chapter all
require at least logarithmically many rounds. Recently, a better understanding of the soundness of Q has
been developed for such many-round protocols I.

Specifically, it is now known that if a public-coin interactive proof I for a language L satisfies a property
called round-by-round soundness then Q is sound in the random oracle model [CCH+19, BCS16]. Here, I
satisfies round-by-round soundness if the following properties hold: (1) At any stage of any execution of
I, there is a well-defined state (depending on the partial transcript at that stage of the execution) and some
states are “doomed”, in the sense that once the protocol I is in a doomed state, it will (except with negligible
probability) forever remain doomed, no matter the strategy executed by the prover in I. (2) If x ̸∈ L, then
the initial state of I is doomed. (3) If at the end of the interaction the state is doomed, then the verifier will
reject.70

Canetti et al. [CCH+19] showed that the GKR protocol (and any other interactive proof based on the
sum-check protocol) satisfy round-by-round soundness, and hence applying the Fiat-Shamir transformation
to it yields a non-interactive proof that is secure in the random oracle model.71

Here is some rough intuition for why round-by-round soundness of the IP I implies soundness of the
non-interactive proof Q in the random oracle model. The only way a cheating prover in I can convince
the verifier of a false statement is to “get lucky”, in the sense that the verifier’s random coin tosses in I
happen to fall into some small set of “bad” coin tosses B that eventually force the protocol into a non-
doomed state. Round-by-round soundness implies that B is small. Because a random oracle is by definition
totally unpredictable and unstructured, in Q roughly speaking all that a cheating prover can do to find an
accepting transcript is to iterate over possible prover messages/transcripts for the IP I in an arbitrary order,
and stop when he identifies one where the random oracle happens to return a sequence of values falling in
B. Of course, this isn’t quite true: a malicious prover in Q is also capable of executing a so-called state-
restoration attack [BCS16] (also sometimes called a grinding attack), which means that the prover inQ can
“rewind” any interaction with the verifier of I to an earlier point of the interaction and “try out” sending a
different response to the last message sent by the verifier in this partial transcript for I (see Section 5.3.1 for
additional discussion of this attack). The prover may hope that by trying out a different response, this will
cause the random oracle to output a non-doomed value. However, round-by-round soundness of I precisely
guarantees that such an attack is unlikely to succeed: once in a doomed state of I, no prover strategy can
“escape” doom except with negligible probability.

In summary, applying the Fiat-Shamir Transformation to a public coin interactive protocol with negli-
gible round-by-round soundness error yields a non-interactive argument in the random oracle model with
negligible soundness error against efficient provers. The protocol can then be heuristically instantiated in

or λ . Computationally-bounded adversaries are assumed to run in time polynomial in λ and n.
69If I is an argument rather than a proof, then soundness of Q in the random oracle model will also inherit any computational

hardness assumptions on which soundness of I is based.
70For illustration, the canonical example of an IP with negligible soundness error that does not satisfy round-by-round soundness

is to take any IP with soundness error 1/3, and sequentially repeat it n times. This yields a protocol with at least n rounds and
soundness error 1/3−Ω(n), yet it is not round-by-round sound. And indeed, applying the Fiat-Shamir transformation to this protocol
does not yield a sound argument system in the random oracle model [Rot19]. See Exercise 5.1.

71In fact, Canetti et al. [CCH+19] also show that, using parallel repetition, any public-coin IP can be transformed into a different
public-coin IP that satisfies round-by-round soundness.
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the “real world” by replacing the random oracle with a cryptographic hash function.
As discussed next, there are nuances regarding what is an appropriate level of security for interactive

protocols vs. the non-interactive arguments that result after applying the Fiat-Shamir transformation.

5.3.1 “Bits of Security”: Statistical vs. Computational

Statistical, computational, and interactive security. As we have seen (Chapter 4), interactive proto-
cols can satisfy statistical (i.e., information-theoretic) security. The logarithm of the soundness error of an
information-theoretically secure protocol is referred to as the number of bits of statistical security.

In contrast, the security level of a non-interactive argument is measured by the amount of work that
must be done to find a convincing “proof” of a false statement. Similar to other cryptographic primitives
like digital signatures and collision-resistant hash functions, the logarithm of this amount of work is referred
to as the number of bits of computational security. For example, 30 bits of security implies that 230 ≈ 1
billion “steps of work” are required to attack the argument system. This is inherently an approximate
measure of real-world security because the notion of one step of work can vary, and practical considerations
like memory requirements or opportunities for parallelism are not considered.

Later in this text, we will see many examples of succinct interactive arguments. Although only com-
putationally rather than statistically sound, many of these arguments have the property that adversaries that
cannot break a cryptographic primitive (e.g., cannot find a collision in a collision-resistant hash function)
also cannot convince the argument-system verifier to accept a false statement with probability more than
2−s for some value s. In this situation, some practitioners refer informally to s as the number of bits of
interactive security of the argument.

Appropriate security levels for interactive vs. non-interactive arguments. For reasons discussed shortly,
non-interactive arguments are generally recommended to be deployed with at least 100 or 128 bits of compu-
tational security [com22]. In contrast, it may be appropriate in some contexts to set statistical or interactive
security levels lower.

The key difference is that, with statistical or interactive security, the cheating prover has to actually
interact with the verifier in order to “attempt” an attack that will succeed with only tiny probability. This
is because the cheating prover in an interactive protocol is hoping to get a “lucky” verifier challenge (i.e.,
one that leads the verifier to accept the prover’s false claim), and the prover does not know whether or not
the verifier’s challenge will be lucky until after sending one or more messages to the verifier and receiving
challenges in response.

For example, suppose that an interactive protocol is run at 60 bits of statistical or interactive security.
This means that each attempted attack succeeds with probability at most 2−60. So after, say, 230 attempted
attacks, the probability that any of the attempts succeed is at most 2−60 · 230 = 2−30. It is unlikely that
a verifier will continue interacting with a prover that has tried and failed to convince her to accept false
statements 230 times. Moreover, due to round-trip delays involved in interactive protocols, executing a large
number of attacks may take an infeasibly large amount of time. For example, if every attempted attack
executes in one second, then 230 attempts would take more than 30 years to execute. For these reasons,
60 bits of statistical or interactive security may be sufficient in some contexts—specifically, those where
a successful attack would not be totally catastrophic, and where, for the reasons above, attacks cannot be
attempted too many times.

In contrast, with non-interactive arguments, a cheating prover can “silently” attack a protocol, without
any interaction with the verifier. For example, if applying the Fiat-Shamir transformation to a 3-message

79



FS in ROM

Random Oracle !" #

Public-Coin
Interactive Protocol

Non-Interactive
Argument

$
% $, %, '

"() #()

% = !(,, $)'

Figure 5.2: Depiction of the Fiat-Shamir transformation applied to a 3-message interactive proof or argument as in the
proof of Theorem 5.1. Image courtesy of Ron Rothblum [Rot19].

interactive protocol as considered in Figure 5.2 below, the canonical “grinding attack” on the resulting non-
interactive argument involves the prover attempting to “guess” a first message α that yields a “lucky” verifier
message R(x,α), in the sense that the prover can efficiently find a response γ such that (α,R(x,α),γ) is an
accepting transcript.

Suppose the original protocol had only 60 bits of statistical or interactive security. Then a cheating
prover executing a grinding attack on the non-interactive argument only needs to try about 260 first messages
α before it finds one such that R(x,α) is “lucky”. When instantiating the Fiat-Shamir transformation with
a concrete hash function, the computational bottleneck in this attack may be simply performing 260 hash
evaluations. This number of hash evaluations is entirely feasible for modern computers.72 Indeed, in 2020,
the cost of computing just shy of 264 SHA-1 evaluations using GPUs was $45,000 [LP20]. As another data
point, as of 2022, bitcoin’s network hash rate was about 264 hash evaluations per second, meaning bitcoin
miners as a whole were performing 280 SHA-256 evaluations every 18 hours. Of course, this very large
number of hashes is due to vast investment in ASICs for bitcoin mining.

In summary, if one is applying the Fiat-Shamir transformation to render an interactive protocol non-
interactive, the interactive protocol should be configured to well over 80 bits of statistical or interactive
security if one wishes to ensure that the canonical grinding attack on the resulting non-interactive protocol
is out of the reach of modern hardware.

5.3.2 Soundness in the Random Oracle Model for Constant-Round Protocols

Theorem 5.1. Let I be a constant-round public-coin IP or argument with negligible soundness error, and
let Q be the non-interactive protocol in the random oracle model obtained by applying the Fiat-Shamir
transformation to I. Then Q has negligible computational soundness error. That is, no prover running in
polynomial time can convince the verifier in Q of a false statement with non-negligible probability.

Proof. For simplicity, we will only prove the result in the case where I is a 3-message protocol where the
prover speaks first. See Figure 5.2 for a depiction of the Fiat-Shamir transformation in this setting and the
notation we will use during the proof.

We will show that, for any input x, if PFS is a prover that runs in time T and convinces the verifier
in Q to accept on input x with probability at least ε (where the probability is over the choice of random

72More precisely, a grinding attack that tries T < 260 different values of α succeeds with probability roughly T · 2−60. This
matches the lower bound shown in the proof of Theorem 5.1. Specifically, Theorem 5.1 shows that if the Fiat-Shamir transformation
is applied to a 3-message interactive protocol with statistical soundness error 2−60, then any attack on the Fiat-Shamir-ed protocol
that treats the hash function as a random oracle, runs in time at most T , and succeeds with probability ε must satisfy ε/T < 2−60.
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oracle), then there is a prover P∗ for I that convinces the verifier in I to accept with probability at least
ε∗ ≥Ω(ε/T ) (where the probability is over the choice of the verifier’s random challenges in I). Moreover,
P∗ has essentially the same runtime as PFS . The theorem follows, because if ε is non-negligible and T is
polynomial in the size of the input, then ε∗ is non-negligible as well.

Handling restricted PFS behavior. The rough idea is that there isn’t much PFS can do to find an accept-
ing transcript (α,β ,γ) with β = R(x,α) other than to mimic a successful prover strategy P forQ, setting α

to be the first message sent by P , setting β to be R(x,α), and setting γ to be P’s response to the challenge
β .73 If this is indeed how PFS behaved, it would be easy for P∗ to “pull” the prover strategy P for Q out
of PFS as follows: P∗ runs PFS , up until the point where PFS makes its (only) query, of the form (x,α),
to the random oracle. P∗ sends α to the verifier V in I, who responds with a challenge β . P∗ uses β as the
response of the random oracle to PFS’s query. P∗ then continues running PFS until PFS terminates.

Since I is public coin, V chooses β uniformly random, which means that β is distributed appropriately
to be treated as a response of the random oracle. Hence, with probability at least ε , PFS will produce an
accepting transcript of the form (α,β ,γ). In this case, P∗ sends γ as its final message in I, and the verifier
accepts because (α,β ,γ) is an accepting transcript. This ensures that P∗ convinces the verifier in I to accept
with the same probability that PFS outputs an accepting transcript, which is at least ε by assumption.

The general case: overview. In the general case, PFS may not behave in the manner above. In particular,
PFS may ask the random oracle many queries, though no more than T of them, since PFS runs in time at
most T . This means that it is not obvious which of the queries (x,α) P∗ should forward to V as its first
message α . Fortunately, we will show that it suffices for P∗ to simply pick one of PFS’s queries at random.
Essentially, P∗ will pick the “right” query with probability at least 1/T , leading P∗ to convince V to accept
input x with probability at least ε/T .

What we can assume about PFS without loss of generality. Let us assume that PFS always makes
exactly T queries to the random oracle (this can be ensured modifying PFS to ask “dummy queries” as
necessary to ensure that it always makes exactly T queries to the random oracle R). Let us further assume
that all queries PFS makes are distinct (there is never a reason for PFS to query the oracle at the same
location twice, since the oracle will respond with the same value both times). Finally, we assume that
whenever PFS successfully outputs an accepting transcript (α,β ,γ) with β = R(x,α), then at least one of
PFS’s T queries to R was at point (x,α). This can be ensured by modifying PFS to always query (x,α)
before outputting the transcript (α,β ,γ), if (x,α) has not already been queried, and making a “dummy
query” otherwise.

Complete description of P∗. P∗ begins by picking a random integer i∈ {1, . . . ,T}. P∗ runs PFS up until
its i’th query to the random oracle, choosing the random oracle’s responses to queries 1, . . . , i−1 uniformly
at random. If the ith query is of the form (x,α) for some α , P∗ sends α to V as its first message, and receives
a response β from V .74 P∗ uses β as the response of the random oracle to query (x,α). P∗ then continues
running PFS , choosing the random oracle’s responses to queries i+1, . . . ,T uniformly at random. If PFS
outputs an accepting transcript of the form (α,β ,γ), then P∗ sends γ to V , which convinces V to accept.

73As explained in Section 5.3.1, this isn’t actually true, as PFS can also run state-restoration attacks a.k.a. grinding attacks, an
issue with which the formal proof below must grapple.

74If the ith query is not of the form (i,α), P∗ aborts, i.e., P∗ gives up trying to convince V to accept.
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Analysis of success probability for P∗. As in the restricted case, since I is public coin, V chooses β

uniformly random, which means that β is distributed appropriately to be treated as a response of the random
oracle. This means that PFS outputs an accepting transcript of the form (α,R(x,α),γ) with probability at
least ε . In this event, P∗ convinces V to accept whenever PFS’s ith query to R was (x,α). Since we have
assumed that PFS makes exactly T queries, all of which are distinct, and one of those queries is of the form
(x,α), this occurs with probability exactly 1/T . Hence, P∗ convinces V to accept with probability at least
ε/T .

5.3.3 Fiat-Shamir Preserves Knowledge-Soundness in the Random Oracle Model

Theorem 5.1 roughly shows that the Fiat-Shamir transformation renders any constant-round IP or argument
non-interactive in the random oracle model while preserving soundness. Later in this manuscript, we will be
concerned with a strengthening of soundness called knowledge-soundness that is relevant when the prover
is claiming to know a witness satisfying a specified property (see Section 7.4). In the random oracle model,
the Fiat-Shamir transformation does preserve knowledge-soundness, at least when applied to specific im-
portant argument systems. We cover two important examples of these results later in this survey: Section
9.2.1 shows that the Fiat-Shamir transformation preserves knowledge-soundness when applied to succinct
arguments obtained from PCPs and IOPs. Section 12.2.3 establishes a similar result when the transforma-
tion is applied to a different class of arguments, called Σ-protocols (introduced in Section 12.2.1). A brief
discussion of extensions to super-constant round variants of Σ-protocols can be found at the end of Section
14.4.2.

5.3.4 Fiat-Shamir in the Plain Model

Chaum and Impagliazzo, and Canetti, Goldreich, and Halevi [CGH04] identified a property called correlation-
intractability (CI) such that instantiating the Fiat-Shamir transformation in the plain model results in a sound
argument when the concrete hash function h is chosen at random from a hash familyH satisfying CI. Below,
we explain in more detail what CI means, before describing recent results that construct CI hash families
based on standard cryptographic assumptions.

What is correlation-intractability? Let R denote some property of pairs (y,h(y)). A hash family H
satisfies CI for R if it is computationally infeasible to find a pair (y,h(y)) satisfying property R.

Suppose I is an IP or argument for a language L such that I satisfies round-by-round soundness. Let
R denote the relation capturing “success” of a cheating prover for the Fiat-Shamir transformation Q of I.
That is, R consists of all tuples (y,h(y)) such that y = (x,g1, . . . ,gi) with x ̸∈ L and the following holds.
Let g1, . . . ,gi be interpreted as prover messages in the first i rounds of I when run on input x, with round- j
verifier message equal to h(x,g1, . . . ,g j). Then we define R to include (y,h(y)) if I is in a doomed state at
the start of round i, but enters a non-doomed state if the ith verifier challenge is h(y).

A cheating prover in the Fiat-Shamir-ed protocol Q must find some pair (y,h(y)) satisfying property R
to find a convincing “proof” of membership in L for some x ̸∈ L. If H satisfies CI for R, then this task
is intractable—no polynomial time cheating prover can find a convincing proof of a false statement with
non-negligible probability.

Recent results constructing CI hash families. An exciting recent line of work [CCR16,KRR17,CCRR18,
HL18,CCH+19,PS19,JKKZ21,HLR21,LV22,BKM20] has constructed CI hash families for various natural
classes of IPs and arguments, with the CI property holding under standard cryptographic assumptions. In
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particular, [PS19, HLR21] construct CI families for various natural classes of IPs and arguments assuming
the Learning With Errors (LWE) assumption, upon which many lattice-based cryptosystems are based. The
constructions of CI hash families in the aforementioned works have the flavor of fully homomorphic encryp-
tion (FHE) schemes, which are currently highly computationally intensive, much more so than the prover
and verifier in interactive proofs such as the GKR protocol. Hence, these hash families are not practical for
use in obtaining non-interactive arguments. However, it is plausible that cryptographic hash families used
in practice actually satisfy the relevant notions of correlation-intractability.

The aforementioned results apply, for example, to the GKR protocol. They also apply to various zero-
knowledge proofs of theoretical and historical (but not practical) importance for NP-complete languages
[Blu86, GMW91] (we formally introduce the notion of zero-knowledge in Chapter 11). Note that these
zero-knowledge proofs are not succinct. This means that the proof length is not shorter than the trivial (non-
zero-knowledge) NP proof system in which the prover sends a classical static proof, i.e., an NP witness, for
the validity of the claim at hand, and the verifier deterministically checks the proof.

Fiat-Shamir and succinct public-coin arguments. There is great interest in obtaining analogous results
for the succinct public-coin interactive arguments described later in this survey, to obtain succinct non-
interactive arguments that are secure in the plain model under standard cryptographic assumptions. Unfor-
tunately, the results that have been obtained on this topic have so far been negative [GW11, BBH+19]. For
example, Bartusek et al. [BBH+19] show, roughly speaking, that obtaining non-interactive arguments in this
manner would require exploiting some special structure in both the underlying interactive argument and in
the concrete hash function used to implement the random oracle in the Fiat-Shamir transformation.

5.4 Exercises

Exercise 5.1. Section 5.2 described the Fiat-Shamir transformation and asserted that if the Fiat-Shamir
transformation is applied to any IP with negligible soundness error that satisfies an additional property called
round-by-round soundness, then the resulting argument system is computationally sound in the random
oracle model. One may wonder if in fact the Fiat-Shamir transformation yields a computationally sound
argument for any IP with negligible soundness error, not just those that are round-by-round sound. In this
problem, we will see that the answer is no.

Take any IP with perfect completeness and soundness error 1/3, and sequentially repeat it n times,
having the verifier accept if and only if all n invocations of the base IP lead to acceptance. This yields
an IP with soundness error 3−n. Explain why applying the Fiat-Shamir transformation to this IP does not
yield a sound argument system in the random oracle model, despite the fact that the soundness error 3−n is
negligible.

You may assume that the prover in the IP is permitted to pad messages with nonces if it so desires, i.e.,
the prover may append extra symbols to any message and the verifier will simply ignore those symbols. For
example, if the prover in the IP wishes to send message m ∈ {0,1}b, the prover could choose to send (m,m′)
for an arbitrary string m′, and the IP verifier will simply ignore m′.

Exercise 5.2. Recall that the GKR protocol for circuit evaluation is used to verify the claim that C(x) = y,
where C is an arithmetic circuit over field F, x is a vector in Fn, and C, x, and y are all known to both the
prover and the verifier. Consider applying the Fiat-Shamir transformation in the random oracle model to the
GKR protocol, but suppose that when applying the Fiat-Shamir transformation, the input x is not included
in the partial transcripts fed into the random oracle. Show that the resulting non-interactive argument is not
adaptively sound. That is, for a circuit C and claimed output y of your choosing, explain how a cheating
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prover can, in time proportional to the size of C and with overwhelming probability, find an input x ∈ Fn

such that C(x) ̸= y, along with a convincing “proof” for the claim that C(x) in fact equals y.
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Chapter 6

Front Ends: Turning Computer Programs
Into Circuits

6.1 Introduction

In Section 4.6, we saw a very efficient interactive proof, called the GKR protocol, for verifiably outsourcing
the evaluation of large arithmetic circuits, as long as the circuit is not too deep. But in the real world, people
are rarely interested in evaluating giant arithmetic circuits. Rather, they typically have a computer program
written in a high-level programming language like Java or Python, and want to execute the program on their
data. In order for the GKR protocol to be useful in this setting, we need an efficient way to turn high-level
computer programs into arithmetic circuits. We can then apply the GKR protocol (or any other interactive
proof or argument system for circuit evaluation) to the resulting arithmetic circuit.

Most general purpose argument system implementations work in this two-step manner. First, a computer
program is compiled into a model amenable to probabilistic checking, such as an arithmetic circuit or arith-
metic circuit satisfiability instance.75 Second, an interactive proof or argument system is applied to check
that the prover correctly evaluated the circuit. In these implementations, the program-to-circuit compiler is
referred to as the front end and the argument system used to check correct evaluation of the circuit is called
the back end.

Some computer programs naturally lend themselves to implementation via arithmetic circuits, partic-
ularly programs that only involve addition and multiplication of integers or elements of a finite field. For
example, the following layered arithmetic circuit of fan-in two implements the standard naive O(n3) time
algorithm for multiplying two n×n matrices, A and B.

Let [n] := {1, . . . ,n}. Adjacent to the input layer of the circuit is a layer of n3 multiplication gates,
each assigned a label (i, j,k)∈ [n]× [n]× [n]. Gate (i, j,k) at this layer computes the product of Ai,k and Bk, j.
Following this layer of multiplication gates lies a binary tree of addition gates of depth log2(n). This ensures
that there are n2 output gates, and if we assign each output gate a label (i, j) ∈ [n]× [n], then the (i, j)’th
output gate computes ∑k∈[n] Ai,k ·Bk, j as required by the definition of matrix multiplication. See Figure 6.1.

As another example, Figures 4.8-4.11 portray an arithmetic circuit implementing the same functionality
as the computer program depicted in Algorithm 1 (with n = 4). The circuit devotes one layer of gates to
squaring each input entry, and then sums up the results via a complete binary tree of addition gates of fan-in
two.

75Many argument systems prefer to work with models such “Rank-1 Constraint Systems” that are generalizations of arithmetic
circuits. These alternative models are discussed later in this survey (see Section 8.4).
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Algorithm 1 Algorithm Computing the Sum of Squared Entries of Input Vector

Input: Array a = (a1, . . . ,an)
1: b← 0
2: for i = 1,2, . . . ,n do
3: b← b+a2

i

Output: b

A11	 A12	 A21	 A22	 B11	 B12	 B21	 B22	

×	 ×	 ×	 ×	 ×	 ×	 ×	 ×	

+	 +	 +	 +	

Figure 6.1: An arithmetic circuit implementing the naive matrix multiplication algorithm for 2×2 matrices.

While it is fairly straightforward to turn the algorithm for naive matrix multiplication into an arithmetic
circuit as above, other kinds of computer programs that perform “non-arithmetic” operations, such as eval-
uating complicated conditional statements, seem to be much more difficult to turn into small arithmetic
circuits.

In Sections 6.3 and 6.4, we will see two techniques for turning arbitrary computer programs into cir-
cuits. In Section 6.5, we will see a third technique, which is far more practical, but makes use of what are
sometimes called “non-deterministic circuits” and “circuits with auxiliary input”. Equivalently, the third
technique produces instances of the circuit satisfiability problem, rather than of the circuit evaluation prob-
lem.

We would like to make statements like “Any computer programming that halts within T time steps can
be turned into a low-depth, layered, fan-in two arithmetic circuit of size at most O(T logT ).” In order to
make statements of this form, we first have to be precise about what it means to say that a computer programs
has runtime T .

6.2 Machine Code

Modern compilers are very good at efficiently turning high-level computer programs into machine code,
which is a set of basic instructions that can each be executed in unit time on the machine’s hardware. When
we say that a program runs in T (n) time steps, we mean that it can be compiled into a sequence of machine
instructions of length at most T (n). But for this statement to be precise, we have to decide precisely what is
a machine instruction. That is, we have to specify a model of the hardware on which we will think of our
programs as running.

Our hardware model will be a simple Random Access Machine (RAM). A RAM consists of the following
components.
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• (Main) Memory. That is, it will contain s cells of storage, where each cell can store, say, 64 bits of
data.

• A constant number (say, 8) of registers. Registers are special memory cells with which the RAM can
manipulate data. That is, whereas Main Memory cells can only store data, the RAM is allowed to
perform operations on data in registers, such as “add the numbers in Registers 1 and 2, and store the
result in Register 3”.

• A set of ℓ= O(1) allowed machine instructions. Typically, these instructions are of the form:

– Write the value currently stored in a given register to a specific location in Main Memory.

– Read the value from a specific location in Main Memory into a register.

– Perform basic manipulations of data in registers. For example, adding, subtracting, multiplying,
dividing, or comparing the values stored in two registers, and storing the result in a third register.
Or doing bitwise operations on the values stored in two registers (e.g., computing the bit-wise
AND of two values).

• A program counter. This is a special register that tells the machine what is the next instruction to
execute.

6.3 A First Technique For Turning Programs Into Circuits [Sketch]

Our first technique for turning computer programs into circuits yields the following.76 If a computer program
runs in time T (n) on a RAM with at most s(n) cells of memory, then the program can be turned into a layered,
fan-in 2 arithmetic circuit of depth not much more than T (n) and width of about s(n) (i.e., the number of
gates at each layer of the circuit is not much more than s(n)).

Observe that such a transformation from programs to circuits is useless in the context of the GKR
protocol, because the verifier’s time complexity in the GKR protocol is at least the circuit depth, which is
about T (n) in this construction. In time T (n), the verifier could have executed the entire program on her own,
without any help from the prover. We describe this circuit-generation technique because it is conceptually
important, even though it is useless in the context of the GKR protocol.

This program-to-circuit transformation makes use of the notion of a machine configuration. A machine
configuration tells you everything about the state of a RAM at a given time. That is, it specifies the input,
as well as the value of every single memory cell, register, and program counter. Observe that if a RAM has
a memory of size s, then a configuration can be specified with roughly 64s bits (where 64 is the number of
bits that can fit in one memory cell), plus some extra bits to specify the input and the values stored in the
registers and program counter.

The basic idea of the transformation is to have the circuit proceed in iterations, one for each time step
of the computer program. The ith iteration takes as input the configuration of the RAM after i steps of the
program have been executed, and “executes one more step of the program”. That is, it determines what the
configuration of the RAM would be after the (i+ 1)’st machine instruction is executed. This is displayed
pictorially in Figure 6.2.

76The transformation described in this section can yield either Boolean circuits (with AND, OR, or NOT gates) or arithmetic
circuits (whose inputs are elements of some finite field F and whose gates compute addition and multiplication over the field). In
fact, any transformation to Boolean circuits implies one to arithmetic circuits, since we know from Section 4.2 that any Boolean
circuit can be transformed into an equivalent arithmetic circuit over any field, with at most a constant-factor blowup in size.
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Star&ng	configura&on	

Simple	circuitry	execu&ng	one	machine	instruc&on	

		

Simple	circuitry	execu&ng	one	machine	instruc&on	

Figure 6.2: A caricature of a technique for turning any program running in time T (n) and space s(n) into a circuit of
depth not much more than T (n) and width not much more than s(n).

A key point that makes this transformation work is that there is only a constant number of possible
machine instructions, each of which is very simple (operating on only a constant number of registers, in a
simple manner). Hence, the circuitry that maps the configuration of the machine after i steps of the program
to the configuration after the (i+1)’st step is very simple.

Unfortunately, the circuits that are produced by this transformation have size Θ̃(T (n) · s(n)), meaning
that, relative to running the computer program (which takes time T (n)), even writing down or reading the
circuit is more expensive by a factor of s(n).77 The source of the inefficiency is that, for each time step of
the RAM, the circuit produces an entire new machine configuration. Each configuration has size Θ̃(s), as
a configuration must specify the state of the RAM’s memory at that time step. Conceptually, while each
step of the program only alters a constant number of memory cells in each time step, the circuit does not
“know in advance” which memory cells will be updated. Hence, the circuit has to explicitly check, for each
memory cell at each time step, whether or not the memory cell should be updated. This causes the circuit
to be at least s(n) times bigger than the runtime T (n) of the RAM that the circuit simulates. This overhead
renders this program-to-circuit transformation impractical.

6.4 Turning Small-Space Programs Into Shallow Circuits

The circuits that come out of the program-to-circuit transformation of Section 6.3 are useless in the context
of the GKR protocol because the circuits have depth at least T . When applying the GKR protocol to such a
deep circuit, the runtime of the verifier is at least T . It would be just as fast for the verifier to simply run the
computer program on its own, without bothering with a prover.

A second technique for turning computer programs generates shallower circuits as long as the computer
program doesn’t use much space. Specifically, it is capable of taking any program that runs in time T and
space s, and turning it into a circuit of depth roughly s · logT and size 2Θ(s).

Section 4.5.5 explained how we can determine whether a Turing Machine M outputs 1 on input x in

77A second issue is that the circuit is very deep, i.e., depth at least T (n). Because the GKR protocol’s (Section 4.6) communi-
cation cost grows linearly with circuit depth, applying the GKR protocol to this circuit leads to communication cost at least T (n),
which is trivial (in the time required to read the prover’s message, the verifier could afford to execute M on its own). This issue
will be addressed in Section 6.4 below, which reduces the circuit depth to polynomial in the space usage rather than runtime of the
RAM. However, this comes at the cost of increasing the circuit size from poly(T,s) to 2Θ(s). Note that argument systems covered
later in this manuscript do not have communication cost growing linearly with circuit depth, and hence applying these arguments
to deep circuits such as those described in this section does yield non-trivial protocols.
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less than T time steps by determining whether there is a directed path of length at most T in M’s config-
uration graph from the starting configuration to the accepting configuration. While that section discussed
Turing Machines, the same result also applies to Random Access Machines, because both Turing Machine
or Random Access Machine using s bits of space have at most 2O(s) configurations.

To solve this directed-path problem, it suffices to compute a single entry of the T ’th power of A, where
A be the adjacency matrix of M’s configuration graph; that is, Ai, j = 1 if configuration i has a directed
edge to configuration j in M’s configuration graph, and Ai, j = 0 otherwise. This is because the (i, j)’th
entry of the T ’th power of A equals the number of directed paths of length T from node i to node j in the
configuration graph of M. Hence, in order to determine whether there is a directed path of length T from the
starting configuration of M to the accepting configuration, it is enough for the circuit to repeatedly square
the adjacency matrix log2 T times. We have seen in Section 6.1 that there is a circuit of size O(N3) and
depth O(logN) for multiplying two N×N matrices. Since the configuration graph of M on input x is an
2Θ(s)×2Θ(s) matrix, the circuit that squares the adjacency matrix of the configuration graph of M O(logT )
times has depth O(log(2Θ(s)) · logT ) = O(s logT ), and size 2Θ(s).78

Hence, one can obtain an IP for determining the output of the RAM M by applying the GKR protocol to
this circuit. However, the IP of Section 4.5.5 solves the same problem in a more direct and efficient manner.

6.5 Turning Computer Programs Into Circuit Satisfiability Instances

6.5.1 The Circuit Satisfiability Problem

In Sections 6.3 and 6.4, we saw two methods for turning computer programs into arithmetic circuits. The
first method was undesirable for two reasons. First, it yielded circuits of very large depth. So large, in
fact, that applying the GKR protocol to the resulting circuits led to a verifier runtime that was as bad as just
having the verifier run the entire program without any help from a prover. Second, if the computer program
ran in time T and space s, the circuit had size at least T · s, and we’d really prefer to have circuits with close
to T gates.

In this section, we are going to address both of these issues. However, to do so, we are going to have to
shift from talking about circuit evaluation to talking about circuit satisfiability.

Recall that in the arithmetic circuit evaluation problem, the input specifies an arithmetic circuit C, input
x, and output(s) y, and the goal is to determine whether C(x) = y. In the arithmetic circuit satisfiability
problem (circuit-SAT for short), the circuit C takes two inputs, x and w. The first input x is public and fixed,
i.e., known to both the prover and verifier. The second input w is often called the witness, or sometimes the
non-deterministic input or auxiliary input. Given the first input x and output(s) y, the goal is to determine
whether there exists a w such that C(x,w) = y.

Preview: succinct arguments for circuit satisfiability, and outline for the remainder of the chapter.
After this chapter, the remainder of the manuscript is devoted to developing succinct arguments, especially
so-called SNARKs, for circuit satisfiability and generalizations thereof. These protocols will enable the
untrusted prover P to prove that it knows a witness w such that C(x,w) = y. Ideally, the proof size and
verification time of the SNARK will be far smaller than they are in the naive proof system, in which P sends
the witness w to V and V evaluates C(x,w) on its own. And ideally, if P already knows the witness—and

78To be more precise, the circuit takes as input x, and first computes the adjacency matrix A of the configuration graph of M on
input x. Each entry of A is a simple function of x. Then the circuit repeatedly squares A to compute the T (n)’th power of A and the
outputs the (i, j)’th entry, where i indexes the starting configuration and j the ending configuration.
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hence does not have to spend any time to find it—P will run in time close to that required just to evaluate C
on input (x,w).

In applications, P will typically already know w. For example, Chapter 1 discussed an application in
which Alice chooses a random password w, publishes a cryptographic hash y = h(w), and later wants to
prove to Bob that she knows a pre-image of y under h. The witness in this application is w. Effectively,
Alice herself generated the statement she wishes to prove, and hence she knows the witness without needing
to spend massive compute power to compute it “from scratch”, which in this example would entail inverting
the hash function h at y.

Such applications entail a major shift in thinking, compared to the interactive proofs for circuit evalua-
tion already covered. No longer is P claiming to have applied a specific circuit C or run a specific RAM M
on a public input x that is known to both verifier and prover. Rather, P is claiming it knows some witness w
(not known to the verifier) such that applying C to (x,w), or running M on (x,w), yields output y.

But as we will see, arguments for circuit satisfiability are useful even when P is only claiming to have
run a specific RAM M on a public input x. In this case, the witness w is “used” merely to enable more
efficient transformations of the machine M into an “equivalent circuit” C. By this, we mean that the output
of the RAM M on input x equals y if and only if there exists a w such that C(x,w) = y.

In more detail, the remainder of the chapter explains that any computer program running in time T can
be efficiently transformed into an equivalent instance (C,x,y) of arithmetic circuit satisfiability, where the
circuit C has size close to T , and depth close to logT . The output of the program on input x equals y if and
only if there exists a w such that C(x,w) = y. Moreover, any party (such as a prover) that actually runs the
program on input x can easily construct a w satisfying C(x,w) = y.

Why Circuit-SAT instances are expressive. Intuitively, circuit satisfiability instances should be “more
expressive” than circuit evaluation instances, for the same reason that checking a proof of a claim tends to
be easier then discovering the proof in the first place. In the coming sections, the claim at hand is “running
a designated computer program on input x yields output y”. Conceptually, the witness w in the circuit
satisfiability instances that we construct in the remainder of this chapter will represent a traditional, static
proof of the claim, and the circuit C will simply check that the proof is valid. Unsurprisingly, we will see
that checking validity of a proof can be done by much smaller circuits than circuit evaluation instances that
determine the veracity of the claim “from scratch”.

To make the above intuition more concrete, here is a specific, albeit somewhat contrived, example of the
power of circuit satisfiability instances. Imagine a straightline program in which all inputs are elements of
some finite field F, and all operations are addition, multiplication, and division (by division a/b, we mean
multiplying a by the multiplicative inverse of b in F). Suppose one wishes to turn this straightline program
into an equivalent arithmetic circuit evaluation instance C. Since the gates of C can only compute addition
and multiplication operations (not division), C would need to replace every division operation a/b with an
explicit computation of the multiplicative inverse b−1 of b, where the computation of b−1 is only able to
invoke addition and multiplication operations. This is expensive, leading to huge circuits. In contrast, to
turn the straightline program into an equivalent circuit satisfiability instance, we can demand that the witness
w contain a field element e for every division operation a/b where e should be set to b−1. The circuit can
“check” that e = b−1 by adding an output gate that computes e ·b−1. This output gate will equal 0 if and
only if e = b−1. In this manner, each division operation in the straightline program translates into only O(1)
additional gates and witness elements in the circuit satisfiability instance.

One may initially be worried that this techniques introduces a “checker” output gate for each division
operation in the straightline program, and that consequently, if there are many division operations the prover
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will have to send a very long message to the verifier in order to inform the verifier of the claimed output
vector y of C. However, since any “correct” witness w causes these “checker” gates to evaluate to 0, their
claimed values are implicitly 0. This means that the size of the prover’s message specifying the claimed
output vector y is independent of the number of “checker” output gates in C.

6.5.2 Preview: How Do Succinct Arguments for Circuit Satisfiability Operate?

One way we could design an efficient IP for the claim that there exists a w such that C(x,w) = y is to have
the prover send w to the verifier, and run the GKR protocol to efficiently check that C(x,w) = y. This would
be enough to convince the verifier that indeed the program outputs y on input (x,w). This approach works
well if the witness w is small. But in the computer-program-to-circuit-satisfiability transformation that we’re
about to see, the witness w will be very large, of size roughly T , the runtime of the computer program. So
even asking the verifier to read the claimed witness w is as expensive as asking the verifier to simply run the
program herself without the help of a prover.

Fortunately, we will see in Section 7.3 that we can combine the GKR protocol with a cryptographic
primitive called a polynomial commitment scheme to obtain an argument system that avoids having the
prover send the entire witness w to the verifier. The high-level idea is as follows (see Section 7.3 for details).

In the IP for circuit satisfiability described two paragraphs above, it was essential that the prover sent the
witness w at the start of the protocol, so that the prover was not able to base the choice of w on the random
coin tosses of the verifier within the circuit evaluation IP to confirm that C(x,w) = y. Put another way, the
point of sending w at the start of the protocol was that it bound the prover to a specific choice of w before
the prover knew anything about the verifier’s random coin tosses in the subsequent IP for circuit evaluation.

We can mimic the above, without the prover having to send w in full, using cryptographic commitment
schemes. These are cryptographic protocols that have two phases: a commit phase, and a reveal phase. In
a sense made precise momentarily, the commit phase binds the prover to a witness w without requiring the
prover to send w in full. In the reveal phase, the verifier asks the prover to reveal certain entries of w. The
required binding property is that, unless the prover can solve some computational task that is assumed to be
intractable, then after executing the commit phase, there must be some fixed string w such that the prover
is forced to answer all possible reveal-phase queries in a manner consistent with w. Put another way, the
prover is not able to choose w in a manner that depends on the questions asked by the verifier in the reveal
phase.

This means that to obtain a succinct argument for circuit satisfiability, one can first have the prover run
the commit phase of a cryptographic commitment scheme to bind itself to the witness w, then run an IP or
argument for circuit evaluation to establish that C(x,w) = y, and over the course of the protocol the verifier
can force the prover as necessary to reveal any information about w that the verifier needs to know to perform
its checks.

If the GKR protocol is used as the circuit evaluation protocol, what information does the verifier need
to know about w to perform its checks? Recall that in order to run the GKR protocol on circuit C with
input u = (x,w), the only information about the input that the verifier needs to know is the evaluation of the
multilinear extension ũ of u at a random point. Moreover, this evaluation is only needed by the verifier at
the very end of the protocol.

We explain in Chapter 7 that in order to quickly evaluate ũ at any point, it is enough for the verifier to
know the evaluation of the multilinear extension w̃ of w at a related point.

Hence, the cryptographic commitment scheme should bind the prover to the multilinear polynomial w̃,
in the sense that in the reveal phase of the commitment scheme, the verifier can ask the prover to tell her
w̃(r) for any desired input r to w. The prover will respond with w̃(r) and a small amount of “authentication
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information” that the verifier insists be included to enforce binding. The required binding property roughly
ensures that when the verifier asks the prover to reveal w̃(r), the prover will not be able to “change” its
answer in a manner that depends on r.

To summarize the resulting argument system, after the prover commits to the multilinear polynomial w̃,
the parties run the GKR protocol to check that C(x,w) = y. The verifier can happily run this protocol even
though it does not know w, until the very end when the verifier has to evaluate ũ at a single point. This
requires the verifier to learn w̃(r) for some point r. The verifier learns w̃(r) from the prover, by having the
prover decommit to w̃ at input r.

All told, this approach (combined with the Fiat-Shamir transformation, Section 5.2) will lead to a non-
interactive argument system of knowledge for circuit satisfiability, i.e., for the claim that the prover knows
a witness w such that C(x,w) = y. If a sufficiently efficient polynomial commitment scheme is used, the
argument system is nearly optimal in the sense that the verifier runs in linear time in the size of the input x,
and the prover runs in time close to the size of C.

6.5.3 The Transformation From Computer Programs To Arithmetic Circuit Satisfiability

Before describing the transformation, it is helpful to consider why the circuit generated in Method 1 of
Section 6 (see Section 6.3) had at least T · s gates, which is significantly larger than T if s is large. The
answer is that that circuit consisted of T “stages” where the ith stage computed each bit of the machine’s
configuration—which includes the entire contents of its main memory—after i machine instructions had
been executed.

But each machine instruction affects the value of only O(1) registers and memory cells, so between
any two stages, almost all bits of the configuration remain unchanged. This means that almost all of the
gates and wires in the circuit are simply devoted to copying bits from the configuration after i steps to the
configuration after step i+ 1. This is highly wasteful, and in order to obtain a circuit of size close to T ,
rather than T · s, we will need to cut out all of this redundancy.

To describe the main idea in the transformation, it is helpful to introduce the notion of the transcript
(sometimes also called a trace) of a Random Access Machine M’s execution on input x. Roughly speaking,
the transcript describes just the changes to M’s configuration at each step of its execution. That is, for each
step i that M takes, the transcript lists just the value of each register and the program counter at the end of
step i. Since M has only O(1) registers, the transcript can be specified using O(T ) words, where a word
refers to a value that can be stored in a single register or memory cell.

The basic idea is that the transformation from RAM execution to circuit satisfiability produces a circuit
satisfiability instance (C,x,y), where x is the input to M, y is the claimed output of M, and the witness w is
supposed to be the transcript of M’s execution of input x. The circuit C will simply check that w is indeed
the transcript of M’s execution on input x, and if this check passes, then C outputs the same value as M
does according to the ending configuration in the transcript. If the check fails, C outputs a special rejection
symbol.

A schematic of C is depicted in Figure 6.3.

6.5.4 Details of the Transformation

The circuit C takes an entire transcript of the entire execution of M on x as a non-deterministic input, where
a transcript consists of (timestamp, list) pairs, one for each step taken by M. Here, a list specifies the bits
contained in the current program counter and the values of all of M’s registers. If a read or write operation
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x	 Purported	Trace	of	M’s	Execu3on	on	x	

Circuit	C	checks	if	the	trace	actually	corresponds	
to	M’s	execu3ng	on	x		

(This	requires	T	*	polylog(T)	gates)		

Outputs	1	iff	trace	is	correct	and	ends	with	M	outpuDng	1.	

Figure 6.3: Sketch of the transformation From RAM execution on input x to an instance of circuit satisfiability.

occurs at the associated timestep of M’s execution, the list also includes the memory location accessed and
the value returned if a read operation occurs or written to memory if a write operation occurs. Timesteps at
which no read or write operation occurs contain a special memory address indicating as much.

The circuit then checks that the transcript is valid. Details of the validity check follow.

Conceptually, one can think of a RAM running in time T as comprised of two independent pieces:

• The maintenance of its Main Memory, meaning correctly implementing all memory reads and writes.
Each memory read should return the most recent value written to that memory cell.

• Assuming memory is maintained correctly, execute each of the T steps of the program. Each step of
the program is simple, as it only affects the machine’s registers, of which there are only a constant
number, and performs at most one read or write operation to Main Memory.

Following the above conceptual partition of a RAM’s operation, checking the validity of a purported
transcript amounts to checking that it satisfies the following two properties.

• Memory consistency: whenever a value is read from a memory location, check that the value that the
transcript claims is returned is equal to the last value written to that location.

• Time consistency: assuming that memory consistency holds, check that for each timestep i∈{1, . . . ,T−
1}, the claimed state of the machine at time i+1 correctly follows from the machine’s claimed state
at time i.

The circuit checks time-consistency by representing the transition function of the RAM as a small sub-
circuit. We provide some details of this representation in Section 6.5.4.1. It then applies this sub-circuit to
each entry i of the transcript and checks that the output is equal to entry i+1 of the transcript. That is, for
each time step i in 1, . . . ,T −1, the circuit will have an output gate that will equal 0 if and only if entry i+1
of the transcript equals that application of the transition function to entry i of the transcript.

The circuit checks memory consistency by reordering the transcript entries based on the memory loca-
tion read from or written to, with ties broken by time. That is, for each memory location, the read and write
operations for that location appear in increasing order of timestamp. We refer to this reordering of the tran-
script as memory ordering. Transcript entries that do not perform either a memory read or write operation
can be grouped together in any order and placed at the end of the reordered transcript–these entries will be
ignored by the part of the circuit that checks memory consistency.

Given the memory-ordered transcript, it is straightforward for the circuit to check that every memory
read from a given location returns the last value written to that location. For any two adjacent entries in
the memory-ordered transcript, the circuit checks whether the associated memory locations are equal, and
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whether the latter entry contains a read operation. If so, it checks that the value returned by the read operation
equals the value read or written in the preceding operation.

The sorting step is the most conceptually involved part of the construction of C, and is discussed in
Section 6.5.4.2. Note that all of the at most T time-consistency checks and memory-consistency checks can
be done in parallel. As we will see, sorting can also be done in logarithmic depth. All together, this ensures
that C has polylogarithmic depth.

6.5.4.1 Representing transition functions of RAMs as small arithmetic circuits

Depending on the field over which the circuit C is defined, certain operations of the RAM are easy to
compute inside C using a single gate. For example, if C is defined over a prime-order field Fp of order p,
then this field naturally simulates integer addition and multiplication so long as one is guaranteed that the
values arising in the computation always lie in the range [−⌊p/2⌋,⌊p/2⌋].79 If the values grow outside of
this range, then the field, by reducing all values modulo p, will no longer simulate integer arithmetic. In
contrast, fields of characteristic 2 are not able to simulate integer addition or multiplication on numbers of
magnitude 2W without spending (at least) Ω(W ) gates by operating on the bit-representations of the integers.
On the other hand, if C is defined over a field of characteristic two, then addition of two field elements is
equivalent to bitwise-XOR of the binary representations of the field operations. The message here is that
integer arithmetic, but not bitwise operations, are simulated very directly over fields of large prime order (up
to overflow issues), whereas bitwise operations, but not integer arithmetic, are simulated very directly over
fields of characteristic 2.

In general, if a Random Access Machine has word size W then any primitive instruction other than mem-
ory accesses (e.g., integer arithmetic, bitwise operations, integer comparisons, etc.) can be implemented in a
circuit-satisfiability instance using poly(W ) many gates. This works by representing each bit of each regis-
ter with a separate field element, and implementing the instruction bitwise. To give some simple examples,
one can compute the bitwise-AND of two values x,y ∈ {0,1}W with W multiplication gates over a large
prime-order field, where the ith multiplication gate multiplies xi by yi. Bitwise-OR and Bitwise-XOR can
be computed in a similar manner, replacing xi · yi with xi + yi− xiyi and xi + yi−2xiyi respectively.

As a more complicated example, suppose the circuit is defined over a field Fp of large prime order.
Let a and b be two field elements interpreted as integers in {0,1, . . . , p− 1}, and suppose that one wishes
to determine whether a > b. Let ℓ := ⌈log2 p⌉. The circuit can ensure that the witness contains 2ℓ bits
a0, . . . ,aℓ−1,b1, . . . ,bℓ−1 representing the binary representations of a and b respectively as follows. First, to
check that ai is in {0,1} for all i = 0, . . . , ℓ− 1, the circuit can include an output gate computing a2

i − ai.
This gate will evaluate to 0 if and only if ai ∈ {0,1}. Second, to check that (a0, . . . ,aℓ−1) is indeed the
binary representation of a ∈ Fp, the circuit can include an output gate computing a−∑

ℓ
i=0 ai2i. Assuming

each ai ∈ {0,1}, this output gate equals 0 if and only if (a0, . . . ,aℓ−1) is the binary representation of ai.
Analogous checks can be included in the circuit to ensure that (b0, . . . ,bℓ−1) is the binary representation of
b.

Finally, the circuit can include an output gate computing an arithmetization of the Boolean circuit that
checks bit-by-bit whether a > b. Specifically, for j = ℓ−2, ℓ−3, . . . ,1, define

A j := ∏
j′> j

(
a j′b j′+(1−a j′)(1−b j′)

)

79If operating over unsigned integers rather than signed integers, the integer values arising in the computation may lie in the
range [0, p−1] rather than [−⌊p/2⌋,⌊p/2⌋].
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so that A j = 1 if the ℓ− j high-order bits of a and b are equal. Then the following expression equals 1 if
a > b and 0 otherwise:

aℓ−1(1−bℓ−1)+Aℓ−2aℓ−2(1−bℓ−2)+ · · ·+A0 ·a0 (1−b0) .

It can be checked that the above expression (which can be computed by an arithmetic circuit of depth
O(ℓ)=O(log p) consisting of O(ℓ) gates) equals 1 if a> b and 0 otherwise. Indeed, if aℓ−1 = 1 and bℓ−1 = 0,
then the first term evaluates to 1 and all other terms evaluate to 0, while if aℓ−1 = 0 and bℓ−1 = 1, then all
terms evaluate to 0. Otherwise, if aℓ−2 = 1 and bℓ−2 = 0, then the second term evaluates to 1 and all other
terms evaluate to 0, while if aℓ−2 = 0 and bℓ−2 = 1 then all terms evaluate to 0. And so on.

There has been considerable effort devoted to developing techniques to more efficiently simulate non-
arithmetic operations over fields of large prime order. Section 6.6.3 sketches an important result in this
direction, due to Bootle et al. [BCG+18].

6.5.4.2 How to Sort with a Non-deterministic Circuit

Recall that to check that a purported transcript for RAM M satisfies memory consistency, the transcript en-
tries must be reordered so that they are grouped by the memory cell read from or written to, with ties broken
by time. Below, we describe a method based on so-called routing networks that enable such reordering.

The use of routing networks to check memory consistency is conceptually involved, and typically yields
larger circuits than simpler alternatives discussed in Section 6.6.1, which uses Merkle trees, and Section
6.6.2, which uses fingerprinting techniques originally introduced in Section 2.1. The reader may skip this
section’s discussion of routing networks with no loss of continuity.

We cover routing networks both for historical context, and because the alternative transformations do not
actually yield a circuit C such that M(x) = y if and only if there exists a w satisfying C(x,w) = y. The Merkle-
trees approach yields a “computationally-sound” transformation. This means that even if M(x) ̸= y, there
will exist witnesses w such that C(x,w) = y, but such witnesses will be computationally infeasible to find—
doing so will require finding collisions in a cryptographic hash function. Meanwhile, the fingerprinting
techniques use a random field element r ∈ F to check memory-consistency. Even if M(x) ̸= y, for any
fixed r, it will be easy to find a witness w such that C(x,w) = y. Fingerprinting techniques are therefore
only useful in settings where the prover can be forced to “choose” the witness w before a random r is
selected. Fortunately, neither of the above issues with Merkle-hashing and fingerprinting turns out not to be
an obstacle to using such techniques in SNARK design.

Routing networks. A routing network is a graph with a designated set of T source vertices and a des-
ignated set of T sink vertices (both sets of the same cardinality) satisfying the following property: for any
perfect matching between sources and sinks (equivalently, for any desired sorting of the sources), there is
a set of node-disjoint80 paths that connects each source to the sink to which it is matched. Such a set of
node-disjoint paths is called a routing. The specific routing network used in C is derived from a De Bruijn
graph G. G consists of ℓ = O(logT ) layers, with T nodes at each layer. The first layer consists of the
source vertices, and the last layer consists of the sinks. Each node at intermediate layers has exactly two
in-neighbors and exactly two out-neighbors.

The precise definition of the De Bruijn graph G is not essential to the discussion here. What is important
is that G satisfies the following two properties.

80Two length-ℓ paths u1→ u2→ ·· ·→ uℓ and v1→ v2→ ··· → vℓ are node-disjoint if there does not exist a pair (i, j) ∈ [ℓ]× [ℓ]
such that ui = v j.
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• Property 1: Given any desired sorting of the sources, a corresponding routing can be found in O(|G|)=
O(T · logT ) time using known routing algorithms [Ben65, Wak68, Lei92, BSCGT13a].

• Property 2: The multilinear extension of the wiring predicate of G can be evaluated in polylogarithmic
time. By wiring predicate of G, we mean the Boolean function (analogous to the functions addi and
multi in the GKR protocol) that takes as input the labels (a,b,c) of three nodes in G, and outputs 1 if
and only if b and c are the in-neighbors of a in G.

Roughly speaking, Property 2 holds because in a De Bruijn graph, the neighbors of a node with label
v are obtained from v by simple bit shifts, which is a “degree-1 operation” in the following sense.
The function that checks whether two binary labels are bit-shifts of each other is an AND of pairwise
disjoint bit-equality checks. The direct arithmetization of such a function (replacing the AND gate
with multiplication, and the bitwise equality checks with their multilinear extensions) is multilinear.

In a routing of G, each node v other than the source nodes has exactly one in-neighbor in the routing—
we think of this in-neighbor as forwarding its packet to v—and each node v other than the sink nodes has
exactly one out-neighbor in the routing. Thus, a routing in G can be specified by assigning each non-source
node v a single bit bv that specifies which of v’s two in-neighbors in G is forwarding a packet to v.

To perform the sorting step, the circuit will take additional bits as non-deterministic input (i.e., as part
of the witness w), called routing bits, which give the bit-wise specification of a routing as just described.
To check memory consistency of a purported transcript, the circuit C sorts the (timestamp, list) pairs of the
transcript into memory order by implementing the routing. This means that for each node v in G, C contains
a “gadget” of logarithmically many gates. The gadget for v takes as input the two (timestamp, list) pairs and
the routing bit bv. Based on the routing bit, it outputs one of the two input pairs. In C, the gadget for v is
connected to the gadgets for its two in-neighbors in G. This ensures that the two inputs to v’s gadget in C
are the pairs output by v’s two in-neighbors in G. One thinks of each (timestamp, list) pair of the transcript
as a packet, and of v’s gadget outputting a (timestamp, list) pair as v forwarding the packet it receives in the
routing to the appropriate out-neighbor of v in G.

Putting Everything Together. For any RAM M running in time T , we have now sketched all of the
components of a circuit C of size O(T · polylog(T )) such that M(x) = y⇐⇒ there exists a w satisfying
C(x,w) = y. The witness w specifies a purported transcript for M. C first checks the transcript for time
consistency. It then uses a routing network to sort the transcript entries into memory order, meaning sorted
by the memory location read from or written to, with ties broken by time. Any routing computes some
reordering of the original transcript, and the circuit can check with O(T ·polylogT ) gates that the reordered
transcript is indeed in the prescribed order—this amounts to interpreting the (memory location, timestamp)
pair associated with each transcript entry as an integer, and performing one integer comparison for every
adjacent pair, to confirm that they are sorted in increasing order (see Section 6.5.4.1 for details of how to
implement integer comparisons in arithmetic circuits). Finally, given that the reordered transcript is in the
prescribed order, the circuit can easily check that every memory read returns the last value written to that
location.

Intuitively, when applying a succinct argument for circuit-satisfiability to C, the verifier is forcing the
prover not only to run the RAM M on input x, but also to produce a transcript of the execution and then
confirm via the circuit C that the transcript contains no errors. Fortunately, it does not require much more
work for the prover to produce the transcript and confirm its correctness then it does to run M on x in the
first place.
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The Wiring Predicates of C. The circuit C has a very regular wiring structure, with lots of repeated
structure. Specifically, its time-consistency-checking circuitry applies the same small sub-circuit (capturing
the transition function of the RAM) independently to every two adjacent (timestep, list) pairs in the time-
ordered transcript specified by the witness, and (after resorting the witness into memory order), the memory-
consistency-checking circuitry also applies a small sub-circuit independently to adjacent (timestamp, list)
pairs in the memory-ordered transcript to check that every memory read from a given location returns the
last value written to that location. That is, the parts of the circuit devoted to both time-consistency and
memory-consistency checking are data parallel in the sense of Section 4.6.7.

All told, it is possible to exploit this data parallel structure—and Property 2 of the routing network G
above, which ensures that the sorting circuitry also has a nice, regular wiring structure—to show that (a
slight modification of) the multilinear extensions ãddi and m̃ulti of C can be evaluated in polylogarithmic
time.

This ensures that if one applies the GKR protocol (in combination with a commitment scheme as de-
scribed in Section 6.5.2) that the verifier can run in time O(n+polylog(T )), without ever having to explicitly
enumerate over all gates of C. Moreover, the prover can generate the entire circuit C and the witness w, and
perform its part of the GKR protocol applied to C(x,w) in time O(T ·polylog(T )).

6.6 Alternative Transformations and Optimizations

The previous section gave a way to turn any RAM M with runtime T into a circuit C of size Õ(T ) such that
the output of M on input x equals y if and only if there exists a w such that C(x,w) = y. In this section, we
relax this requirement on C in one of two ways. First, in Section 6.6.1 we permit there to be values y ̸= M(x)
such that there exists a w satisfying C(x,w) = y, but we insist that if there is a polynomial-time prover
capable of finding a w satisfying C(x,w) = y′, then y = M(x). Satisfying this requirement is still sufficient
to ultimately obtain argument systems for RAM execution, by applying an argument system for circuit
satisfiability to C.81 Second, in Section 6.6.2, we permit prover and verifier to interact while performing the
transformation from M into C—the interaction can then be removed via the Fiat-Shamir transformation.

In both of these settings, we avoid the use of routing networks in the construction of C. This is desirable
because routing networks lead to noticeable concrete and asymptotic overheads in circuit size—routing T
items requires a routing network of size Ω(T logT ), which is superlinear in T .

6.6.1 Ensuring Memory Consistency via Merkle Trees

The point of using routing networks in C was to ensure memory consistency of the execution trace specified
by the witness. An alternative technique for ensuring memory consistency is to use Merkle trees, which are
covered later in this survey in Section 7.3.2.2. Roughly speaking, the idea is that C will insist that every
memory read in the transcript is immediately followed by “authentication information” that a polynomial-
time prover is only capable of producing if the value returned by the memory read is in fact the last value
written to that memory location.8283 This leads to a circuit C such that the only computationally tractable

81More precisely, the argument system must be an argument of knowledge. See Section 7.4 for details.
82Each write operation must also be accompanied by authentication information to enable appropriately updating the Merkle

tree. We omit details for brevity.
83A Merkle tree is an example of a cryptographic object called an accumulator, which is simply a commitment to a set that

furthermore supports succinct proofs of membership in the set. In this section, the relevant set is the (memory location, value) pairs
comprising the RAM’s memory at a given step of the RAM’s execution during which a memory read occurs. In some applications,
there can be concrete efficiency advantages to using accumulators other than Merkle trees [OWWB20].
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method of finding a satisfying assignment w for C is to provide an execution trace that indeed satisfies
memory consistency. That is, while there will exist satisfying assignments w for C that do not satisfy memory
consistency, finding such assignments w would require identifying collisions in a collision-resistant family
of hash functions. This technique can lead to very large circuits if there are many memory operations,
because each memory operation must be followed by a full authentication path in the Merkle tree, which
consists a sequence of cryptographic hash evaluations (the number of hash evaluations is logarithmic in the
size of the memory). All of these hash values must be included in the witness w, and the circuit C must
check that the hash evaluations are computed correctly, which requires the cryptographic hash function to
be repeatedly evaluated inside C. Cryptographic hash evaluations can require many gates to implement in
an arithmetic circuit. For this and related reasons, there have been significant efforts to identify collision-
resistant hash functions that are “SNARK-friendly” in the sense that they can implemented inside arithmetic
circuits using few gates [AAB+19, AGR+16, GKK+19, KZM+15b, KZM+15a, HBHW16, BSGL20]. For
machines M that perform relatively few memory operations, Merkle trees built with such SNARK-friendly
hash functions can be a cost-effective technique for checking memory consistency.

6.6.2 Ensuring Memory Consistency via Fingerprinting

Another technique for checking memory consistency is to use simple fingerprinting-based memory checking
techniques (recall that we discussed Reed-Solomon fingerprinting in Section 2.1). The circuit C resulting
from this procedure implements a randomized algorithm, in the following sense. In addition to public input
x and witness w, C takes a third input r ∈ F and the guarantee is the following: for any pair x,y,

• if M(x) = y then there exists a w such that for every r ∈ F such that C(x,w,r) = 1. Moreover, such a
w can be easily derived by any prover running M on input x.

• if M(x) ̸= y, then for every w, the probability over a randomly chosen r ∈ F that C(x,w,r) = 1 is at
most Õ(T )/|F|.

An important aspect of this transformation to be aware of is that, for any known r, it is easy for a cheating
prover to find a w such that C(x,w,r) = y. However, if r is chosen at random from F independently of w
(say, because the prover commits to w and only then is public randomness used to select r), then learning
that C(x,w,r) = y does give very high confidence that in fact M(x) = y. This is sufficient to combine the
transformation described below with the approach described in Section 6.5.2 to obtain a succinct argument
for proving that M(x) = y. Indeed, after the prover commits to w (or more precisely to the multilinear
extension w̃ of w, using a polynomial commitment scheme), the verifier can then select r at random, and the
prover can then run the GKR protocol to convince the verifier that C(x,w,r) = 1. The resulting interactive
protocol is public coin, so the interaction can be removed using the Fiat-Shamir transformation.

The idea of the randomized fingerprinting-based memory-consistency-checking procedure implemented
within the circuit C is the following. As we explain shortly, by tweaking the behavior of the machine M
(without increasing its runtime by more than a constant factor) it is possible to ensure the following key
property holds: a time-consistent transcript for M is also memory consistent if and only if the multiset of
(memory location, value) pairs written from memory equals the multiset of (memory location, value) pairs
read from memory. This property turns the problem of checking memory consistency into the problem of
checking whether two multisets are equal—equivalently, checking whether two lists of (memory location,
value) pairs are permutations of each other—and the latter can be solved with fingerprinting techniques.
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We now explain how to tweak the behavior of M so as to ensure the problem of checking memory-
consistency amounts to checking equality of two multisets, and then explain how to use fingerprinting to
solve this latter task.

Reducing memory-consistency-checking to multiset equality checking. Here is how to tweak M to ensure
that any time-consistent transcript for M is memory-consistent if and only if the multisets of (memory
location, value) pairs written vs. read from memory are identical. This technique dates to work of Blum et
al. [BEG+95] who referred to it as an offline memory checking procedure. At the start of the computation
(time step 0), we have M initialize memory by writing an arbitrary value to each memory location, without
preceding these initialization-writes with reads. After this initialization phase, suppose that we insist that
every time the machine M writes a value to a memory location, it precedes the write with a read operation
from the same location (the result of which is simply ignored by M), and every time M reads a value
from a memory location, it follows the read with a write operation (writing the same value that was just
read). Moreover, let us insist that every time a value is written to memory, M includes in the value the
current timestamp. Finally, just before M terminates, it makes a linear reading scan over every memory
location. Unlike all other memory reads by M, the reads during this scan are not followed with a matching
write operation. M also halts and outputs “reject” if a read ever returns a timestamp greater than current
timestamp.

With these modifications, if M does not output “reject” then the set of (memory location, value) pairs
returned by all the read operations equals the set of (memory location, value) pairs written during all the
write operations if and only if every write operation returns the value that was last written to that location.
Clearly these tweaks only increase M’s runtime by a constant factor, as the tweak turns each read operation
and each write operation of M into both a read and a write operation.

Multiset equality checking (a.k.a. permutation checking) via fingerprinting. Recall that in Section 2.1 we
gave a probabilistic procedure called Reed-Solomon fingerprinting for determining whether two vectors
a and b are equal entry-by-entry: a is interpreted as specifying the coefficients of a polynomial pa(x) =
∑

n
i=1 aixi over field F, and similarly for b, and the equality-checking procedure picks a random r ∈ F and

checks whether pa(r) = pb(r). The guarantee of this procedure is that if a = b entry-by-entry, then the
equality holds for every possible choice of r, while if a and b disagree in even a single entry i (i.e., ai ̸= bi),
then with probability at least 1−n/|F| over the random choice of r, the equality fails to hold.

To perform memory-checking, we do not want to check equality of vectors, but rather of multisets, and
this requires us to tweak to the fingerprinting procedure from Section 2.1. That is, the above reduction from
memory-consistency-checking to multiset equality checking produced two lists of (memory location, value)
pairs, and we need to determine whether the two lists specify the same set of pairs, i.e., whether they are
permutations of each other. This is different than determining whether the lists agree entry-by-entry.

To this end, let us interpret each (memory location, value) pair as a field element, via any arbitrary
injection of (memory location, value) pairs to F. This does require the field size |F| to be at least as large as
the number of possible (memory location, value) pairs. For example, if the memory has size, say, 264, and
values consist of 64 bits, it is sufficient for |F| to be at least 2128. Under this interpretation, we can think of
our task as follows. We are given two length-m lists of field elements a = (a1, . . . ,am) and b = (b1, . . . ,bm),
where m is the number of read and write operations performed by the machine M. We want to determine
whether the lists a and b are permutations of each other, i.e., whether for every possible field element z ∈ F,
the number of times z appears in list a equals the number of times that z appears in list b.

Here is a randomized algorithm that accomplishes this task. Interpret a as a polynomial pa whose roots
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are a1, . . . ,am (with multiplicity), i.e., define

pa(x) :=
m

∏
i=1

(ai− x),

and similarly

pb(x) :=
m

∏
i=1

(bi− x).

Now evaluate both pa and pb at the same randomly chosen input r ∈ F, and output 1 if and only if the
evaluations are equal. Clearly pa and pb are the same polynomial if and only if a and b are permutations of
each other. Hence, this randomized algorithm satisfies:

• if a and b are permutations of each other then this algorithm outputs 1 with probability 1.

• if a and b are not permutations of each other, then this algorithm outputs 1 with probability at most
m/|F|. This is because pa and pb are distinct polynomials of degree at most m and hence can agree at
at most m inputs (Fact 2.1).

We can think of pa(r) and pb(r) as fingerprints of the lists a and b that captures “frequency information”
about a and b (i.e., how many times each field element z appears in the two lists), but deliberately ignores
the order in which A and B are presented. A key aspect of this fingerprinting procedure is that it lends itself
to highly efficient implementation within arithmetic circuits. That is, given as input lists A and B of field
elements, along with a field element r ∈ F, an arithmetic circuit can easily evaluate pa(r) and pb(r). For
example, computing pa(r) amounts to subtracting r from each input ai ∈ a, and then computing the product
of the results via a binary tree of multiplication gates. This requires only O(m) gates and logarithmic
depth. Hence, this randomized algorithm for permutation checking can be efficiently implemented within
the arithmetic circuit C.

Historical Notes and Optimizations. Techniques for memory-consistency-checking closely related to
those described above were given in [ZGK+18] and also exploited in subsequent work [KPPS20]. Specifi-
cally, [ZGK+18] checks memory consistency of an execution trace for a RAM within a circuit by exploiting
permutation-invariant fingerprinting to check that claimed time-ordered and memory-ordered descriptions
of the execution trace are permutations of each other. While the fingerprints can be computed within the
circuit with O(T ) gates, this does not reduce total circuit size or prover runtime below O(T logT ).84 This
holds for two reasons. First, to compute a satisfying assignment for the circuit constructed in [ZGK+18],
the prover must sort the transcript based on memory location, and this takes O(T logT ) time. Second, there
is still a need for the circuit to implement comparison operations on timestamps associated with each mem-
ory operation, and [ZGK+18] uses Θ(logT ) many gates to implement each comparison operation bit-wise
inside the circuit-satisfiability instance (see the final paragraph of Section 6.5.4.1).

Both sources of overhead just described were addressed in two works [BCG+18, Set20]. Setty [Set20]
observes that (as described above in this section), the need for the prover to sort the transcript based on
memory location can be avoided by modifying the RAM as per the offline memory checking technique
of Blum et al. [BEG+95]. This does not in general avoid the need to perform comparison operations on
timestamps inside the circuit, because the modified RAM constructed by Blum et al. [BEG+95] requires

84 [ZGK+18] asserts a prover running in time O(T ), but this assertion hides a factor that is linear in the word length of the
RAM. [ZGK+18] considers this to be a constant such as 32 or 64, but in general this word length must be Ω(logT ) to write down
timestamps and index into memory, if the memory has size Ω(T ).
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checking that the timestamp returned by every read operation is smaller than the timestamp at which the
read operation occurs. However, there are contexts in which such comparison operations are not necessary
(see, e.g., Section 16.2), and this implies O(T )-sized circuits in such contexts.85 Even outside such contexts,
work of Bootle et al. [BCG+18] (which we sketch in Section 6.6.3 below) give a technique for reducing
the amortized gate-complexity of performing many integer comparison operations inside a circuit over a
field prime order. Specifically, they shows how to perform O(T ) comparison operations on integers of
magnitude poly(T ) using O(T ) gates in arithmetic circuits over any prime-order field Fp of size at least
T .86 In summary, both sources of “superlinearity” in the size of the memory-consistency-checking circuit
and prover runtime can be removed using the techniques of [BCG+18,Set20], reducing both circuit size and
prover runtime to O(T ).

Setty [Set20] and Campanelli et al. [CFQ19] observe that this fingerprinting procedure can be verified ef-
ficiently using optimized variants of succinct arguments derived from the GKR protocol [Tha13,WTS+18],
because pA(r) can be computed via a small, low-depth arithmetic circuit with a regular wiring pattern, that
simply subtracts r from each input and multiplies the results via a binary tree of multiplication gates. This
ensures that the circuit-satisfiability instances resulting from the transformation above can be efficiently
verified via such arguments.

Additional Applications of Fingerprinting-based Permutation Checking. The above fingerprinting
procedure for checking whether two vectors are permutations of each other has a long history in algorithms
and verifiable computing and has been rediscovered many times. It was introduced by Lipton [Lip89] as a
hash function that is invariant to permutations of the input, and later applied in the context of interactive and
non-interactive proofs with small-space streaming verifiers [Lip90, CCMT14, SLN09].

Permutation-invariant fingerprinting techniques were also applied to give zero-knowledge arguments
that two encrypted vectors are permutations of each other [Nef01,GI08,Gro10b,BG12]. Such zero-knowledge
arguments are also called shuffle arguments, and are directly applicable to construct an anonymous routing
primitive called a mix network, a concept introduced by Chaum [Cha81]. The ideas in these works were
in turn built upon to yield SNARKs for circuit satisfiability with proofs that consist of a constant number
of field or group elements [GWC19, BCC+16, MBKM19]. Roughly speaking, these works use variants of
permutation checking to ensure that a purported circuit transcript assigns consistant values to all output
wires of each gate, i.e., to confirm that the transcript respects the wiring pattern of the circuit. Other uses of
permutation-invariant fingerprinting in the context of zero-knowledge proofs were given in [SAGL18].87

Additional Discussion. We remark that there are other permutation-invariant fingerprinting algorithms
that do not lend themselves to efficient implementation within arithmetic circuits, and hence are not useful
for transforming an instance of RAM execution to an instance of arithmetic circuit satisfiability. An instruc-
tive example is as follows. Let F be a field of prime order, and suppose that it is known that all entries of
the lists a and b are positive integers with magnitude at most B, where B≪ |F|. Then we can define the

85Specifically, if the memory access pattern of the RAM is independent of the input, then the use of timestamps and the need to
perform comparisons on them can be eliminated using a pre-processing phase requiring time O(T ). See Section 16.2 for details.

86The techniques of [BCG+18] build on permutation-invariant fingerprinting, and hence are interactive.
87 [SAGL18], like earlier work [CDVD+03], uses a collision-resistant permutation-invariant hash function to check multiset

equality, rather than the simple (non-collision-resistant) permutation-invariant fingerprinting function described in this section.
Such hash functions are secure against polynomial time cheating provers even when the prover knows the hash function being used
in the permutation-checking procedure and can choose the inputs to the procedure.
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polynomial qa(x) over F via

qa(x) :=
m

∑
i=1

xai ,

and similarly

qb(x) :=
m

∑
i=1

xbi .

Clearly qa and qb are polynomials of degree at most B, and they satisfy properties analogous to pa and pb,
namely:

• if a and b are permutations of each other then qa(r) = qb(r) with probability 1 over a random choice
r ∈ F.

• if a and b are not permutations of each other, then qa(r) = qb(r) with probability at most B/|F| ≪ 1.
This is because qa and qb are distinct polynomials of degree at most B and hence can agree at at most
B inputs (Fact 2.1).

However, given as input the entries of a and b, interpreted as field elements in F, an arithmetic circuit
cannot efficiently evaluate qa(r) or qb(r), as this would require raising r to the power of input entries, which
is not a low-degree operation.

6.6.3 Efficiently Representing Non-Arithmetic Operations Over Large Prime-Order Fields

Recall from Section 6.5.4.1 that when operating over a field of large prime order p, it is convenient to inter-
pret field elements as integers in [0, p− 1] or [−⌊p/2⌋,⌊p/2⌋], as then integer addition and multiplication
corresponds directly to field addition and multiplication, up to overflow issues. This means (again, ignoring
overflow issues) integer addition and multiplication operations can be implemented with a single gate in the
corresponding circuit satisfiability instance.

Non-arithmetic operations on integer values are more challenging to implement inside an arithmetic
circuit. Section 6.5.4.1 described a straightforward approach, which broke field elements into their binary
representation, and computed the non-arithmetic operations by operating over these bits. The reason that
this bit-decomposition approach is expensive is that it transforms an integer (which for a Random Access
Machine M is a primitive data type, consuming just one machine register) into at least log2 p field elements,
and hence at least log2 p gates. In practice, log2 p might be roughly 128 or 256, which is a very large
constant. In theory, since we would like to be able to represent timestamps via a single field element, we
typically think of log2 p as at least Ω(logT ), and hence superconstant. From either perspective, turning a
single machine operation such as integer comparison into (at least) 256 gates is painfully expensive.

Ideally, we would like to replace the Ω(log p) cost of the bit-decomposition approach to implement-
ing these operations inside a circuit with a constant independent of p. Bootle et al. [BCG+18] develop
techniques for achieving this in an amortized sense. That is, they showed how to simulate non-arithmetic
operations over integers (e.g., integer comparisons, range queries, bit-wise operations, etc.) by arithmetic
circuit-satisfiability instances working over a field of large prime order. Before providing details, here is
the rough idea. The bit-decomposition approach represents integers in base-b for b = 2, and this means
that logarithmically many field elements are required to represent a single integer. The convenient feature
about using base-2 was that it was easy to check that a list of field elements represented a valid base-2 repre-
sentation; in particular, that every field element in the list was either 0 or 1. This is because the low-degree
expression x 7→ x2−x equals 0 if and only if x is in {0,1}. Instead, Bootle et al. represent integers y∈ [0,2W ]
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in a far larger base, namely base b = 2W/c for some specified integer constant c > 1. This has the benefit
that y is represented via only c field elements, rather than W field elements. However, working over such
a large base b means that there is no longer a degree-2 polynomial q(x) that evaluates to 0 if and only if x
is in {0,1, . . . ,b−1}—the lowest-degree polynomial q with this property has degree b. Bootle et al. work
around this issue by turning the task of checking whether a field element x is in the set {0,1, . . . ,b− 1}
into a table lookup, and then giving an efficient procedure for performing such lookups inside an arithmetic
circuit satisfiability instance. That is, conceptually, they have the circuit initialize a table containing the
values {0,1, . . . ,b− 1}, and then have the witness include a proof that all values appearing in the base-b
decomposition of any integer y arising in the computation reside in the table. As we will see, the number
of gates required to initialize the table and specify and check the requisite lookup proof is roughly Õ(b), so
a key point is that c will be chosen to be a large enough constant so that b is smaller than the runtime T of
the Random Access Machine M whose execution the circuit is simulating. This ensures constant amortized
cost of all the O(T ) decomposition operations that the circuit has to perform. Details follow.

Let 2W be a bound on the magnitude of integers involved in each non-arithmetic operation (assume 2W

is significantly smaller than the size of the prime order field over which the circuits we generate will be
defined), and let T be an upper bound on the number of operations to be simulated. In the context of Section
6.6.2, T is a bound on the runtime of the Random Access Machine, and W is the word-size. This is because,
if a register of the RAM contains W bits, then the RAM is incapable of representing integers larger than 2W

without resorting to approximate arithmetic. In this context, one would need to choose W at least as large as
log2 T to ensure that a timestamp can be stored in one machine word.

As sketched above, Bootle et al. effectively reduces each non-arithmetic operation to a lookup into a
table of size 2W/c, where c ≥ 1 is any integer parameter. For example, if W = ℓ log2 T for some constant
ℓ≥ 1, then setting c = ℓ/4 ensures that the lookup table has size at most T 1/4. The lookup table is initialized
to contain a certain set of 2W/c pre-determined values (i.e., the values are independent of the input to the
computation). In the technique of [BCG+18], the length of the witness w of C grows linearly in c. This
is because, in order to keep the table to size 2W/c, each W -bit word of memory is represented via c field
elements. That is, each W -bit word is broken into c blocks of length W/c, ensuring that each block can
only take on 2W/c possible values. This means that if a transcript for a time-T computation consists of, say,
k ·T words of memory—because each time step of the transcript requires specifying k register values—the
transcript will be represented by k · c ·T field elements in the witness for C.

Before describing the reduction of Bootle et al. from non-arithmetic operations to lookups in a pre-
determined table, we explain how to efficiently verify a long sequence of lookup operations.

Checking many lookup operations efficiently. Bootle et al. develop a technique for checking that many val-
ues all reside in the lookup table. The technique builds on the permutation-invariant fingerprinting function
of Section 6.6.2. Specifically, to show that a sequence of values { f1, . . . , fN} only contains elements from a
lookup table containing values {s1, . . . ,sB} where B ≤ 2W/c is the size of the lookup table, it is enough
to show that there are non-negative integers e1, . . . ,eB such that the polynomials h(X) := ∏

N
i=1(X − fi)

and q(X) := ∏
B
i=1(X − si)

ei are the same polynomial. To establish this, the witness will specify the bit-
representation of the exponents e1, . . . ,eB (each ei ∈ {0,1}log2 N), and the circuit confirms that h(r) = q(r)
for an r ∈ Fp randomly chosen by the verifier after the prover commits to the witness. As usual, Fact 2.1
implies that if this check passes then up to soundness error N/p, h and q are the same polynomial. A crucial
fact that enables the circuit to efficiently implement this check is that q(r) can be computed by an arithmetic
circuit using O(B log(N)) gates, as

B

∏
i=1

log2 N

∏
j=1

(r− si)
2 j·ei, j .
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In summary, this lookup table technique permits Bootle et al. to implement a sequence of O(N) non-
arithmetic operations inside an arithmetic circuit-satisfiability instance using just O(N +B logN) gates. So
long as N = O(T ) and B = 2W/c ≤ N/ logN, this is O(T ) operations in total.

Gabizon and Williamson [GW20] describe a variant transformation they call plookup that reduces the
number of gates to O(N), which is an improvement by a logarithmic factor if B = Θ(N). To give an idea of
how plookup works, we sketch a simplified variant due to Cairo that works under two assumptions: first, that
each value si appearing in the lookup table appears at least once in the sequence { f1, . . . , fN}, and second
that the elements {s1, . . . ,sB} cover a contiguous interval such as {1,2, . . . ,B}, i.e., si = s1 + i− 1 for all
i = 1, . . . ,B.

Under these assumptions, the witness can simply consist of a sequence {w1, . . . ,wN} of field elements
claimed to equal { f1, . . . , fN} in sorted order, i.e., such that:

• {w1, . . . ,wN} is a permutation of { f1, . . . , fN}.

• When w1, . . . ,wN are interpreted as integers,

s1 = w1 ≤ w2 ≤ ·· · ≤ wN = sB. (6.1)

The circuit can apply permutation-invariant fingerprinting to confirm (with overwhelming probability) that
the first bullet point above holds. To confirm that Equation (6.1) holds, the circuit checks that the following
equalities hold:

• w1 = s1.

• wN = sB.

• For each i = 2, . . . ,N, (wi−wi−1) · (wi− (wi−1 +1)) = 0.

Here, the constraints captured in the final bullet point ensure that as i ranges from 1 up to N, the wi values
start at s1 and proceed to sB in a non-decreasing manner. Under the two assumptions made above, this
is equivalent to checking that for each i > 1, either wi = wi−1 or wi = wi−1 + 1, which is exactly what is
captured by the quadratic constraint in the final bullet point.

Reducing non-arithmetic operations to lookups. To give a sense of the main ideas of the reduction of
[BCG+18], we sketch the reduction in the context of two specific non-arithmetic operations: range proofs
and integer comparisons.

For simplicity, let us assume that c = 2. To confirm that a field element v is in the range [0,2W ], one can
have the witness specify v’s unique representation as a pair of field elements (a,b) such that v = 2W/2 ·a+b
and a,b ∈ {0, . . . ,2W/2−1}. The circuit then just checks that indeed v = 2W/2 ·a+b and that a and b both
reside in a lookup table of size 2W/2 initialized to store all field elements y between 0 and 2W/2−1.

As another example, doing an integer comparison reduces to a range proof. Indeed, to prove that a > c
when a and c are guaranteed to be in [0,2W ], it is enough to show that the difference a−c is positive, which
is a range proof described above, albeit under the weaker guarantee that the input v = a− c to the range
proof is in [−2W ,2W ] rather than [0,2W ].
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6.6.4 CPU-like vs. ASIC-like program-to-circuit transformations

This chapter described frontends that produce circuit-satisfiability instances that essentially execute step-by-
step some simple CPU. The idea is that frontend designers will specify a set of “primitive operations” (also
known as an instruction set) analogous to assembly instructions for real computer processors. Developers
who want to use the frontend will either write “witness-checking programs” directly in the assembly lan-
guage or else in some higher-level language, and have their programs automatically compiled into assembly
code and then transformed into an equivalent circuit-satisfiability instance by the front-end.

At the time of writing, several prominent projects are taking this CPU-oriented approach to front-end
design. For example, StarkWare’s Cairo [GPR21] is a very limited assembly language in which assembly
instructions roughly permit addition and multiplication over a finite field, function calls, and reads and writes
to an immutable (i.e., write-once) memory. The Cairo CPU is a von Neumann architecture, meaning that
the circuits produced by the frontend essentially take a Cairo program as public input and “run” the program
on the witness. The Cairo language is Turing Complete—despite its limited instruction set, it can simulate
more standard architectures, although doing so may be expensive. Another example project is called RISC-
Zero88, which targets a CPU called the so-called RISC-V architecture89, an open-source architecture with a
rich software ecosystem that is growing in popularity.

For sufficiently simple instruction sets, the front-end techniques described in this chapter produce cir-
cuits over fields of large prime order, with O(T ) gates, where T is the runtime of the CPU whose execution
we wish to verify. This is clearly optimal up to a constant factor. Moreover, it is possible to ensure that the
wiring of the circuit is sufficiently regular that the verifier in argument systems derived from (for example)
the GKR protocol can run in time polylogarithmic in T , i.e., the verifier need not materialize the entire
circuit itself. However, these transformations can still be expensive in practice.

“CPU emulator” projects such as RISC-Zero and Cairo produce a single circuit that can handle all pro-
grams in the associated assembly language. Alternative approaches are “ASIC-like,” producing different
circuits for different programs [BFR+13, WSR+15, ZGK+18]. This ASIC-like approach can yield smaller
circuits for some programs, especially when the assembly instruction that the program executes at each
timestep does not depend on the program’s input. For example, it can potentially avoid frontend overhead
entirely for straight-line programs such as naive matrix multiplication (Figure 6.1). But the ASIC approach
may be limited; for example, at the time of writing, it’s not known how to use it to support loops without pre-
determined iteration bounds. It seems likely that additional progress will be made to improve the generality
of ASIC-like approaches, as well as the efficiency of CPU emulator approaches.

6.7 Exercises

Exercise 6.1. Describe a layered arithmetic circuit of fan-in three that takes as input a matrix A ∈ {0,1}n×n,
interprets A as the adjacency matrix of a graph G, and outputs the number of triangles in G. You may assume
that n is a power of three.

Exercise 6.2. Describe a layered arithmetic circuit of fan-in two that, given as input an n×n matrix A with
entries from some field F, computes ∑i, j,k,ℓ∈{1,...,n}Ai, j ·Ak,ℓ. The smaller your circuit is, the better.

Exercise 6.3. Fix an integer k > 0. Assume that k is a power 2 and let p > k be a large prime number.
Describe an arithmetic circuit of fan-in 2 that takes as input n elements of the field Fp, a1,a2, . . . ,an, and
outputs the n field elements ak

1,a
k
2, . . . ,a

k
n.

88https://github.com/risc0/risc0
89https://riscv.org/
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What is the verifier’s asymptotic runtime when the GKR protocol is applied to this circuit (express your
answer in terms of k and n)? Would the verifier be interested in using this protocol if n is very small (say, if
n = 1)? What if n is very large?

Exercise 6.4. Let p > 2 be prime. Draw an arithmetic circuit C over Fp that takes as input one field element
b ∈ Fp and evaluates to 0 if and only if b ∈ {0,1}.

Exercise 6.5. Let p = 11. Draw an arithmetic circuit C over Fp that takes as input one field element a
followed by four field elements b0,b1,b2,b3, and such that all output gates of C evaluate to 0 if and only if
(b0,b1,b2,b3) is the binary representation of a. That is, bi ∈ {0,1} for i = 1, . . . ,4, and a = ∑

3
i=0 bi ·2i.

Exercise 6.6. Let p = 11. Let x = (a,b) consist of two elements of the field Fp. Draw an arithmetic circuit
satisfiability instance that is equivalent to the conditional a ≥ b. That is, interpreting a and b as integers in
{0,1, . . . , p−1}, the following two properties should hold:

• a≥ b =⇒ there exists a witness w such that evaluating C on input (x,w) produces the all-zeros output.

• a < b =⇒ there does not exist a witness w such that evaluating C on input (x,w) produces the all-zeros
output.

Additional Exercises. The interested reader can find a sequence of additional exercises on front ends
at https://www.pepper-project.org/tutorials/t3-biu-mw.pdf. These exercises discuss transforming computer
programs into equivalent R1CS-satisfiability instances, a generalization of arithmetic circuit-satisfiability
that we discuss further in Section 8.4.
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Chapter 7

A First Succinct Argument for Circuit
Satisfiability, from Interactive Proofs

Arguments for Circuit-SAT. Recall from Section 6.5.1 that in the arithmetic circuit satisfiability problem,
a designated circuit C takes two inputs, x and w. The first input x is public and fixed, i.e., known to both
the prover and verifier. The second input w is often called the witness, or sometimes the non-deterministic
input or auxiliary input. Given the first input x and output(s) y, the prover in an argument system for circuit-
satisfiability wishes to establish that there exists a witness w such that C(x,w) = y.

In Section 6.5 we saw an efficient way to turn any computer program into an equivalent instance of
the arithmetic circuit satisfiability problem. Roughly, we showed that the problem of checking whether a
Random Access Machine M taking at most T steps on an input of size x produces output y can be reduced
to a circuit satisfiability instance (C,x,y), where C has size close to T and depth close to O(logT ). That is,
M outputs y on x if and only if there exists a w such that C(x,w) = y.

This transformation is only useful in the context of interactive proofs and arguments if we can design
efficient proof systems for solving instances of circuit satisfiability. In this section, we will see our first
example of such an argument system, by combining the GKR protocol with a cryptographic primitive called
a polynomial commitment scheme, in a manner that was already outlined in detail in Section 6.5.2. The poly-
nomial commitment scheme we describe in this chapter is conceptually appealing but highly impractical;
more practical polynomial commitment schemes will be covered later in this manuscript.

Specifically, the polynomial commitment scheme in this section combines a technique called Merkle-
hashing with a protocol called a low-degree test. Low-degree tests themselves tend to be very simple pro-
tocols, though the analysis showing that they work is very complicated and omitted from this survey. More
practical commitments that we will see in Chapter 10 replace the low-degree test with more efficient inter-
active variants—the interaction can then be removed via the Fiat-Shamir transformation. Other polynomial
commitments based on very different techniques are covered in Chapters 14-16.

Arguments of Knowledge and SNARKs. Arguments for circuit satisfiability are particularly useful when
they satisfy an enhanced soundness property called knowledge-soundness. Informally, this means that the
prover establishes not only that there exists a witness w such that C(x,w) = y, but in fact that the prover
knows such a w.

Knowledge-soundness can be a meaningful notion even when standard soundness is not. For example,
suppose the prover and verifier agree on a cryptographic hash function h and hash value y, and the prover
claims to know a w such that h(w) = y. The prover can establish this by applying a knowledge-sound
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argument for circuit-satisfiability to a circuit C that takes w as input and computes h(w).
An argument satisfying standard soundness, which merely guarantees the existence of a witness w such

that C(w) = y, would be useless in this context. This is because cryptographic hash functions are typically
surjective, meaning for any y there will exist many pre-images w. Accordingly, the trivial proof system
where the verifier always accepts satisfies standard soundness in this context, but not knowledge-soundness.

Knowledge-sound arguments can be particularly useful when they are non-interactive, meaning the proof
is just a static string that is accepted or rejected by the verifier, and succinct, meaning that the proofs are
very short. Such arguments are called SNARKs. In Section 7.4, we explain that the succinct arguments we
give in this chapter are in fact SNARKs.

7.1 A Naive Approach: An IP for Circuit Satisfiability

A naive way to use the GKR protocol to solve circuit satisfiability is to have the prover explicitly send to
the verifier the witness w satisfying C(x,w) = y, and then running the GKR protocol to check that indeed
C(x,w) = y. The problem with this simple approach is that in many settings w can be very large. For
example, in the transformation from Section 6.5, the witness w is supposed to be a transcript of M’s entire
execution on input x, and hence w has size at least T . This means that in the time that the verifier would take
to read the whole witness, the verifier could have run M on x without any help from the prover.

7.2 Succinct Arguments for Circuit Satisfiability

If an argument system for circuit satisfiability avoids the above bottleneck of sending the entire witness to
the verifier, then it is called succinct. Formally, we say that an argument system for circuit satisfiability is
succinct if the total communication is sublinear in the size of the witness |w|.90 Succinctness is important
for a variety of reasons:

• Shorter proofs are always better. For example, in some applications to blockchains, proofs may be
stored on the blockchain permanently. If proofs are long, it drastically increases the global storage
requirements of the blockchain. For many (but not all) argument systems, shorter proofs also result in
faster verification.

• In some applications, witnesses are naturally large. For example, consider a hospital that publishes
cryptographic hash h(w) of a massive database w of patient records, and later wants to prove that it
ran a specific analysis on w. In this case, the witness is the database w, the public input x is the hash
value h(w), and the circuit C should both implement the analysis of w and “check” that h(w) = x.

• Efficient transformations from computer programs to circuit satisfiability often produce circuits with
very large witnesses (see Section 6.5).

The coming chapters will describe a variety of approaches to obtaining succinct arguments.91 This
section will cover one specific approach.

90Here, sublinear in |w| means o(|w|), i.e., any expression that asymptotically is much smaller than the witness length. This use
of the term “succinct” is slightly nonstandard, as many works reserve the term succinct for any proof or argument systems in which
the total communication is polylogarithmic (or even logarithmic) in the witness length (or even in the circuit size). Some others use
succinctness more informally to refer broadly to argument systems with short proofs.

91There is strong evidence that succinct interactive proofs (as opposed to arguments) for circuit satisfiability do not ex-
ist [BHZ87, PSSV07, GVW02, Wee05]. For example, it is known [GVW02] that interactive proofs for circuit satisfiability cannot
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7.3 A First Succinct Argument for Circuit Satisfiability

7.3.1 The Approach

The approach of this section is to “simulate” the trivial application of the GKR protocol to circuit satisfia-
bility described in Section 7.1, but without requiring the prover to explicitly send w to the verifier. We will
accomplish this by using a cryptographic primitive called a polynomial commitment scheme. The idea of
combining the GKR protocol with polynomial commitment schemes to obtain succinct arguments was first
put forth by Zhang et al. [ZGK+17a]. We cover polynomial commitment schemes with state-of-the-art con-
crete efficiency in Sections 10.4.4 and 10.5, and in Chapter 14. In this section, we informally introduce the
notion of polynomial commitment schemes and sketch a conceptually simple (but impractical) polynomial
commitment scheme based on low-degree tests and Merkle trees.

Cryptographic Commitment Schemes. Conceptually, cryptographic commitment schemes can be de-
scribed via the following metaphor. They allow the committer to take some object b (b could be a field
element, vector, polynomial, etc.) place b in a box and lock it, and then send the locked box to a “verifier”.
The committer holds on to the key to the lock. Later, the verifier can ask the committer to open the box,
which the committer can do by sending the verifier the key to the lock. Most commitment schemes satisfy
two properties: hiding and binding. In the metaphor, hiding means that the verifier can not “see inside”
the locked box to learn anything about the object within it. Binding means that once the box is locked and
transmitted to the verifier, the committer cannot change the object within the box. We provide a far more
detailed and formal treatment of cryptographic commitment schemes much later in this survey, in Section
12.3, and of polynomial commitment schemes in particular at the start of Chapter 14.

Polynomial Commitment Schemes. Roughly speaking, a polynomial commitment scheme is simply a
commitment scheme in which the object being committed to is (all evaluations of) a low-degree polynomial.
That is, a polynomial commitment scheme allows a prover to commit to a polynomial w̃ satisfying a specified
degree bound, and later reveal w̃(r) for a point r of the verifier’s choosing. Even though in the commitment
phase the prover does not send all evaluations of w̃ to the verifier, the commitment still effectively binds
the prover to a specific w̃. That is, at a later time, the verifier can ask the prover to reveal w̃(r) for any
desired r of the verifier’s choosing, and the prover is effectively forced to reveal w̃(r) for a fixed polynomial
w̃ determined at the time of the original commitment. In particular, the prover is unable to choose the
polynomial w̃ to depend on the query point r, at least not without breaking the computational assumption on
which security of the commitment scheme is based.

Combining Polynomial Commitment Schemes and the GKR Protocol. When applying the GKR proto-
col to check that C(x,w) = y, the verifier does not need to know any information whatsoever about w until
the very end of the protocol, when (as explained in Section 7.3.2.1 below) the verifier only needs to know
w̃(r) for a randomly chosen input r.

So rather than having the prover send w in full to the verifier as in Section 7.1, we can have the prover
merely send a cryptographic commitment to w̃ at the start of the protocol. The prover and verifier can then
happily apply the GKR protocol to the claim that C(x,w) = y, ignoring the commitment entirely until the
very end of the protocol. At this point, the verifier needs to know w̃(r). The verifier can force the prover to
reveal this quantity using the commitment protocol.

have communication cost that is logarithmic in the witness length unless coNP⊆ AM, and this is widely believed to be false (i.e.,
it is not believed that there are efficient constant-round interactive proofs to establish that a circuit is unsatisfiable). Similar, though
quantitatively weaker, surprising consequences would follow from the existence of interactive proofs for circuit satisfiability with
sublinear (rather than logarithmic) communication cost.
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Because the polynomial commitment scheme bound the prover to a fixed multilinear polynomial w̃, the
soundness analysis of the argument system is essentially the same as if the prover had sent all of w explicitly
to the verifier at the start of the protocol as in Section 7.1 (see Section 7.4 for additional details of how one
formally analyzes the soundness of this argument system).

7.3.2 Details

7.3.2.1 What The GKR Verifier Needs to Know About The Witness

In this subsection, we justify the assertion from Section 7.3.1 that the only information the verifier needs
about w in order to apply the GKR protocol to check that C(x,w) = y is w̃(r1, . . . ,rlogn).

Let z denote the concatenation of x and w. Let us assume for simplicity throughout this section that x
and w are both of length n, so that each entry of z can be assigned a unique label in {0,1}1+logn, with the ith
entry of x assigned label (0, i), and the ith entry of w assigned label (1, i).

A key observation is that when applying the GKR protocol to check that C(z) = y, the verifier doesn’t
need to know the exact value of z. Rather, the verifier only needs to know z̃(r0, . . . ,rlogn) at a single, randomly
chosen input (r0, . . . ,rlogn). Moreover, the verifier doesn’t even need to know z̃(r) until the very end of the
protocol, after the interaction with the prover has finished. We now explain that in order to calculate z̃(r), it
suffices for the verifier to know w̃(r1, . . . ,rlogn).

It is straightforward to check that

z̃(r0,r1, . . . ,rlogn) = (1− r0) · x̃(r1, . . . ,rlogn)+ r0 · w̃(r1, . . . ,rlogn). (7.1)

Indeed, the right hand side is a multilinear polynomial in (r0,r1, . . . ,rlogn) that evaluates to z(r0, . . . ,rlogn)
whenever (r0, . . . ,rlogn) ∈ {0,1}1+logn.92 By Fact 3.5, the right hand side of Equation (7.1) must equal the
unique multilinear extension of z.

Equation (7.1) implies that, given w̃(r1, . . . ,rlogn), the verifier can evaluate z̃(r0, . . . ,rlogn) in O(n) time,
since the verifier can evaluate x̃(r1, . . . ,rlogn) in O(n) time (see Lemma 3.8).

In summary, the GKR protocol has the (a priori) amazing property that in order for the verifier to apply it
to a known circuit C on input z = (x,w) ∈ Fn×Fn, the verifier does not need to know anything at all about
w other than a single field element, namely a single evaluation of w̃. Moreover, the verifier doesn’t even
need to know this single field element until the very end of the protocol, after the entire interaction with the
prover has terminated.

7.3.2.2 A First (Relaxed) Polynomial Commitment Scheme

There are a number of ways to design polynomial commitment schemes. In this section, we describe a
simple, folklore commitment scheme (it was also explicitly proposed by Yael Kalai [Kal17]). This scheme
is impractical owing to a large prover runtime (see the paragraph on “Costs of this succinct argument system”
later in this section), but it provides a clean and simple introduction to cryptographic commitment schemes.
We will see (much) more efficient examples of polynomial commitment schemes later in the survey.93

92To see that the latter statement holds, observe that the right hand side of Equation (7.1) evaluates to x̃(r1, . . . ,rlogn) when
r0 = 0 and to w̃(r1, . . . ,rlogn) and when r0 = 1. Since x̃ and w̃ extend x and w respectively, this means that the right hand side
extends the concatenated input (x,w).

93In particular, practical argument systems have replaced low-degree tests with interactive variants that have far superior concrete
efficiency (see Sections 10.4.4 and 10.5); the interaction can then be removed from the argument via the Fiat-Shamir transformation.
For this reason, we do not cover low-degree tests or their analysis in detail in this survey.
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To be more precise, the scheme we give here is not a genuine polynomial commitment scheme, because
it only binds the prover to a function that is close to a polynomial. We call this a relaxed polynomial
commitment scheme. As we will see, even this relaxed guarantee is enough to transform the GKR protocol
into a succinct argument for circuit-satisfiability.

The scheme makes essential use of two important concepts: Merkle Trees and low-degree tests.

Merkle Trees. A Merkle tree [Mer79] (sometimes also called a hash tree) can be used to design a string-
commitment scheme, which allows a sender to send a short commitment to a string s ∈ Σn for any finite
alphabet Σ.94 Later, the sender can efficiently reveal the value of any entries of s that are requested by the
receiver.

Specifically, a Merkle tree makes use of a collision-resistant hash function h mapping inputs to {0,1}κ

where κ is a security parameter that in practice is typically on the order of several hundred.9596

The leaves of the tree are the symbols of a string s, and every internal node of the tree is assigned the
hash of its two children. Figure 7.1 provides a visual depiction of a hash tree.

One obtains a string-commitment protocol from a Merkle tree as follows. In the commitment step, the
sender commits to the string s by sending the root of the hash-tree.

If the sender is later asked to reveal the ith symbol in s, the sender sends the value of the ith leaf in the
tree (i.e., si), as well as the value of every node v along the root-to-leaf path for si, and the sibling of each
such node v. We call all of this information the authentication information for si. The receiver checks that
the hash of every two siblings sent equals the claimed value of their parent.97

Since the tree has depth O(logn), this translates to the sender sending O(logn) hash values per symbol
of s that is revealed.

The scheme is binding in the following sense. For each index i, there is at most one value si that the
sender can successfully reveal without finding a collision under the hash function h. This is because, if the
sender is able to send valid authentication information for two different values si and s′i, then there must
be at least one collision under h along the root-to-leaf path connecting the root to the ith leaf, since the
authentication information for both si and s′i result in the same root hash value, but differ in at least one leaf
hash value.

A (relaxed) polynomial commitment scheme from a Merkle tree? One could attempt to obtain a poly-
nomial commitment scheme directly from a Merkle tree as follows. To have the prover P commit to a
polynomial p, P could Merkle-commit to the string consisting of all evaluations of the polynomial, i.e.,
p(ℓ1), . . . , p(ℓN) where ℓ1, . . . , ℓN is an enumeration of all possible inputs to the polynomial. This would

94Many treatments of Merkle trees use the phrase vector commitment rather than string commitment. We use the phrase string
commitment in this section to clarify that the alphabet Σ need not be numerical in nature, but rather can be any finite set.

95For example, SHA-3 allows for several output sizes, from as small as 224 bits to as large 512 bits.
96As discussed in Section 5.1, cryptographic hash functions such as SHA-3 or BLAKE3 are designed with the goal of ensuring

that they “behave like” truly random functions. In particular, for such cryptographic hash functions it is typically assumed that the
fastest way to find a collision is via exhaustive search, i.e., randomly choosing inputs at which to evaluate the hash function until a
collision is found. If the hash function were a truly random function mapping to range {0,1}κ , then by the birthday paradox, with
high probability roughly

√
2κ = 2κ/2 evaluations must be performed before exhaustive search finds a collision. This means that

for security against attackers running in time, say, 2128, the output size of the hash function should consist of at least κ = 256 bits.
Obtaining security against attackers running in time 2λ is often referred to by saying the primitive “achieves λ bits of security”, and
λ is called the security parameter (see Section 5.3.1). Quantum algorithms are in principle capable of finding collisions in random
functions with codomain {0,1}κ in time 2κ/3 via a combination of Grover’s algorithm and random sampling [BHT98], meaning
that κ should be set larger by a factor of 3

2 to achieve security against the same number of quantum rather than classical operations.
97In fact, it is unnecessary to include in the authentication information the hash values for the nodes along the root-to-leaf path,

as for each such node the receiver can infer its claimed values by hashing its two children.

111



a c

m1=
H(a, c)

o m

m2 =
H(o, m)

m i

m3 =
H(m, i)

t t

m4 =
H(t, t)

e d

m5 =
H(e, d)

s t

m6 =
H(s, t)

r i

m7 =
H(r, i)

n g

m8 =
H(n, g)

h1=
H(m1, m2)

h2=
H(m3, m4)

h3=
H(m5, m6)

h4=
H(m7, m8)

k1=
H(h1, h2)

k2=
H(h3, h4)

r =
H(k1, k2)

Figure 7.1: A Merkle-tree committing to the string “acommittedstring” using hash function H. Boxes with a red, bold
outline represent the authentication path to reveal the twelfth entry of the committed string, namely the letter t. This
consists of every node along the path from the root to the twelfth leaf, as well as each such node’s sibling.

enable the prover to reveal any requested evaluation of the polynomial: if the verifier asks for p(ℓi), the
prover can reply with p(ℓi) along authentication information for this value (the authentication information
consists of O(logN) hash values).

Unfortunately, this approach does not directly yield a polynomial commitment scheme. The reason is
that while the Merkle tree does bind the prover to a fixed string, there is no guarantee that the string is
equal to all evaluations of some multilinear polynomial. That is, when the verifier V asks P to reveal p(r)
for some input r, the binding nature of Merkle trees does force P to respond with the r’th entry of the
committed string and the associated authentication information. But V has no idea whether the committed
string consists of all evaluations of a multilinear polynomial—the committed string could in general consists
of all evaluations of some totally arbitrary function.

To address this issue, we combine Merkle trees with a low-degree test. The low-degree test ensures that
not only is the prover bound to some (possibly completely unstructured) string, but actually that the string
contains all evaluations of a low-degree polynomial. More precisely, it ensures that the string is “close” to
the evaluation-table of a low-degree polynomial, so its use here yields a somewhat weaker object than an
actual polynomial commitment scheme. The low-degree test guarantees this despite only inspecting a small
number of entries of the string—often logarithmic in the length of the string—thereby keeping the amount of
authentication information transmitted by the prover low (at least, lower than the communication that would
be required to explicitly send a complete description of the polynomial to the verifier). Details follow.

Low-Degree Tests. Suppose a receiver is given oracle access to a giant string s, which is claimed to
contain all evaluations of an m-variate function over a finite field F. Note that there are |F|m such inputs, so
s consists of a list of |F|m elements of F. A low-degree test allows one determine to whether or not the string
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is consistent with a low-degree polynomial, by looking at only a tiny fraction of symbols within the string.
Unfortunately, because the low-degree test only looks at a tiny fraction of s, it cannot determine whether

s is exactly consistent with a low-degree polynomial. Imagine if s were obtained from a low-degree poly-
nomial p by changing its value on only one input. Then unless the test gets lucky and chooses the input on
which s and p disagree, the test has no hope of distinguishing between s and p itself.98

What the low-degree test can guarantee, however, is that s is close in Hamming distance to (the string
of all evaluations of) a low-degree polynomial. That is, if the test passes with probability γ , then there is a
low-degree polynomial that agrees with s on close to a γ fraction of points.

Typically, low-degree tests are extremely simple procedures, but they are often very complicated to
analyze and existing analyses often involve very large constants that result in weak guarantees unless the
field size is very large. An example of such a low-degree test is the point-versus-line test of Rubinfeld and
Sudan, with a tighter analysis subsequently given by by Arora and Sudan [AS03]. In this test, one evaluates
s along a randomly chosen line in Fm, and confirms that s restricted to this line is consistent with a univariate
polynomial of degree at most m (see Section 4.5.2). Clearly, if the string s agrees perfectly with a multilinear
polynomial then this test will always pass. The works [RS96,AS03] roughly show that if the test passes with
probability γ , then there is a low-degree polynomial that agrees with s at close to a γ fraction of points.99 In
this survey, we will not discuss how these results are proved.

A (Relaxed) Polynomial Commitment Scheme by Combining Merkle Trees and Low-Degree Tests.
Let w̃ : Flogn → F be a (logn)-variate multilinear polynomial over F. Let s be the string consisting of all
|F|logn evaluations of w̃. One obtains a polynomial commitment scheme by applying the Merkle-tree based
string commitment scheme of Section 7.3.2.2, and then applying a low-degree test to s. For example, if
the point-versus-line low-degree test is used, then the receiver picks a random line in Flogn, asks the sender
to provide authentication information for all points along the line, and checks that the revealed values are
consistent with a univariate polynomial of degree at most logn.

The guarantee of this commitment scheme is the same as in the string-commitment scheme of Section
7.3.2.2, except that the use of the low-degree test ensures that if the sender passes all of the receivers checks
with probability γ , then not only is the sender bound to a fixed string s, but also that there is some low-degree
polynomial that agrees with s at close to a γ fraction of points.

This guarantee is enough to use the commitment scheme in conjunction with the GKR protocol applied
to the claim C(x,w) = y, as outlined in Section 7.3.1. Specifically, if the verifier’s checks in the polynomial
commitment scheme pass with probability at least (say) 1/2, then the prover is bound to a string s such that
there is a multilinear polynomial p that agrees with s on close to a 1/2 fraction of points. As long as the
point (r1, . . . ,rlogn) at which the verifier in the GKR protocol evaluates s is not one of the “bad” points on
which s and p disagree, then the soundness analysis of the GKR protocol applies exactly as if the prover
were bound to the multilinear polynomial p itself.

This is enough to argue that if the prover passes all of the verifier’s checks with probability significantly
larger than 1/2, then indeed there exists a w (namely, the restriction of p to the domain {0,1}logn) such that
C(x,w) = y. The soundness error can be reduced from roughly 1/2 to arbitrarily close to 0 by repeating the

98The word “test” in the phrase low-degree test has precise technical connotations. Specifically, it refers to the fact that if
a function passes the test, then the function is only guaranteed to be “close” to a low-degree polynomial, i.e., it may not be
exactly equal to a low-degree polynomial. This is the same sense that the word test is used in the field of property testing (see
https://en.wikipedia.org/wiki/Property_testing). We reserve the word “test” throughout this manuscript to have this
technical connotation.

99More precisely, these works show that there is a polynomial of total degree at most d that agrees with s on at least a γ −
mO(1)/|F|Ω(1) fraction of points. This fraction is γ − o(1) as long as |F| is super-polynomially large in m (or even a large enough
polynomial in m).
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protocol many times and rejecting if any of the executions ever results in a rejection.100

Costs of this succinct argument system. In addition to the communication involved in applying the GKR
protocol to check that C(x,w) = y, the argument system above requires additional communication for the
prover to commit to w̃ and execute the point-versus-line low-degree test. The total communication cost
due to the (relaxed) polynomial commit scheme is O(|F| · logn) hash values (the cost is dominated by the
cost of the prover revealing the value of w̃ on all |F| points along a line chosen by the verifier). This is
O(n) hash values as long as |F| ≤ n/ logn. Note that, while in practice we prefer to work over large fields,
the soundness error of the GKR protocol is O

(
d log |C|
|F|

)
where d is the circuit depth, so working over a

field of size O(n/ logn) is enough to ensure non-trivial soundness error in the GKR protocol as long as
d log |C| ≪ n/ logn.

The verifier’s runtime is the same as in the GKR protocol, plus the time required to play its part of the
polynomial commit scheme. Assuming the collision-resistant hash function h can be evaluated in constant
time, and the field size is O(n/ log2 n), the verifier spends O(n) time to execute its part of the polynomial
commitment scheme.

The prover’s runtime in the above argument system is dominated by the time required to commit to w̃.
This requires building a Merkle tree over all possible evaluations of w̃, of which there are |F|logn. If we work
over a field of size (say) O(n), then this runtime is nO(logn), which is superpolynomial. So, as described, this
polynomial commitment scheme is asymptotically efficient for the verifier, but not the prover.

Remark 7.1. It is possible to reduce the prover’s runtime to O(nc) for some constant c in the above argument
system. The way to do this is to tweak the parameters within the GKR protocol to enable working over a
much smaller field, of size O(polylog(n)). This will be explained in more detail in Section 9.3 when we talk
about designing succinct arguments from PCPs and multi-prover interactive proofs. However, the resulting
prover runtime will still be impractical (practicality requires a prover runtime close to linear, rather than
polynomial, in the size of the circuit-satisfiability instance). As indicated above, working over such a small
field would also lead to soundness error of 1/polylog(n), and the protocol would have to be repeated many
times to drive the soundness error low enough for cryptographic use.

Remark 7.2. An alternative polynomial commitment scheme would be to use Merkle trees to have the
prover commit to the string consisting of the n coefficients of the multilinear polynomial w̃ : Flogn, rather
than to the |F|logn evaluations of w̃. This approach would have the benefit of allowing the commitment to be
computed with O(n) cryptographic hash evaluations, and the commitment would remain small (consisting
simply of the root hash evaluation). However, in order to reveal the evaluation w̃(r) for a point r ∈ Fn, the
prover would have to reveal all n of the coefficients of w̃, resulting in linear communication complexity
and verifier runtime. This is no more efficient than the naive interactive proof from Section 7.1 in which P
simply sends w to V at the start of the protocol. And the naive approach has the benefit of being statistically
rather than computationally sound.

7.4 Knowledge-Soundness

Proofs and arguments of knowledge. The notion of a proof or argument of knowledge is meant to capture
situations in which a prover establishes not only that a statement is true, but also that the prover knows a
“witness” w to the validity of the statement. For example, in the authentication application of Chapter 1,

100It is possible to use a so-called list-decoding guarantee of the low-degree test to argue that the soundness error is much lower
than 1/2 (if the field size is large enough), without the need for repetition of the protocol. See Section 8.2.1.4 for details.
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Alice chooses a password x at random, publishes the hash value y = h(x) of x, and later wants to prove to a
verifier that she knows a preimage of y under h, i.e., a w such that h(w) = y.

A natural attempt to achieve this is for Alice to play the role of the prover in a succinct argument for
circuit-satisfiability, applied to a circuit C that takes an input w and outputs y = h(w). However, if the
succinct argument only satisfies standard soundness, then Alice’s ability to produce a convincing proof will
merely guarantee the existence of a witness w such that y = h(w). If h is surjective, such a witness w will
always exist for any y. Hence, it is totally uninteresting for Alice to establish the mere existence of such a
pre-image w—the trivial proof system in which the verifier always accepts would satisfy the same property.

If the argument for circuit satisfiability satisfies a strengthened security notion called knowledge-soundness,
then it will in fact guarantee that Alice knows the witness w. What does it mean for Alice to prove that she
knows a preimage of y under h? The notion of knowledge-soundness posits the following answer. If Alice
convinces a verifier to accept her proof with non-negligible probability, then there should be a polynomial
time algorithm E that, if given the ability to repeatedly interact with Alice, is able to output a preimage w
of y under h with non-negligible probability. E is called an extractor algorithm. The idea of this definition
is that, since E is efficient, it can’t know anything more than Alice does (i.e., anything E can compute effi-
ciently by interacting with Alice, Alice could compute efficiently on her own, by simulating E’s interaction
with herself). Hence, since E can efficiently find w by interacting with Alice, then Alice must know w. One
may think of E as “efficiently pulling w out of Alice’s head”.101102

As explained below, the argument system for arithmetic circuit satisfiability in this section (obtained by
combining the GKR interactive proof with a commitment c to the multilinear polynomial w̃) is in fact an
argument of knowledge.

Extractable polynomial commitments. Extractability of a polynomial commitment scheme is a stronger
property than mere binding. Roughly, extractability is to binding as knowledge-soundness is to standard
soundness. It guarantees that for any efficient prover capable of passing all of the checks performed in the
commit and reveal phase of the scheme with non-negligible probability, the prover must actually “know” a
polynomial p of the claimed degree that explains its answers to all evaluation queries. That is, if the prover
can successfully answer evaluation query z with value v, then p(z) = v.

That is, binding of a polynomial commitment scheme guarantees that there is some polynomial p of the
appropriate degree that “explains” all of the evaluations that the prover can open the commitment to, but a
priori it is possible that the prover itself doesn’t actually know what that the polynomial is. Extractability
guarantees that in fact the prover does know p. (Section 14.1 later in this manuscript contains an example
of a polynomial commitment scheme that is binding, but is not extractable).

In more detail, extractability of a polynomial commitment scheme guarantees that for every “efficient

101The interested reader is directed to [Gol07, Section 4.7] for a detailed discussion of how to formalize knowledge-soundness.
102The reader may initially suspect that any proof of knowledge cannot be zero-knowledge: if it is possible to “pull a witness

w out of the prover’s head”, doesn’t this mean that the proof system reveals the witness to the verifier, grossly violating zero-
knowledge? The answer is no. This is because it is not the proof system verifier that can extract w from the proof, but rather an
extractor algorithm E that can extract w from the prover. This means that E can do things that the verifier cannot. For example, if
the proof system is interactive, then E can run the proof system once to completion to see what messages the prover P sends over
the course of the protocol, and then “rewind” P until just before P receives the verifier’s final challenge, and “restart” P with a
fresh random challenge from the verifier to see how P’s response changes. In contrast, the proof system verifier V only gets to run
the protocol once. In particular, V does not have the ability to rewind P and restart it with a new verifier challenge. As another
example, if the proof system is non-interactive and operates in the random oracle model, then the extractor algorithm can “watch”
all of the queries that P makes to the random oracle while computing the proof, and try to use those queries to identify a witness.
In contrast, the proof system verifier just sees the resulting proof, not the random oracle queries P made en route to computing the
proof. See Remark 12.1 in Section 12.2.1 and Section 12.2.3 for additional discussion and examples.
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committer adversary A” that takes as input the public parameters of the commitment scheme and a degree
bound D and outputs a polynomial commitment c, there is an efficient algorithm E ′ (which depends on
A) that produces a degree-D polynomial p explaining all of A’s answers to evaluation queries in the sense
above. Since E ′ is efficient, it cannot know anything more thanA does (sinceA can afford to run E ′), and E ′
clearly knows p by virtue of outputting it.103 This captures the intuition thatA knows a polynomial p that it
is using to answer evaluation queries.

The (relaxed) polynomial commitment scheme described in Section 7.3.2.2 is extractable (we justify
this assertion in Section 9.2.1).

The extractability guarantee of the polynomial commitment scheme enables one to take any efficient
prover P∗ for the argument system that convinces the argument system verifier to accept with non-negligible
probability ε , and extract from P∗ a witness w and prover strategy P that convinces the verifier within the
GKR protocol that C(x,w) = y. Details follow.

Notation. In the remainder of the analysis, we use the following notation to identify various parties.

• V denotes the prescribed GKR verifier,

• P represents "a successful GKR prover" (either the prescribed one, or another successful proving
procedure, i.e., that convinces V to accept with non-negligible probability).

• V ′ and P ′ represent the prescribed succinct-argument verifier and prover.

• P∗ represents a generic (potentially malicious) succinct-argument prover.

Recap of the succinct argument system. Recall that the argument-system prover first sends a commitment
c to a multilinear polynomial p claimed to extend a witness w such that C(x,w) = y. After receiving c,
the argument system verifier V ′ acts identically to the GKR verifier V , i.e., V ′ simulates V and copies its
behavior (V ′ can do this despite not knowing w, because the GKR verifier V does not need to know anything
about w until the very end of the GKR protocol). Similarly, the honest argument-system prover P ′ acts
identically to the honest GKR prover for the claim that C(x,w) = y.

At the very end of the GKR protocol, the GKR verifier V being simulated by V ′ does need to evaluate
the multilinear extension w̃ of w at a random point r in order to make its final accept/reject decision. V ′
obtains this evaluation using the evaluation procedure of the polynomial commitment scheme applied to
the commitment c, and outputs whatever accept/reject decision V would output given the evaluation p(r)
obtained from the commitment scheme.

Knowledge-soundness of the argument. Now suppose thatP∗ is a polynomial time, but possibly malicious
argument-system prover strategy that convinces the argument-system verifier V ′ to accept with some non-
negligible probability ε . To establish knowledge-soundness of the argument system, we need to explain that
there is an efficient extraction procedure E that can pull out of P∗ a witness w∗ such that C(x,w∗) = y.

The extractability of the polynomial commitment scheme implies that we can efficiently extract a pre-
image p of the commitment c sent by P∗ at the start of the argument, i.e., p is a multilinear polynomial
that opens to all the same values as c. E sets w∗ to be the witness that p extends, i.e., w∗ is the set of all
evaluations of p at inputs in the Boolean hypercube, {0,1}log |w|.

103Calling E ′ an extractor might initially be puzzling because we have not stated that E ′ operates by repeatedly interacting with
A to “pull the polynomial p out of its head”. But the extractors for polynomial commitment schemes that we give in this survey
actually do work this way. That is, an efficient procedure is given to pull p out of A’s head, and since A is efficient, the entire
procedure, including any computation done “inside” calls to A, is itself efficient, yielding the desired algorithm E ′.
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We still need to explain that w∗ satisfies C(x,w∗) = y. To do this, we construct a GKR prover strategy P
that convinces the GKR verifier V to accept the claim that C(x,w∗) = y with probability ε . The soundness
of the GKR protocol then implies that indeed C(x,w∗) = y.
P simply simulates P∗ starting from right after P∗ sent the commitment c. That is, in every round i of

the GKR protocol, P sends to V the message mi that P∗ would send in that round of the argument system.
The GKR verifier V will reply to mi with a response ri, and P then continues simulating P∗ into the next
round, using ri as the response of the argument-system verifier V∗ to mi.

By construction, P convinces the GKR verifier V to accept the claim that C(x,w∗) = y with exactly the
same probability that P∗ convinces the argument-system verifier V∗ to accept, namely ε . This concludes the
proof.

Because the succinct argument of this section is in fact a public coin argument of knowledge, combining
it with the Fiat-Shamir transformation yields our first succinct non-interactive argument of knowledge, or
SNARK. This SNARK is publicly verifiable, and unconditionally secure in the random oracle model (see
Section 9.2.1 for details).
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Chapter 8

MIPs and Succinct Arguments

Multi-prover interactive proofs (MIPs) grant the verifier access to more than one untrusted prover, and as-
sume the provers cannot tell each other about what challenges they receive from the verifier. While MIPs are
of interest in their own right, they are also important building blocks for constructing succinct arguments. In
particular, in this chapter we give 2-prover MIPs for circuit satisfiability (Section 8.2) and its generalization
R1CS-satisfiability (Section 8.4), in which the second prover effectively acts as a polynomial commitment
scheme, a notion we introduced in Section 7.3. Accordingly, one can obtain a (single-prover) succinct ar-
gument with state-of-the-art performance by replacing the second prover with an appropriate polynomial
commitment scheme, practical instantiations of which are covered in detail in Sections 10.4.4, 10.5, and
Chapter 14.104 In particular, the arguments obtained from the MIPs of this chapter have significantly shorter
proofs than those of Chapter 7.

MIPs are also of significant historical importance, and the state-of-the-art MIPs of this chapter exhibit
several ideas that will recur in our coverage of PCPs and IOPs (Chapters 9 and 10).

8.1 MIPs: Definitions and Basic Results

Definition 8.1. A k-prover interactive proof protocol for a language L ⊆ {0,1}∗ involves k+ 1 parties: a
probabilistic polynomial time verifier, and k provers. The verifier exchanges a sequence of messages with
each prover; each prover’s message is a function of the input and the messages from V that it has seen so far.
The interaction produces a transcript t = (V(r),P1, . . . ,Pk)(x), where r denotes V’s internal randomness.
After the transcript t is produced, V decides whether to output accept or reject based on r, t, and x. Denote
by out(V,x,r,P1, . . . ,Pk) the output of verifier V on input x given prover strategies (P1, . . . ,Pk) and that V’s
internal randomness is equal to r.

The multi-prover interactive proof system has completeness error δc and soundness error δs if the fol-
lowing two properties hold.

1. (Completeness) There exists a tuple of prover strategies (P1, . . . ,Pk) such that for every x ∈ L,

Pr[out(V,x,r,P1, . . . ,Pk) = accept]≥ 1−δc.

104When an initial version of this manuscript was publicly released in the form of lecture notes in 2018, this approach to obtaining
succinct arguments had not been previously published; the only published approach to turning MIPs into succinct arguments at
that time [BC12] made use of a cryptographic primitive known as Fully Homomorphic Encryption, which is currently much too
computationally intensive to yield practical SNARKs. Since that time, Setty [Set20] has implemented and extended the MIP-to-
succinct-argument approach described in this manuscript, with several follow-on works [SL20, GLS+21].
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2. (Soundness) For every x /∈ L and every tuple of prover strategies (P ′1, . . . ,P ′k),

Pr[out(V,x,r,P ′1, . . . ,P ′k) = accept]≤ δs.

Say that a k-prover interactive proof system is valid if δc,δs ≤ 1/3. The complexity class MIP is the
class of all languages possessing valid k-prover interactive proof systems, for some k = poly(n).

The MIP model was introduced by Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW88]. It is crucial
in Definition 8.1 that each prover’s message is a function only of the input and the messages from V that
it has seen so far. In particular, Pi cannot tell P j what messages V has sent it, or vice versa, for any i ̸= j.
If such “cross-talk” between Pi and P j were allowed, then it would be possible to simulate any MIP by a
single-prover interactive proof, and the classes MIP and IP would become equal.

As discussed in Section 1.2.3, it can be helpful to think of MIP as follows. The provers are like prisoners
who are about to be interrogated. The prisoners get placed in separate interrogation rooms. Prior to going
into these rooms, the prisoners can talk amongst themselves, plotting a strategy for answering questions.
But once they are placed in the rooms, they can no longer talk to each other, and in particular prover i cannot
tell the other provers what questions the verifier is asking it. The verifier is like the interrogator, trying to
determine if the prover’s stories are consistent with each other, and with the claim being asserted.

The next section shows that, up to polynomial blowups in V’s runtime, 2-prover MIPs are just as expres-
sive as k-prover MIPs, for any k = poly(n).

8.1.1 What Does a Second Prover Buy?

Non-Adaptivity. In a single-prover interactive proof, the proverP is allowed to act adaptively, in the sense
that P’s response to the ith message mi sent from V is allowed to depend on the preceding i−1 messages.
Intuitively, the reason that MIPs are more expressive than IPs is that the presence of a second prover (who
does not know V’s messages to the first prover) prevents the first prover from behaving in this adaptive
manner.105 This can be formalized via the following easy lemma showing that the complexity class MIP
is equivalent to the class of languages satisfied by polynomial time randomized oracle machines. Here, an
oracle machine is essentially a computer that has query access to a giant string O that is fixed at the start of
the computer’s execution. The stringO may be enormous, but the computer is allowed to look at any desired
symbolOi (i.e., the ith symbol ofO) in unit time. One can think of any query that the computer makes toO
as a question, and Oi as the answer. Because O is fixed at the start of the computer’s execution, the answers
that are returned by O are non-adaptive in the sense that the answer to the computer’s jth question does not
depend on which questions the computer asked previously.

Lemma 8.2 ( [FRS88]). LetL be a language, and M a probabilistic polynomial time oracle Turing Machine.
Let MO denote M when given query access to oracle O. Suppose that x ∈ L =⇒ ∃ an oracle O such that
MO accepts x with probability 1, and x ̸∈ L =⇒ ∀ oracles O, MO rejects x with probability at least 2/3.
Then there is a 2-prover MIP for L.

Remark 8.1. In Lemma 8.2, one can think of O as a giant purported proof that x ∈ L, and machine M
only looks at a small (i.e., polynomial) number of symbols of the proof. This is the same notion as a

105One may initially have the intuition that, since allowing adaptivity on the part of the prover means allowing “more expressive”
prover strategies, prover adaptivity leads to efficient proof systems for more challenging problems. In fact, the opposite is true.
Allowing the prover to behave adaptively gives the prover more power to break soundness. Hence, allowing the prover to behave
adaptively actually weakens the class of problems that have proof systems with an efficient verifier.
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probabilistically checkable proof, which we introduce formally in Section 9.1. In this terminology, Lemma
8.2 states that any PCP with a polynomial time verifier can be turned into a 2-prover MIP with a polynomial
time verifier.

Proof. We first describe a “subroutine” 2-prover MIP that has perfect completeness and high but bounded
soundness error. The final 2-prover MIP simply repeats the subroutine MIP independently several times.

The subroutine MIP. V simulates M, and every time M poses a query q to the oracle, V asks the query to
P1, treating P1’s response as O(q). At the end of the protocol, V picks a query q uniformly at random from
all queries that were posed to P1, and poses it to P2, rejecting if P2’s response to q does not equal P1’s.

Completeness of the subroutine is clear: if x ∈ L, there is some oracle O∗ causing M to accept x with
probability 1. If P1 and P2 respond to any query q with O∗(q), then V will accept x on each of the runs of
the protocol with probability 1.

For soundness of the subroutine, observe that since P2 is only asked a single query, we can treat P2 as
an oracle O. That is, P2’s answer on query q is a function only of q. On any run of the protocol on input
x ̸∈ L, let q1, . . . ,qℓ denote the queries that V poses to P1 on input x. On the one hand, if P1 ever answers a
query qi differently than O(qi), the verifier will pick that query to pose to P2 with probability at least 1/ℓ,
and in this case the verifier will reject. On the other hand, if P1 answers every query qi with O(qi), then
V will reject with probability at least 2/3 because MO rejects with that probability. Therefore, V rejects on
each run of the protocol with probability at least 1/ℓ.

The final MIP. The final MIP repeats the subroutine protocol independently and sequentially 3ℓ times,
where ℓ is (an upper bound on) the number of queries that M poses to the oracle on any input x ∈ {0,1}n

(note that ℓ is at most polynomial in the input size n, since M runs in polynomial time). V accepts only if
all instances accept. Since the subroutine MIP has perfect completeness, so does the final MIP. Since the
subroutine has soundness error at most 1−1/ℓ, sequentially repeating it k times with independently chosen
verifier queries on each repetition ensures that, when given an input x ̸∈ L, V rejects on at least one run of
the subroutine with probability at least 1− (1−1/ℓ)3ℓ > 2/3.

The same argument implies that any k-prover MIP (with completeness error at most δc ≤ 1/(9ℓ), where
ℓ is the total number of queries asked) can be simulated by a 2-prover MIP [BGKW88]. In the simulation, V
poses all of the questions from the k-prover MIP to P1, then picks a question at random and poses it to P2,
rejecting if the answers do not agree. P2 can be treated as an oracle since P2 is only posed a single question,
and hence has no opportunity to behave adaptively. And if P1 answers even a single query qi “adaptively”
(i.e., different than how P2 would answer), the probability this is detected is at least 1/ℓ. The whole 2-prover
protocol must be repeated Ω(ℓ) times to drive the soundness error from 1−1/ℓ down to 1/3.

In summary, one can both force non-adaptivity and reduce the number of provers to 2 by posing all
queries to P1 and choosing one of the queries at random to pose to P2. While this conveys much of the
intuition for why MIPs are more expressive than IPs, the technique is very expensive in practice, due to
the need for Ω(ℓ) repetitions—typically, ℓ is on the order of logn, and can easily be in the hundreds in
implementations. Fortunately, the MIP that we describe in Section 8.2 requires only two provers without the
need for repetition to force non-adaptivity or reduce the number of provers to 2.

But What Does Non-Adaptivity Buy? We will see in Section 8.2 that non-adaptivity buys succinctness
for NP statements. That is, we will give an MIP for arithmetic circuit satisfiability (as opposed to circuit
evaluation) in which the total communication and verifier runtime is sublinear in the size of the witness w.
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This should not be surprising, as we saw the same phenomenon in Chapter 7. There, we used a polyno-
mial commitment scheme to cryptographically bind the prover to a multilinear polynomial w̃ that was fixed
at the start of the interaction with the verifier. In particular, the polynomial commitment scheme enforced
non-adaptivity, i.e., the prover must tell the verifier w̃(r), and is not able to “change its answer” based on the
interaction with the verifier. The addition of a second prover in a 2-prover MIP has exactly the same effect.
Indeed, we will see that the second prover in the MIP of Section 8.2 essentially functions as a polynomial
commitment scheme. Indeed, we will ultimately obtain a (single-prover) succinct argument from the MIP
with state-of-the-art practical performance by replacing the second prover with a polynomial commitment
scheme; see Section 8.3.

8.2 An Efficient MIP For Circuit Satisfiability

Warmup: A 2-Prover MIP for Low-Depth Arithmetic Circuit Satisfiability. The succinct argument
from Chapter 7 can be directly adapted to yield a 2-prover MIP. The idea is to use the second prover to
function as the polynomial commitment scheme.

In more detail, the verifier uses the first prover to apply the GKR protocol to the claim C(x,w) = y. As
explained in Section 7.3.2.1, at the end of this protocol, the prover makes a claim about w̃(r).

In Chapter 7, this claim was checked by forcing the prover to reveal w̃(r) via the polynomial commitment
protocol (which itself involved a vector-commitment combined with a low-degree test).

In the MIP, the verifier simply uses the second prover to play the role of the polynomial commitment
scheme. This means that the second prover provides claimed value for w̃(r) that does not depend on the
questions the verifier asked to the first prover, and executes a low-degree test. Roughly speaking, this
combination ensures that the claimed value w̃(r) is indeed consistent with the multilinear extension w̃ of
some witness w that was fixed at the start of the protocol—in particular, w does not depend on the point r
chosen by the verifier.

For example, if the low-degree test used is the point-versus-line test, then the verifier picks a random
line λ in Flogn containing r, and sends λ to the second prover, who is asked to respond with a univariate
polynomial of degree logn claimed to equal w̃ restricted to λ . Since r is on the line λ , this univariate
polynomial implicitly specifies w̃(r), and the verifier checks that this value matches the first prover’s claim
about w̃(r).

A downside of the warm-up 2-prover MIP for arithmetic circuit satisfiability is that the communication
cost and the verifier’s runtime grow linearly with the circuit depth d, i.e., is O(d logS). Hence, the protocol
does not save the verifier time for deep, narrow circuits. Arguably, this is not a major downside, because
Section 6.5 explained that any computer program running in time T can be turned into an equivalent instance
of arithmetic circuit satisfiability where the circuit is short and wide rather than long and narrow (specifically,
the circuit has depth roughly O(logT ) and size Õ(T )).

Still, even for reasonably small-depth circuits, the proofs from the warm-up GKR-derived MIP can be
rather large. In this section, we give an MIP whose proof length is smaller than the warm-up GKR-based
MIP by a factor of close to the circuit depth, i.e., O(logS) rather than O(d logS), which can be a substantial
concrete improvement even for circuits of quite small depth. In so doing, we will see some ideas that recur
in later chapters when we study argument systems based on PCPs, IOPs, and linear PCPs.

The 2-Prover MIP described in the remainder of this section is a refinement of one given by Blumberg
et al. [BTVW14], which they called Clover. It combines several new ideas with techniques from the original
MIP = NEXP proof of [BFL91], as well as the GKR protocol [GKR08] and its refinements by Cormode,
Mitzenmacher, and Thaler [CMT12].
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Figure 8.1: The leftmost image depicts an arithmetic circuit C over field F of size 16, with no public input x, and non-
deterministic input w = (w1,w2,w3,w4,w5) ∈ F5. The middle image depicts a correct transcript W for C producing
output y = 4. The rightmost image is the evaluation table of W when viewed as a function mapping {0,1}4 to F.

8.2.1 Protocol Summary

8.2.1.1 Terminology

Let C be an arithmetic circuit over a field F taking an explicit input x and a non-deterministic input w.
Let S = 2k denote the number of gates in C, and assign each gate in C a binary label in {0,1}k. Refer
to an assignment of values to each gate of C as a transcript of C, and view the transcript as a function
W : {0,1}k→ F mapping gate labels to their values.

Given a claim that C(x,w) = y, a correct transcript is a transcript in which the values assigned to the
input gates are those of x, the intermediate values correspond to the correct operation of each gate in C,
and the values assigned to the output gates are y. The arithmetic circuit satisfiability problem on instance
{C,x,y} is equivalent to determining whether there is a correct transcript for {C,x,y}. See Figure 8.1 for an
example.

8.2.1.2 Overview of the MIP

The MIP works by having P1 claim to “hold” an extension Z of a correct transcript W for {C,x,y}. If
the prover is honest, then Z will equal W̃ , the multilinear extension of W . The protocol then identifies a
polynomial gx,y,Z : F3k→ F (which depends on x, y, and Z) satisfying the following property: gx,y,Z(a,b,c) =
0 for all Boolean inputs (a,b,c) ∈ {0,1}3k ⇐⇒ Z is indeed an extension of a correct transcript W .

To check that gx,y,Z vanishes at all Boolean inputs, the protocol identifies a related polynomial hx,y,Z such
that gx,y,Z vanishes at all Boolean inputs⇐⇒ the following equation holds:

∑
(a,b,c)∈{0,1}3k

hx,y,Z(a,b,c) = 0. (8.1)

Strictly speaking, the polynomial hx,y,Z is randomly generated, and there is a small chance over the random
choice of hx,y,Z that Equation (8.1) holds even though gx,y,Z does not vanish at all Boolean inputs. The MIP
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applies the sum-check protocol to the polynomial hx,y,Z to compute this sum. Note that if Z is a low-degree
polynomial, then so is hx,y,Z , as is required both to control costs and guarantee soundness in the sum-check
protocol.

At the end of the sum-check protocol, V needs to evaluate hx,y,Z at a random point, which in turn requires
evaluating Z at a random point r ∈ Fk. Unfortunately, V cannot compute Z(r), since V does not have access
to the polynomial Z (as Z only “exists” inP1’s head). Instead, V asksP2 to send her Z(r), using the point-vs-
line low-degree test (see Section 7.3.2.2). Specifically, P2 is asked to send Z restricted to a line Q, where Q
is chosen to be a random line in Fk containing r. This forces P2 to implicitly make a claim about Z(r) (note
that P2 does not know which point in Q is r); V rejects if P1 and P2’s claims about Z(r) are inconsistent,
and accepts otherwise.106

The low-degree test cannot guarantee that Z itself is a low-degree polynomial, since V only ever inspects
Z at a small number of points. Hence it is impossible to argue that hx,y,Z itself satisfies Equation (8.1):
the soundness analysis for the sum-check protocol breaks down if the polynomial to which it is applied
has large degree. However, the low-degree test does guarantee that if P1 and P2’s claims about Z(r) are
consistent with non-negligible probability over the random choice of r, then Z is close to a low-degree
polynomial Y , in the sense that Y (r′) = Z(r′) for a large fraction of points r′ ∈ Fk. Since hx,y,Y is low-degree,
it is straightforward to tweak the soundness analysis of the sum-check protocol to argue that hx,y,Y satisfies
Equation (8.1), and hence that Y extends a correct transcript for {C,x,y} (cf. Theorem 8.4).

Remark 8.2. The fact that the low-degree test only guarantees that the function Z is close to rather than
exactly equal to a low-degree polynomial substantially complicates the soundness analysis of the MIP (Sec-
tion 8.2.1.4). In (single-prover) succinct arguments derived from the MIP, the second prover can be replaced
with a polynomial commitment scheme that ensures Z is exactly equal to a multilinear polynomial, and
these complications go away. We cover such polynomial commitment schemes in Sections 10.4.2, 10.5, and
Chapter 14. Accordingly, readers primarily interested in the resulting succinct arguments rather than the
MIPs themselves can skip the detailed soundness analysis of Section 8.2.1.4.

Identical complications arose in Chapter 7, because the polynomial commitment scheme given there
used a low-degree test and hence only bound the prover to a function close to a low-degree polynomial.

Preview: The importance of checking that a polynomial vanishes on a designated subspace. The
problem of checking that a certain polynomial gx,y,Z vanishes on a designated subspace plays a central role
in many MIPs and PCPs. The problem is sometimes referred to as checking a Vanishing Reed-Solomon or
Reed-Muller code [BS08]. This problem will arise several more times in this survey, including in state of
the art PCPs, IOPs, and linear PCPs described in Chapters 9, 10, and 17. One difference is that in the PCPs,
IOPs, and linear PCPs of later sections, the polynomial gx,y,Z is univariate, instead of (3logS)-variate as in
the MIP considered here.

Comparison to the GKR Protocol. While the GKR protocol verifies the claim C(x,w) = y layer by layer,
with a a different instance of the sum-check protocol required for each layer of C, the MIP of this section
verifies the whole circuit in one shot, using a single invocation of the sum-check protocol. The reason the
GKR protocol must work layer-by-layer is that the verifier must force the prover to make a claim about (the

106Blumberg et al. [BTVW14] actually use a different low-degree test called the point-vs-plane test, despite the fact that it leads
to asymptotically larger proofs and larger runtime for P2. They made this choice because the known soundness analyses of the
point-vs-line test involve huge constant factors, and hence yield good soundness only over impractically large fields. The constant
factors in known analyses of the point-vs-plane test are more reasonable [MR08], enabling the use of reasonably sized fields in the
MIP of [BTVW14].
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multilinear extension of) the input alone, since the verifier never materializes the intermediate gates of the
circuit. This is not necessary in the multi-prover setting: in the MIP, P1 makes a claim about an extension Z
of the entire transcript. V cannot check this claim independently, but that is okay because there is a second
prover to ask for help.

8.2.1.3 Protocol Details

Notation. Let add,mult : {0,1}3k→{0,1} denote the functions that take as input three gate labels (a,b,c)
from C and outputs 1 if and only if gate a adds (respectively, multiplies) the outputs of gates b and c.
While the GKR protocol had separate functions addi and multi for each layer of C, the MIP of this section
arithmetizes all of C at once. We also add a third wiring predicate, which has no analog within the GKR
protocol: let io : {0,1}3k → {0,1} denote the function that returns 1 when gate a is either a gate from the
explicit input x or one of the output gates, and gates b and c are the in-neighbors of a (input gates have
in-neighbors b = c = 0).

Notice that add, mult, and io are independent of the inputs x and purported outputs y. The final function
that plays a role in the MIP does depend on x and y. Define Ix,y : {0,1}k→ F such that Ix,y(a) = xa if a is the
label of an input gate, Ix,y(a) = ya if a is the label of an output gate, and Ix,y(a) = 0 otherwise.

Lemma 8.3. For Gx,y,W (a,b,c) : {0,1}3k→ F defined as below, Gx,y,W (a,b,c) = 0 for all (a,b,c) ∈ {0,1}3k

if and only if W is a correct transcript for {C,x,y}:

Gx,y,W (a,b,c)= io(a,b,c)·(Ix,y(a)−W (a))+add(a,b,c)·(W (a)−(W (b)+W (c)))+mult(a,b,c)·(W (a)−W (b)·W (c)).

Proof. If W is not a correct transcript, there are five cases:

1. Suppose a ∈ {0,1}k is the label of an input gate. If W (a) ̸= xa, then Gx,y,W (a,0,0) = Ix,y(a)−W (a) =
xa−W (a) ̸= 0.

2. Suppose a ∈ {0,1}k is the label of a non-output addition gate with in-neighbors b and c. If W (a) ̸=
W (b)+W (c), then Gx,y,W (a,b,c) =W (a)− (W (b)+W (c)) ̸= 0.

3. Suppose a ∈ {0,1}k is the label of a non-output multiplication gate with in-neighbors b and c. If
W (a) ̸=W (b) ·W (c), then Gx,y,W (a,b,c) =W (a)− (W (b) ·W (c)) ̸= 0.

4. Suppose a ∈ {0,1}k is the label of an output addition gate with in-neighbors b and c. If ya ̸=W (b)+
W (c), then Gx,y,W (a,b,c) = Ix,y(a)−W (a)+(W (a)− (W (b)+W (c))) = ya− (W (b)+W (c)) ̸= 0.

5. Suppose a ∈ {0,1}k is the label of an output multiplication gate with in-neighbors b and c. If ya ̸=
W (b) ·W (c), then Gx,y,W (a,b,c) = Ix,y(a)−W (a)+(W (a)−(W (b) ·W (c))) = ya−(W (b) ·W (c)) ̸= 0.

On the other hand, if W is a correct transcript then it is immediate from the definition of Gx,y,W that
Gx,y,W (a,b,c) = 0 for all (a,b,c) ∈ {0,1}3k.

For any polynomial Z : Fk→ F, define the associated polynomial:

gx,y,Z(a,b,c)= ĩo(a,b,c)· (̃Ix,y(a)−Z(a))+ ãdd(a,b,c)·(Z(a)−(Z(b)+Z(c)))+m̃ult(a,b,c)·(Z(a)−Z(b)·Z(c)).

It follows from Lemma 8.3 that Z extends a correct transcript W if and only if gx,y,Z vanishes on the Boolean
hypercube. We now define a polynomial hx,y,Z such that gx,y,Z vanishes on the Boolean hypercube if and
only if ∑u∈{0,1}3k hx,y,Z(u) = 0.
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Defining hx,y,Z . As in Lemma 4.9 of Section 4.6.7.1, let β3k(a,b) : {0,1}3k ×{0,1}3k → {0,1} be the
function that evaluates to 1 if a = b, and evaluates to 0 otherwise, and define the formal polynomial

β̃3k(a,b) =
3k

∏
j=1

((1−a j)(1−b j)+a jb j) .

It is straightforward to check that β̃3k is the multilinear extension β3k. Indeed, β̃3k is a multilinear polynomial.
And for a,b ∈ {0,1}3k, it is easy to check that β̃3k(a,b) = 1 if and only if a and b are equal coordinate-wise.

Consider the polynomial
p(X) := ∑

u∈{0,1}3k

β̃3k(X ,u) ·gx,y,Z(u).

Clearly p is multilinear since β̃ is, and p vanishes on all inputs in {0,1}3k if and only if gx,y,Z does. Since
the multilinear extension on domain {0,1}3k is unique, this means that p is the identically zero polynomial
if and only if gx,y,Z vanishes on all inputs in {0,1}3k. For the verifier to check that p is indeed the zero-
polynomial, it is enough for the verifier to pick a random input r ∈ F3k and confirm that p(r) = 0, because
if p is any nonzero polynomial of total degree at most d, the Schwartz-Zippel lemma implies that p(r) will
equal 0 with probability at most d/|F|.

Hence, we define

hx,y,Z(Y ) := β̃3k(r,Y ) ·gx,y,Z(Y ). (8.2)

This definition ensures that p(r) = ∑u∈{0,1}3k hx,y,Z(u).
In summary, in the MIP, V chooses r uniformly at random from the set F3k, defines hx,y,Z based on r as

per Equation (8.2), and is convinced that Z extends a correct transcript for {C,x,y} as long as

0 = ∑
u∈{0,1}3k

hx,y,Z(u).

More formally, if gx,y,Z has total degree at most d, then with probability at least 1− (d + 1)/|F| over the
random choice of r, if gx,y,Z does not vanish on the Boolean hypercube then ∑u∈{0,1}3k hx,y,Z(u) ̸= 0. For
simplicity, the remainder of the presentation ignores the (d + 1)/|F| probability of error in this step (the
(d +1)/|F| can be absorbed into the soundness error of the entire MIP).

Applying the Sum-Check Protocol to hx,y,Z . V applies the sum-check protocol to hx,y,Z , with P1 playing
the role of the prover in this protocol. To perform the final check in this protocol, V needs to evaluate hx,y,Z

at a random point r ∈ F3k. Let r1,r2,r3 denote the first, second, and third k entries of r. Then evaluating
hx,y,Z(r) requires evaluating β̃3k(r), ĩo(r), ãdd(r), m̃ult(r), Ĩx,y(r1), Z(r1), Z(r2), and Z(r3). V can compute
the first five evaluations without help in O(log(T )) time, assuming that ãdd and m̃ult can be computed
within this time bound (see Section 4.6.6 for further discussion of this assumption). However, V cannot
evaluate Z(r1), Z(r2), or Z(r3) without help, because V does not know Z. To deal with this, the verifier first
uses the technique from Section 4.5.2 to reduce the evaluation of Z at the three points r1, r2, and r3, to the
evaluation of Z at a single point r4 ∈ Fk. This reduction forces P1 to make a claim regarding the value of
Z(r4). Unfortunately, V does not know Z and hence cannot evaluate Z(r4) unaided. To obtain the evaluation
Z(r4), V turns to P2.

The Low-Degree Test. V sends P2 a random line Q in Fk passing through r4, and demands that P2 reply
with a univariate polynomial of degree at most k, claimed to equal Z restricted to Q. Note that P2 does not
know which of the |F| many points on the line Q equals r4. Since r4 lies on Q, P2’s response implicitly
specifies a value for Z(r4). V accepts if this value equals that claimed by P1 and rejects otherwise.
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8.2.1.4 MIP Soundness Analysis

Theorem 8.4. Suppose that P1 and P2 convince the MIP verifier to accept with probability γ > .5+ ε for
ε = Ω(1). Then there is some polynomial Y such that hx,y,Y satisfies Equation (8.1).

Detailed Sketch. Let Z∗ denote the function that on input r4 outputs P1’s claimed value for Z(r4).107 If P1
and P2 pass the low-degree test with probability at least γ , known analyses of the low-degree test guarantee
that, if working over a sufficiently large field F, there is some polynomial Y of total degree at most k such
that Z∗ and Y agree on a p≥ γ−o(1) fraction of points. Since Y has total degree at most k, hx,y,Y has total
degree at most 6k.

Suppose that hx,y,Y does not satisfy Equation (8.1). Let us say that P1 cheats at round i of the sum-check
protocol if he does not send the message that is prescribed by the sum-check protocol in that round, when
applied to the polynomial hx,y,Y . The soundness analysis of the sum-check protocol (Section 4.1) implies that
if P1 falsely claims that hx,y,Y does satisfy Equation (8.1), then with probability at least 1− (3k) · (6k)/|F|=
1− o(1), P1 will be forced to cheat at all rounds of the sum-check protocol including the last one. This
means that in the last round, P1 sends a message that is inconsistent with the polynomial Y .

If P1 does cheat in the last round, the verifier will reject unless, in the final check of the protocol, the
verifier winds up choosing a point in F3k at which hx,y,Y and hx,y,Z∗ disagree. This only happens if V picks
a point r4 ∈ Fk for use in the low-degree test such that Y (r4) ̸= Z(r4). But this occurs with probability only
1− p = 1− γ + o(1). In total, the probability that P1 passes all tests is therefore at most 1− γ + o(1). If
γ > 1

2 , this contradicts the fact that P1 and P2 convince the MIP verifier to accept with probability at least
γ .

Recall that if hx,y,Y satisfies Equation (8.1), then gx,y,Y vanishes on the Boolean hypercube, and hence Y
is an extension of a correct transcript for {C,x,y}. So Theorem 8.4 implies that if the MIP verifier accepts
with probability γ > 1

2 , then there is a correct transcript for {C,x,y}.
Although the soundness error can reduced from 1

2 + o(1) to an arbitrarily small constant with O(1)
independent repetitions of the MIP, this would be highly expensive in practice. Fortunately, it is possible
to perform a more careful soundness analysis that establishes that the MIP itself, without repetition, has
soundness error o(1).

The bottleneck in the soundness analysis of Theorem 8.4 that prevents the establishment of soundness
error less than 1

2 is that, if the prover’s pass the low-degree test with probability γ < 1
2 , then one can only

guarantee that there is a polynomial Y that agrees with Z on a γ fraction of points. The verifier will choose a
random point r in the sum-check protocol at which Y and Z disagree with probability 1− γ > 1

2 , and in this
case all bets are off.

The key to the stronger analysis is to use a stronger guarantee from the low-degree test, known as a
list-decoding guarantee. Roughly speaking, the list-decoding guarantee ensures that if the oracles pass the
low-degree test with probability γ , then there is a “small” number of low-degree polynomials Q1,Q2, . . .
that “explain” essentially all of the tester’s acceptance, in the sense that for almost all points r at which the
low-degree test passes, Z∗(r) agrees with Qi(r) for at least one i. This allows one to argue that even if the
provers pass the low-degree test with probability only γ < 1

2 , the sum-check protocol will still catch P1 in
a lie with probability very close to 1. Here is a very rough sketch of the analysis. For each polynomial Qi

individually, if P1 were to claim at the end of its interaction with V that Z(r4) = Qi(r4), then the probability
of P1 passing all of the verifier’s checks is negligible. As there are only a small number of Qi’s, a union

107In principle, P1’s claim about Z(r4) could depend on other messages sent to P1 by V , namely r1, r2, and r3. This turns out
not to help P1 pass the verifier’s checks. In our proof sketch, we simply assume for clarity and brevity that P1’s claim about Z(r4)
depends on r4 alone.
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bound over all Qi implies that the probability P1 passes all of the verifier’s checks and is able to claim that
Z(r4) = Qi(r4) for some Qi is still negligible. Meanwhile, if P1 does not claim that Z(r4) = Qi(r4) for some
Qi, the list-decoding guarantee of the low-degree test states that the provers will fail the low-degree test
except with tiny probability.

8.2.1.5 Protocol Costs

Verifier’s Costs. V and P1 exchanges two messages for each variable of hx,y,Z , and where P2 exchanges
two messages in total with V . This is O(logS) messages in total. Each message from P1 is a polynomial
of degree O(1), while the message from P2 is a univariate polynomial of total degree O(logS). In total, all
messages can be specified using O(logS) field elements. As for V’s runtime, the verifier has to process the
provers’ messages, and then to perform the last check in the sum-check protocol, she must evaluate ãdd,
m̃ult, ĩo, and Ĩ at random points. The verifier requires O(logS) time to process the provers’ messages, and
Lemma 3.8 implies that V can evaluate Ĩ at a random point in O(n) time. We assume here that ãdd, m̃ult,
and ĩo can be evaluated at a point in time polylog(S) as well— see Section 4.6.6 and the end of Section 6.5
for discussion of this assumption, and what to do if it does not hold.

Prover’s Costs. Blumberg et al. [BTVW14] showed that, using the techniques developed to implement
the prover in the GKR protocol (Section 4.6), specifically Method 2 described there, P1 can be implemented
in O(S logS) time. In fact, using more advanced techniques (e.g., Lemma 4.5), it is possible to implement
the first prover in O(S) time. P2 needs to specify W̃ ◦Q, where Q is a random line in Fk. Since W̃ ◦Q is a
univariate polynomial of degree logS, it suffices for P2 to evaluate W̃ at 1+ logS many points on the line
Q—using Lemma 3.8, this can be done in O(S) time per point, resulting in a total runtime of O(S logS).

8.3 A Succinct Argument for Deep Circuits

Using any polynomial commitment scheme, one can turn the MIP of the previous section into a succinct
argument for deep and narrow arithmetic circuits.108 Specifically, one gets rid of the second prover, and
instead just had the first prover commit to W̃ at the start of the protocol. At the end of the verifier’s interaction
with the first prover in the MIP above, the first prover makes a claim about W̃ (r4), which the verifier checks
directly by having the prover reveal it via the polynomial commitment protocol.

This succinct argument has an advantage over the approach to succinct argument from Chapter 7 that
was based directly on the GKR protocol: namely, the argument system based on the MIP of the previous
section is succinct with a nearly-linear time verifier even for deep and narrow circuits. In fact, the MIP-
based argument system will have shorter proofs by a factor roughly equal to the depth of the circuit, which
can be a significant savings even when the depth is quite small.

The disadvantage of the argument system from the previous section is that it applies the polynomial
commitment scheme to the entire transcript extension W̃ : Flog |C| → F, whereas the argument system of
Chapter 7 applied the polynomial commitment scheme only to the multilinear extension of the witness w̃.
The expense of applying a commitment scheme to w̃ will be much smaller than the expense of applying it
to W̃ if the the witness size |w| is much smaller than the circuit size |C|.

Existing polynomial commitment schemes are still the concrete bottlenecks for the prover and verifier in
argument systems that use them [Set20]. Since the witness w can be much smaller than circuit C, applying
the polynomial commitment scheme to w̃ can be significantly less expensive than applying it to W̃ (so long

108The polynomial commitment scheme should be extractable in addition to binding. See Section 7.4 for details.
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as the witness makes up only a small fraction of the total number of gates in the circuit). Besides, we’ve
seen that short, wide circuits are “universal” in the context of succinct arguments, since any RAM running in
time T can be turned into an instance of arithmetic circuit satisfiability of size close to T and depth close to
O(logT ). In summary, which approach yields a superior argument system for circuit satisfiability in practice
depends on many factors, including witness size, circuit depth, the relative importance of proof length vs.
other protocol costs, etc.

Remark 8.3. Bitansky and Chiesa [BC12] gave a different way to transform MIPs into succinct arguments,
but their transformation used multiple layers of fully homomorphic encryption, rendering it highly impracti-
cal. Unlike the MIP-to-argument transformation in this section, Bitansky and Chiesa’s transformation works
for arbitrary MIPs. The transformation in this section exploits additional structure of the specific MIP of
this section, specifically the fact that the sole purpose of the second prover in the MIP is to run a low-degree
test. In the setting of succinct arguments, this role played by the second prover can be replaced with a
polynomial commitment scheme. In summary, while Bitansky and Chiesa’s transformation from MIPs to
arguments is more general—applying to arbitrary MIPs, not just those in which the second prover is solely
used to run a low-degree test—it is also much less efficient than the transformation of this section.

8.4 Extension from Circuit-SAT to R1CS-SAT

Chapter 6 gave techniques for turning computer programs into equivalent instances of arithmetic circuit
satisfiability, and Chapter 7 and this chapter gave succinct non-interactive arguments for arithmetic circuit
satisfiability. Arithmetic circuit satisfiability is an example of an intermediate representation, a term that
refers to any model of computation that is directly amenable to application of interactive proof or argument
systems.

A related intermediate representation that has proven popular and convenient in practice is rank-1 con-
straint system (R1CS) instances. An R1CS instance is specified by three m×n matrices A,B,C with entries
from a field F and is satisfiable if and only if there is a vector z ∈ Fn with z1 = 1 such that

(A · z)◦ (B · z) =C · z. (8.3)

Here, · denotes matrix-vector product, and ◦ denotes entrywise (a.k.a. Hadamard) product. Any vector z sat-
isfying Equation (8.3) is analogous to the notion of a “correct transcript” in the context of arithmetic circuit
satisfiability (Section 8.2.1.1). We require that the first entry z1 of z be fixed to 1 because otherwise the all-
zeros vector would trivially satisfy any R1CS instance, and to ensure that there are efficient transformations
from circuit-SAT to R1CS-SAT (see Section 8.4.1).

The i’th rows, ai, bi, and ci, of the matrices A, B, and C collectively specify a so-called rank-one con-
straint, because Equation (8.3) requires that

⟨ai,z⟩ · ⟨bi,z⟩= ⟨ci,z⟩.

Rank-one refers to the fact that each constraint involves one product operation involving (a linear combina-
tion of) elements of z, namely the multiplication of ⟨ai,z⟩ and ⟨bi,z⟩.

8.4.1 Relationship Between R1CS-SAT and Arithmetic Circuit-SAT

The R1CS-SAT problem can be thought of as a generalization of the Arithmetic Circuit-SAT problem in
the following sense: any instance of Arithmetic Circuit-SAT can be efficiently transformed into instances
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of R1CS-SAT. The number of rows and columns of the matrices appearing in the resulting R1CS instance
is proportional to the number of gates in C, and the number of nonzero entries in any row of the matrices
is bounded above by the fan-in of the circuit C. For fan-in two circuits, this means that the equivalent
R1CS-SAT instances are sparse, and hence we will ultimately seek protocols where the prover(s) run in
time proportional to the number of nonzero entries of these matrices.

To see this, consider an instance {C,x,y} of arithmetic circuit-SAT, i.e., where the prover wants to
convince the verifier that there is a w such that C(x,w) = y. We need to construct matrices A,B,C such that
there exists a vector z such that Equation (8.3) holds if and only if the preceding sentence is true.

Let N be the number of gates in C, plus the sum of the lengths of x and w. Here, by gates of C, we do
not refer to the elements of the public input x of C nor non-deterministic input w. Hence, a vector of length
N has one coordinate for each entry of x and w and one for each gate of C.

The R1CS-SAT instance will have one constraint for each entry of the public input x, zero for each entry
of the witness w, one for each internal (i.e., non-output) gate, and two for each output gate (one capturing
the operation of the gate, and one capturing that it equals the claimed output value). Hence, the R1CS-SAT
instance will consist of three M× (N + 1) matrices A, B, and C, where M = N−|w|+ |y|. We will fix the
first entry z1 of z to 1, and associate each remaining entry of z with either an entry of x or w, or a gate of C.

For an entry j of z corresponding to an entry xi of x, we define the jth row of A,B,C to capture the
constraint the z j must equal xi. That is, we set the jth row of A to be the standard basis vector e1 ∈ FN+1,
the jth row of B to be the standard basis vector e j ∈ FN+1, and the jth row of C to be xi ·e1. This means that
the jth constraint in the R1CS system asserts that z j− xi = 0 which is equivalent to demanding that z j = xi.

We include an analogous constraint for each entry j of z corresponding to an entry of y.
For each entry j of z corresponding to an addition gate of C (with in-neighbors indexed by j′, j′′ ∈

{2, . . . ,N +1}), we define the jth row of A,B,C to capture the constraint that z j must equal the sum of the
two inputs to that addition gate. That is, we set the jth row of A to be the standard basis vector e1 ∈ FN+1,
the jth row of B to be e j′ + e j′′ ∈ FN+1, and the jth row of C to be e j. This means that the jth constraint in
the R1CS system asserts that (z j′+ z j′′)− z j = 0 which is equivalent to demanding that z j = z j′+ z j′′ .

Finally, for each entry j of z corresponding to a multiplication gate of C (with in-neighbors indexed by
j′, j′′ ∈{2, . . . ,N+1}), we define the jth row of A,B,C to capture the constraint the z j must equal the product
of the two inputs to that gate. That is, we set the jth row of A to be the standard basis vector e j′ ∈ FN+1,
the jth row of B to be the standard basis vector e j′′ ∈ FN+1, and the jth row of C to be e j. This means that
the jth constraint in the R1CS system asserts that (z j′ · z j′′)− z j = 0 which is equivalent to demanding that
z j = z j′ · z j′′ .

Figure 8.2 has an example circuit and the R1CS instance resulting from the above transformation.

8.4.2 An MIP for R1CS-SAT

As observed in [Set20], we can apply the ideas of this chapter to give an MIP and associated succinct
argument for R1CS instances. View the matrices A,B,C as functions fA, fB, fC : {0,1}log2 m×{0,1}log2 n→F
in the natural way as per Sections 4.3 and 4.4. Just as in the MIP of this chapter (Section 8.2.1.2), the prover
claims to hold an extension polynomial Z of a correct transcript z for the R1CS instance. Observe that a
polynomial Z : Flog2 n→ F extends a correct transcript z for the R1CS instance if and only if the following
equation holds for all a ∈ {0,1}log2 m:


 ∑

b∈{0,1}log2 n

f̃A(a,b) ·Z(b)


 ·


 ∑

b∈{0,1}log2 n

f̃B(a,b) ·Z(b)


−


 ∑

b∈{0,1}log2 n

f̃C(a,b) ·Z(b)


= 0. (8.4)

129



w1

×

×

w2

+

w3 z1

z4

z6

z2

z5

z3

0
BBBBBBBB@

2
664

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0

3
775

2
666666664

1
z1
z2
z3
z4
z5
z6

3
777777775

1
CCCCCCCCA

�

0
BBBBBBBB@

2
664

0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

3
775

2
666666664

1
z1
z2
z3
z4
z5
z6

3
777777775

1
CCCCCCCCA

=

2
664

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
y 0 0 0 0 0 0

3
775

2
666666664

1
z1
z2
z3
z4
z5
z6

3
777777775

Equivalently,

z1 · z2 = z4

1 · (z2 + z3) = z5

z4 · z5 = z6

1 · z6 = y

1

Figure 8.2: An arithmetic circuit and an equivalent R1CS instance. Knowing a witness w such that C(w) = y is
equivalent to knowing a vector z that satisfies the constraints of the R1CS. The R1CS instance is expressed in both
matrix form and, for readability, as a list of constraints.
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Let gZ denote the (log2(m))-variate polynomial

gZ(X) =


 ∑

b∈{0,1}log2 n

f̃A(X ,b) ·Z(b)


 ·


 ∑

b∈{0,1}log2 n

f̃B(X ,b) ·Z(b)


−


 ∑

b∈{0,1}log2 n

f̃C(X ,b) ·Z(b)


 (8.5)

This polynomial has degree at most 2 in each variable (i.e., it is multi-quadratic), and Equation (8.4)
holds if and only if gZ vanishes at all inputs in {0,1}log2 m.

We obtain an MIP for checking that gZ vanishes over the Boolean hypercube in a manner analogous to
Section 8.2.1.3. Specifically, we can define a related polynomial hZ by picking a random point r∈{0,1}log2 m

and, in analogy with Equation (8.2), defining

hZ(Y ) = β̃log2 m(r,Y ) ·gZ(Y ).

Following the reasoning preceding Equation (8.2), by the Schwartz-Zippel Lemma, it holds that, up to a
negligible soundness error (at most log2(m)/|F|), gZ vanishes on the Boolean hypercube if and only if

∑
a∈{0,1}log2 m

hZ(a) = 0.

The verifier can compute this last expression by applying the sum-check protocol to the polynomial

hZ(Y ) = β̃log2 m(r,Y ) ·gZ(Y ).

After applying the sum-check protocol to hZ(Y ), the verifier needs to evaluate hZ(Y ) at a random input
r′ ∈ Flog2 m. To evaluate hZ(r′), it is enough for the verifier to evaluate β̃log2 m(r,r′) and gZ(r′). The former
quantity can be evaluated by the verifier in O(log2 m) operations in F using Equation (4.19). The verifier
cannot efficiently evaluate gZ(r′) on its own, but by definition (Equation (8.5)), this quantity equals:


 ∑

b∈{0,1}log2 n

f̃A(r′,b) ·Z(b)


 ·


 ∑

b∈{0,1}log2 n

f̃B(r′,b) ·Z(b)


−


 ∑

b∈{0,1}log2 n

f̃C(r′,b) ·Z(b)


 . (8.6)

This means that to compute gZ(r′), it suffices to apply the sum-check protocol three more times, to the
following three (log2(n))-variate polynomials:

p1(X) = f̃A(r′,X) ·Z(X).

p2(X) = f̃B(r′,X) ·Z(X).

p3(X) = f̃C(r′,X) ·Z(X).

This is because applying the sum-check protocol to p1(X) computes

 ∑

b∈{0,1}log2 n

f̃A(r′,b) ·Z(b)




and similarly applying the sum-check protocol to p2 and p3 computes the remaining two quantities appearing
in Equation (8.6). As a concrete optimization, all three invocations of sum-check can be executed in parallel,
using the same randomness in each of the three invocations.
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At the end of these three final invocations of the sum-check protocol, the verifier needs to evaluate
each of p1, p2, p3 at a random input r′′. To accomplish this, it suffices for the verifier to evaluate f̃A(r′,r′′),
f̃B(r′,r′′), f̃C(r′,r′′), and Z(r′′).

At this point, the situation is exactly analogous to the MIP for arithmetic circuit-SAT of Section 8.2.1.3,
with f̃A, f̃B, and f̃C playing the roles of the “wiring predicates” ãdd and m̃ult. That is, for many natural R1CS
systems, the verifier can evaluate f̃A, f̃B, and f̃C in logarithmic time unaided, and Z(r′′) can be obtained from
the second prover using a low-degree test.

Regarding the prover’s runtime, we claim that the first prover in the MIP, if given a satisfying assignment
z ∈ Fn for the R1CS instance, can be implemented in time proportional to the number K of nonzero entries
of the matrices A, B, and C. Here, we assume without loss of generality that this number is at least n+m,
i.e., no row or column of any matrix is all zeros.

We begin by showing that in the first invocation of the sum-check protocol within the MIP, to the poly-
nomial hZ(Y ), the prover can be implemented in time proportional to the number of nonzero entries of A, B,
and C. This holds by the following reasoning. First, observe that

hZ(Y ) = β̃log2 m(r,Y ) ·gZ(Y ) = β̃log2 m(r,Y ) ·q1(Y ) ·q2(Y )− β̃log2 m(r,Y ) ·q3(Y ), (8.7)

where

q1(Y ) =


 ∑

b∈{0,1}log2 n

f̃A(Y,b) ·Z(b)


 ,

q2(Y ) =


 ∑

b∈{0,1}log2 n

f̃B(Y,b) ·Z(b)


 ,

q3(Y ) =


 ∑

b∈{0,1}log2 n

f̃C(Y,b) ·Z(b)


 .

We wish to apply Lemma 4.5 to conclude that the prover in the sum-check protocol applied the hZ can
be implemented quickly. Since β̃log2 m(r,Y ), q1(Y ), q2(Y ), and q3(Y ) are all multilinear polynomials in the
variables Y , to apply Lemma 4.5, it is enough to show that all four of these multilinear polynomials can be
evaluated at all inputs a ∈ {0,1}log2 m in time proportional to the number of nonzero entries of A, B, and
C.109

First, we observe that β̃log2 m(r,a) can be evaluated by the prover at all inputs a ∈ {0,1}log2 m in O(m)
total time, as this task is equivalent to evaluating all (logm)-variate Lagrange basis polynomials at input
r ∈ Flogm, which the proof of Lemma 3.8 revealed is possible to achieve in O(m) time.

Second, we turn to the claim that q1, q2, and q3 can be evaluated at all inputs a ∈ {0,1}log2 m in the
requisite time bound. This holds because, if we interpret a ∈ {0,1}log2 m as a number in {1, ...,m} and let
Aa, Ba, and Ca respectively denote the ath row of A, B, and C, then q1(a) is simply Aa · z, and similarly
q2(a) = Ba · z and q3(a) =Ca · z. Hence all three polynomials can be evaluated at all a ∈ {0,1}log2(m) in time
proportional to the number of nonzero entries of the three matrices A, B, and C.

109Equation (8.7) represents hZ as a sum of products of O(1) multilinear polynomials, while Lemma 4.5 as stated applies only
to products of O(1) multilinear polynomials directly. But the lemma extends easily to sums of polynomials, because the honest
prover’s messages in the sum-check protocol applied to a sum of two polynomials p and q is just the sum of the messages when the
sum-check protocol is applied to p and q individually.
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Similar observations reveal that the prover in the three invocations of the sum-check protocol applied to
p1, p2, and p3 can also be implemented in time proportional to the number of nonzero entries of A, B, and C.
For example, p1(X) is a product of two multilinear polynomials f̃A(r′,X) and Z(X). To apply Lemma 4.5,
the evaluations of Z(X) at all inputs b ∈ {0,1}log2 n are directly given by the satisfying assignment vector z
for the R1CS instance. Turning to f̃A(r′,X), let v∈Fn denote the vector of all (log2 n)-variate Lagrange basis
polynomials evaluated at r′. Note that the proof of Lemma 3.8 shows that the vector v can be computed in
O(n) time. It can be seen that for b ∈ {0,1}log2 n, f̃A(r′,b) is just the inner product of v with the b’th column
of A, which (given v) can be computed in time proportional to the number of nonzero entries in this column
of A. This completes the explanation of why p1(X) can be evaluated at all inputs b ∈ {0,1}log2 n in time
proportional to the number of nonzero entries of A, and similarly for p2(X) and p3(X) (with A replaced with
B and C respectively).

8.5 MIP = NEXP

In the MIP for arithmetic circuit-SAT of Section 8.2, if the circuit has size S then the verifier’s runtime
is poly(logS), plus the time required to evaluate ãdd, m̃ult, and ĩo at random inputs. The transformation
from computer programs to circuit-SAT instances sketched in Section 6.5 transforms any non-deterministic
Random Access Machine running in time T into an arithmetic circuit of size Õ(T ) in which ãdd, m̃ult, and
ĩo can be evaluated at any desired point in time O(logT ). This means that the verifier in the MIP applied to
the resulting circuit runs in polynomial time as long as T ≤ 2nc

for some constant c > 0. In other words, the
class of problems solvable in non-deterministic exponential time (NEXP) is contained in MIP, the class of
languages solvable by a multi-prover interactive proof with a polynomial time verifier [BFL91].

The other inclusion, that MIP⊆NEXP, follows from the following simple reasoning. Given any multi-
prover interactive proof system for a language L and input x, one can in non-deterministic exponential
time calculate the acceptance probability of the optimal strategy available to provers attempting to convince
the verifier to accept, as follows. First, non-deterministically guess the optimal strategies of the provers.
Second, compute the acceptance probability that the strategy induces by enumerating over all possible coin
tosses of the verifier and seeing how many lead to acceptance when interacting with the optimal prover
strategy [FRS88]. Since the multi-prover interactive proof system is a valid MIP for L this acceptance
probability is at least 2/3 if and only if x ∈ L.
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Chapter 9

PCPs and Succinct Arguments

9.1 PCPs: Definitions and Relationship to MIPs

In an MIP, if a prover is asked multiple questions by the verifier, then the prover can behave adaptively,
which means that the prover’s responses to any question can depend on the earlier questions asked by the
verifier. This adaptivity was potentially bad for soundness, because the prover’s ability to behave adaptively
makes it harder to “pin down” the prover(s) in a lie. But, as will become clear below, it was potentially good
for efficiency, since an adaptive prover can be asked a sequence of questions, and only needs to “think up”
answers to questions that are actually asked.

In contrast, Probabilistically Checkable Proofs (PCPs) have non-adaptivity baked directly into the defi-
nition, by considering a verifier V who is given oracle access to a static proof string π . Since π is static, V
can ask several queries to π , and π’s response to any query qi can depend only on qi, and not on q j for j ̸= i.

Definition 9.1. A probabilistically checkable proof system (PCP) for a language L ⊆ {0,1}∗ consists of a
probabilistic polynomial time verifier V who is given access to an input x, and oracle access to a proof string
π ∈ Σℓ. The PCP has completeness error δc and soundness error δs if the following two properties hold.

1. (Completeness) For every x ∈ L, there exists a proof string π ∈ Σℓ such that Pr[Vπ(x) = accept] ≥
1−δc.

2. (Soundness) For every x /∈ L and every proof string π ∈ Σℓ, Pr[Vπ(x) = accept]≤ δs.

ℓ is referred to as the length of the proof, and Σ as the alphabet used for the proof. We think of all of
these parameters as functions of the input size n. We refer to the time required to generate the honest proof
string π as the prover time of the PCP.

Remark 9.1. The PCP model was introduced by Fortnow, Rompel, and Sipser [FRS88], who referred to
it as the “oracle” model (we used this terminology in Lemma 8.2). The term Probabilistically Checkable
Proofs was coined by Arora and Safra [AS98].

Remark 9.2. Traditionally, the notation PCPδc,δs [r,q]Σ is used to denote the class of languages that have a
PCP verifier with completeness error δc, soundness error δs, and in which the verifier uses at most r random
bits, and makes at most q queries to a proof string π over alphabet Σ. This notation is motivated in part by
the importance of the parameters r, q, and Σ in applications to hardness of approximation. In the setting of
verifiable computing, the most important costs are typically the verifier’s and prover’s runtime, and the total
number q of queries (since, when PCPs are transformed into succinct arguments, the proof length of the
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argument is largely determined by q). Note however that the proof length ℓ is a lower bound on the prover’s
runtime in any PCP system since it takes time at least ℓ to write down a proof of length ℓ. Hence, obtaining a
PCP with a small proof length is necessary, but not sufficient, for developing a PCP system with an efficient
prover.

PCPs and MIPs are closely related: any MIP can turned into a PCP, and vice versa. However, both
transformations can result in a substantial increase in costs. The easier direction is turning an MIP into
a PCP. This simple transformation dates back to Fortnow, Rompel, and Sipser, who introduced the PCP
model, albeit under a different name.

Lemma 9.2. Suppose L⊆ {0,1}∗ has a k-prover MIP in which V sends exactly one message to each prover,
with each message consisting of at most rQ bits, and each prover sends at most rA bits in response to the
verifier. Then L has a k-query PCP system over an alphabet Σ of size 2rA , where the proof length is k ·2rQ ,
with the same verifier runtime and soundness and completeness errors as the MIP.

Sketch. For every prover Pi in the MIP, the PCP proof has an entry for every possible message that V might
send to Pi. The entry is equal to the prover’s response to that message from V . The PCP verifier simulates
the MIP verifier, treating the proof entries as prover answers in the MIP.

Remark 9.3. It is also straightforward to obtain a PCP from a k-prover MIP in which V sends multiple
messages to each prover. If each prover Pi is sent z messages mi,1, . . . ,mi,z in the MIP, obtain a new MIP
by replacing Pi with z provers Pi,1, · · · ,Pi,z who are each sent one message (the message to Pi, j being the
concatenation of mi,1, . . . ,mi, j).110 The verifier in the (z ·k)-prover MIP simulates the verifier in the k-prover
MIP, treating Pi, j’s answer as if it were Pi’s answer to mi, j. Completeness of the resulting (z ·k)-prover MIP
follows from completeness of the original k-prover MIP, by having prover Pi, j answer the same as Pi would
upon receiving message mi, j. Soundness of the resulting (z · k)-prover MIP is implied by soundness of the
original k-prover MIP.

Finally, apply Lemma 9.2 to the resulting (z · k)-prover MIP.

Lemma 9.2 highlights a fundamental difference between MIPs and PCPs: in a PCP, the prover must pre-
compute a response for every possible query of the verifier, which will result in a very large prover runtime
unless the number of possible queries from the verifier is small. Whereas in an MIP, the provers only need
to compute responses “on demand”, ignoring any queries that the verifier might have asked, but did not.
Hence, the MIP =⇒ PCP transformation of Lemma 9.2 may cause a huge blowup in prover runtime.

Lemma 8.2 gave a transformation from a PCP to a 2-prover MIP, but this transformation was also
expensive. In summary, the tasks of constructing efficient MIPs and PCPs are incomparable. On the one
hand, PCP provers are inherently non-adaptive, but they must pre-compute the answers to all possible queries
of the verifier. MIP provers only need to compute answers “on demand”, but they can behave adaptively, and
while there are generic techniques to force them to behave non-adaptively, these techniques are expensive.

9.2 Compiling a PCP Into a Succinct Argument

We saw in Chapter 7 that one can turn the GKR interactive proof for arithmetic circuit evaluation into a
succinct argument for arithmetic circuit satisfiability (recall that the goal of a circuit satisfiability instance

110The reason Pi, j must be sent the concatenation of the first j messages to Pi rather than just mi, j is to ensure completeness of
the resulting (z · k)-prover MIP. Pi’s answer to mi, j is allowed to depend on all preceding messages mi,1, . . . ,mi, j−1. So in order for
Pi, j to be able to determine Pi’s answer to mi, j, it may be necessary for Pi, j to know mi,1, . . . ,mi, j−1.
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{C,x,y} is to determine whether there exists a witness w such that C(x,w) = y). At the start of the argument,
the prover sends a cryptographic commitment to the multilinear extension w̃ of a witness w. The prover and
verifier then run the GKR protocol to check that C(x,w) = y. At the end of the GKR protocol, the prover is
forced to make a claim about the value of w̃(r) for a random point r. The argument system verifier confirms
that this claim is consistent with the corresponding claim derived from the cryptographic commitment to w̃.

The polynomial commitment scheme described in Section 7.3.2.2 consisted of two pieces; a string-
commitment scheme using a Merkle tree, which allowed the prover to commit to some fixed function claim
to equal w̃, and a low-degree test, which allowed the verifier to check that the function committed to was
indeed (close to) a low-degree polynomial.

If our goal is to transform a PCP rather than an interactive proof into a succinct argument, we can use
a similar approach, but omit the low-degree test. Specifically, as explained below, Kilian [Kil92] famously
showed that any PCP can be combined with Merkle-hashing to yield four-message argument systems for all
of NP, assuming that collision-resistant hash functions exist. The prover and verifier runtimes are the same
as in the underlying PCP, up to low-order factors, and the total communication cost is O(logn) cryptographic
hash values per PCP query. Micali [Mic00] showed that applying the Fiat-Shamir transformation to the
resulting four-message argument system yields a non-interactive succinct argument in the random oracle
model.111

The idea is the following. The argument system consists of two phases: commit and reveal. In the
commit phase, the prover writes down the PCP π , but doesn’t send it to the verifier. Instead, the prover
builds a Merkle tree, with the symbols of the PCP as the leaves, and sends the root hash of the tree to the
verifier. This binds the prover to the string π . In the reveal phase, the argument system verifier simulates the
PCP verifier to determine which symbols of π need to be examined (call the locations that the PCP verifier
queries q1, . . . ,qk). The verifier sends q1, . . . ,qk to the prover to P , and the prover sends back the answers
π(q1), . . . ,π(qk), along with their authentication paths.

Completeness can be argued as follows. If the PCP satisfies perfect completeness, then whenever there
exists a w such that C(x,w) = y, there is always some proof π that would convince the PCP verifier to accept.
Hence, if the prover commits to π in the argument system, and executes the reveal phase as prescribed, the
argument system verifier will also be convinced to accept.

Soundness can be argued roughly as follows. The analysis of Section 7.3.2.2 showed that the use of the
Merkle tree binds the prover to a fixed string π ′, in the sense that after the commit phase, for each possible
query qi, there is at most one value π ′(qi) that the prover can successfully reveal without finding a collision
under the hash function used to build the Merkle tree (and collision-finding is assumed to be intractable).
Hence, if the argument system prover convinces the argument system verifier to accept, π ′ would convince
the PCP verifier to accept. Soundness of the argument system is then immediate from soundness of the PCP
system.

Remark 9.4. In order to turn a PCP into a succinct argument, we used a Merkle tree, and did not need to
use a low-degree test. This is in contrast to Section 7.3, where we turned an interactive proof into a succinct
argument by using a polynomial commitment scheme; the polynomial commitment scheme given in Section
7.3 combined a Merkle tree and a low-degree test.

However, the PCP approach to building succinct arguments has not “really” gotten rid of the low-degree
test. It has just pushed it out of the commitment scheme and “into” the PCP. That is, short PCPs are

111In the non-interactive argument obtained by applying the Fiat-Shamir transformation to Kilian’s 4-message argument, the
honest prover uses the random oracle in place of a collision-resistant hash function to build the Merkle tree over the PCP proof, and
the PCP verifier’s random coins are chosen by querying the random oracle at the root hash of the Merkle tree.
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themselves typically based on low-degree polynomials, and the PCP itself typically makes use of a low-
degree test.

A difference between the low-degree tests that normally go into short PCPs and the low-degree tests
we’ve already seen is that short PCPs are usually based on low-degree univariate polynomials (see Sec-
tion 9.4 for details). So the low-degree tests that go into short PCPs are targeted at univariate rather than
multi-variate polynomials. Low-degree univariate polynomials are codewords in the Reed-Solomon error-
correcting code, which is why many papers on PCPs refer to “Reed-Solomon PCPs” and “Reed-Solomon
testing”. In contrast, efficient interactive proofs and MIPs are typically based on low-degree multivariate
polynomials (also known as Reed-Muller codes), and hence use low-degree tests that are tailored to the
multivariate setting.

9.2.1 Knowledge-Soundness of Kilian and Micali’s Arguments

Recall (see Section 7.4) that an argument system satisfies knowledge-soundness if, for any efficient prover
P that convinces the argument system verifier to accept with non-negligible probability, P must know a
witness w to the claim being proven. This is formalized by demanding that there is an efficient algorithm E
that is capable of outputting a valid witness if given the ability to repeatedly “run” P .

Barak and Goldreich [BG02] showed that Kilian’s argument system is not only sound, but in fact
knowledge-sound. This assertion assumes that the underlying PCP that the argument system is based on
also satisfies an analogous knowledge-soundness property, meaning that given a convincing PCP proof π ,
one can efficiently compute a witness. All of the PCPs that we cover in this survey have this knowledge-
soundness property.

Valiant [Val08] furthermore showed that applying the Fiat-Shamir transformation to render Kilian’s
argument system non-interactive (as per Micali [Mic00]) yields a knowledge-sound argument in the random
oracle model. Recall that the Fiat-Shamir transformation “removes” from Kilian’s argument system the
verifier’s message specifying the symbols of the committed PCP proof that it wishes to query. This message
is chosen to equal the evaluation of the random oracle at the argument-system prover’s first message, which
specifies the Merkle-hash of the committed PCP proof.

The rough idea of Valiant’s analysis is to show that, if a prover P in the Fiat-Shamir-ed protocol pro-
duces an accepting transcript for Kilian’s interactive protocol, then one of following three events must have
occurred: either (1) P found a “hash collision” enabling it to break binding of the Merkle tree, or (2) P built
Merkle trees over one or more “unconvincing” PCP proofs π , yet applying the Fiat-Shamir transformation
to determine which symbols of π are queried caused the PCP verifier to accept π anyway, or (3) P built a
Merkle tree over a “convincing” PCP proof π , and the first message of the transcript produced by P is the
root hash of this Merkle tree.

The first event is unlikely to occur unless the prover makes a huge number of queries to the random
oracle. This is because the probability of finding a collision after T queries to the random oracle is at most
T 2/2λ where 2λ is the output length of the random oracle. The second event is also unlikely to occur,
assuming the soundness error ε of the PCP is negligible. Specifically, if the prover makes T queries to the
random oracle, the probability event (2) occurs is at most T · ε .

This means that (3) must hold (unless P makes super-polynomially many queries to the random ora-
cle). That is, any prover P for the non-interactive argument that produces accepting transcripts with non-
negligible probability must build a Merkle tree over a convincing PCP proof π and produce a transcript
whose first message is the root hash of the Merkle tree. In this case, one can identify the entire Merkle tree
by observing P’s queries to the random oracle. For example, if v0 denotes the root hash provided in the
transcript, then one can learn the values v1,v2 of the children of the root in the Merkle tree by looking for
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the (unique) query (v1,v2) made by P to the random oracle R satisfying R(v1,v2) = v0. Then one can learn
the values of the grandchildren of the root by looking for the (unique) random oracle queries (v3,v4) and
(v5,v6) made by P such that R(v3,v4) = v1 and R(v5,v6) = v2. And so on.

The values of the leaves of the Merkle tree are just the symbols of the convincing PCP proof π . By
assumption that the PCP system satisfies knowledge-soundness, one can efficiently extract a witness from
π .

The next chapter (Chapter 10) covers IOPs, an interactive generalization of PCPs. Ben-Sasson, Spooner,
and Chiesa [BCS16] generalized Micali’s PCP-to-SNARK transformation to an IOP-to-SNARK transfor-
mation, and via an analysis similar to Valiant’s, established that the transformation preserves knowledge-
soundness of the IOP.112 See Section 10.1 for details of the IOP-to-SNARK transformation.

9.3 A First Polynomial Length PCP, From an MIP

In light of Lemma 9.2, it is reasonable to ask whether the MIP of Section 8.2 can be transformed into a PCP
for arithmetic circuit satisfiability, of length polynomial in the circuit size S. The answer is yes, though the
polynomial is quite large—at least S3.

Suppose we are given an instance (C, x, y) of arithmetic circuit satisfiability, where C is defined over field
F. Recall that in the MIP of Section 8.2, the verifier used the first prover to apply the sum-check protocol
to a certain (3logS)-variate polynomial hx,y,Z over F, where S is the size of C. This polynomial was itself
derived from a polynomial Z, claimed to equal the multilinear extension of a correct transcript for (C, x, y).
The MIP verifier used the second prover to apply the point-vs-line low-degree test to the O(logS)-variate
polynomial Z, which required the verifier to send P2 a random line in FlogS (such a line can be specified
with 2logS field elements). In order to achieve a soundness error of, say, 1/ log(n), it was sufficient to work
over a field F of size at least log(S)c0 for a sufficiently large constant c0 > 0.113

The total number of bits that the verifier sent to each prover in this MIP was rQ =Θ(log(S) log |F|), since
the verifier had to send a field element for each variable over which hx,y,Z was defined. If |F|= Θ(log(S)c),
then rQ = Θ(log(S) log log(S)). Applying Lemma 9.2 and Remark 9.3 to transform this MIP into a PCP, we
obtain a PCP of length Õ(2rQ) = SO(log logS). This is slightly superpolynomial in S. On the plus side, the
verifier runs in time O(n+ logS), which is linear in the size n of the input assuming S < 2n.

However, by tweaking the parameters used within the MIP itself, we can reduce rQ from O(log(S) log log(S))
to O(logS). Recall that within the MIP, each gate in C was assigned a binary label, and the MIP made use
of functions addi, multi, io, I, and W that take as input O(logS) binary variables representing the labels of
one or more gates. The polynomial hx,y,Z was then defined in terms of the multilinear extensions of these
functions. This led to an efficient MIP, in which the provers’ runtime was O(S logS). But by defining the
polynomials to be over Ω(logS) many variables, rQ becomes slightly super logarithmic, resulting in a PCP
of length superpolynomial in S. To rectify this, we must find a way to redefine the polynomials, such that
they involve fewer than logS variables.

To this end, suppose we assign each gate in C a label in base b instead of base 2. That is, each gate label
will consist of logb(S) digits, each in {0,1, . . . ,b− 1}. Then we can redefine the functions addi, multi, io,

112More precisely, knowledge-soundness of the resulting SNARK is characterized by knowledge-soundness of the IOP against a
class of attacks called state-restoration attacks, discussed in Section 5.2.

113In cryptographic applications, one would want soundness error n−ω(1) rather than 1/ logn. The soundness error of the PCP
in this section could be improved to n−ω(1) by repeating the PCP O(logn) times independently, and rejecting if the PCP verifier
rejects in any one of the runs. Such repetition is expensive in practice, but the PCP of this section is presented for didactic reasons
and not meant to be practical.
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Communication Queries V time P time
polylog(S) bits O(logS/ log logS) O(n+polylog(S)) poly(S)

Table 9.1: Costs of PCP of Section 9.3 for arithmetic circuit satisfiability (obtained from the MIP of Section 8.2),
when run on a circuit C of size S. The stated bound on P’s time assumes P knows a witness w for C.

I, and W to take as input O(logb(S)) variables representing the b-ary labels of one or more gates. Observe
that, the larger b is, the smaller the number of variables these functions are defined over.

We can then define hx,y,Z exactly as in Section 8.2, except if b > 2 then higher-degree extensions of
addi, multi, io, I, and W must be used in the definition, rather than multilinear extensions. Specifically,
these functions, when defined over domain {0,1, . . . ,b−1}v for the relevant value of v, each have a suitable
extension of degree at most b in each variable.

Compared to the MIP of Section 8.2, the use of the higher-degree extensions increases the degrees of
all of the polynomials exchanged in the sum-check protocol and in the low-degree test by an O(b) factor.
Nonetheless, the soundness error remains at most O(b · logb(S)/|F|c) for some constant c > 0. Recall that
we would like to take b as large as possible, but this is in tension with the requirement to keep the soundness
error o(1) when working over a field of size polylogarithmic in S. Fortunately, it can be checked that
if b ≤ O(log(S)/ log log(S)), then b · logb(S) ≤ polylog(S), and hence the soundness error is still at most
polylog(S)/|F|c. In conclusion, if we set b to be on the order of log(S)/ log log(S), then as long as the MIP
works over a field F of size that is a sufficiently large polynomial in log(S), the soundness error of the MIP
is still at most, say, 1/ logn.

For simplicity, let us choose b such that bb = S. This choice of b is in the interval [b1,2b1] where
b1 = log(S)/ log log(S).114 In this modified MIP, the total number of bits sent from the verifier to the provers
is rQ = O(b · log |F|) = O((log(S)/ log log(S)) · log logS) = O(logS). If we apply Lemma 9.2 and Remark
9.3 to this MIP, the resulting PCP length is Õ(2rQ)≤ poly(S).

Unfortunately, when we write rQ = O(logS), the constant hidden by the Big-Oh notation is at least 3.
This is because hx,y,Z is defined over 3 logb(S) variables, which is at least 3b when bb = S, and applying
the sum-check protocol to hx,y,Z requires V to send at least one field element per variable. Meanwhile, the
field size must be at least 3 logb(S)≥ 3b to ensure non-trivial soundness. Hence, 2rQ ≥ (3b)3b ≥ S3−o(1). So
while the proof length of the PCP is polynomial in S, it is a large polynomial in S.

Nonetheless, this yields a non-trivial result: a PCP for arithmetic circuit satisfiability in which the
prover’s runtime is poly(S), the verifier’s is O(n), and the number of queries the verifier makes to the
proof oracle is O(log(S)/ log log(S)). As the total communication cost of the MIP is at most polylog(S), all
of the answers to the verifier’s queries can be communicated in polylog(S) bits in total (i.e., the alphabet
size of the PCP is |Σ| ≤ 2polylog(S)). Applying the PCP-to-argument compiler of Section 9.2 yields a succinct
argument for arithmetic circuit satisfiability with a verifier that runs in time O(n) and a prover that runs in
time poly(S).

Remark 9.5. To clarify, the use of labels in base b = 2 rather than base b = Θ(log(S)/ log log(S)) is the
superior choice in interactive settings such as IPs and MIPs, if the goal is to minimize total communication.
The reason is that binary labels allow the IP or MIP prover(s) to send polynomials of degree O(1) in each
round, and this keeps the communication costs low.

To recap, we have obtained a PCP for arithmetic circuit satisfiability with a linear time verifier, and
a prover who can generate the proof in time polynomial in the size of the circuit. But to get a PCP that

114Indeed, bb1
1 ≤ S, while (2b1)

2b1 ≥ S2−o(1).
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has any hope of being practical, we really need the prover time to be very close to linear in the size of
the circuit. Obtaining such PCPs is quite complicated and challenging. Indeed, researchers have not had
success in building plausibly practical VC protocols based on “short” PCPs, by which we mean PCPs for
circuit satisfiability whose length is close to linear in the size of the circuit. To mitigate the bottlenecks in
known short PCP constructions, researchers have turned to the more general interactive oracle proof (IOP)
model. The following section and chapter cover highlights from this line of work. Specifically, Section 9.4
sketches the construction of PCPs for arithmetic circuit satisfiability where the PCP can be generated in time
quasilinear in the size of the circuit. This construction remains impractical and is included in this survey
primarily for historical context. Chapter 10 describes IOPs that come closer to practicality.

9.4 A PCP of Quasilinear Length for Arithmetic Circuit Satisfiability

We have just seen (Sections 9.1 and 9.3) that known MIPs can fairly directly yield a PCP of polynomial
size for simulating a (non-deterministic) Random Access Machine (RAM) M, in which the verifier runs in
time linear in the size of the input x to M. But the proof length is a (possibly quite large) polynomial in the
runtime T of M, and the length of a proof is of course a lower bound on the time required to generate it. This
section describes how to use techniques tailored specifically to the PCP model to reduce the PCP length to
T ·polylog(T ), while maintaining a verifier runtime of n ·polylog(T ).

The PCP described here originates in work of Ben-Sasson and Sudan [BS08]. Their work gave a PCP
of size Õ(T ) in which the verifier runs in time poly(n) and makes only a polylogarithmic number of queries
to the proof oracle. Subsequent work by Ben-Sasson et al. [BGH+05] reduced the verifier’s time to n ·
polylog(T ). Finally, Ben-Sasson et al. [BSCGT13b] showed how the prover can actually generate the PCP
in T · polylog(T ) time using FFT techniques, and provided various concrete optimizations and improved
soundness analysis. This PCP system is fairly involved, so we elide some details in this survey, seeking only
to convey the main ideas.

9.4.1 Step 1: Reduce to checking that a polynomial vanishes on a designated subspace

In Ben-Sasson and Sudan’s PCP, the claim that M(x) = y is first turned into an equivalent circuit satisfiability
instance {C,x,y}, and the prover (or more precisely, the proof string π) claims to be holding a low-degree
extension Z of a correct transcript W for {C,x,y}, just like in the MIP of Section 8.2. And just as in the MIP,
the first step of Ben-Sasson and Sudan’s PCP is to construct a polynomial gx,y,Z such that Z extends a correct
transcript for {C,x,y} if and only if gx,y,Z(a) = 0 for all a in a certain set H.

The details, however, are different and somewhat more involved than the construction in the MIP. We
elide several of these details here, and focus on highlighting the primary simlarities and differences between
the constructions in the PCP and the MIP of Section 8.2.

Most importantly, in the PCP, gx,y,Z is a univariate polynomial. The PCP views a correct transcript as
a univariate function W : [S]→ F rather than as a v-variate function (for v = logS) mapping {0,1}v to F as
in the MIP. Hence, any extension Z of W is a univariate polynomial, and gx,y,Z is defined to be a univariate
polynomial too. (The reason for using univariate polynomials is that it allows the PCP to utilize low-degree
testing techniques in Steps 2 and 3 below that are tailored to univariate rather than multivariate polynomials.
It is not currently known how to obtain PCPs of quasilinear length based on multivariate techniques, where
by quasilinear length, we mean quasilinear in T , the runtime of the RAM that the prover is supposed to
execute). Note that even the lowest-degree extension Z of W may have degree |S|−1, which is much larger
than the degrees of the multivariate polynomials that we’ve used in previous sections, and gx,y,Z will inherit
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Communication Queries V time P time
polylog(S) bits polylog(S) O(n ·polylog(S)) O(S ·polylog(S))

Table 9.2: Costs of PCP from Section 9.4 when run on a non-deterministic circuit C of size S. The PCP is due to
Ben-Sasson and Sudan [BS08], as refined by Ben-Sasson et al. [BGH+05] and [BSCGT13b]. The stated bound on
P’s time assumes P knows a witness w for C.

this degree.
The univariate nature of gx,y,Z forces several additional differences in its construction, compared to the

O(logS)-variate polynomial used in the MIP. In particular, in the univariate setting, gx,y,Z is specifically
defined over a field of characteristic 2.115 The structure of fields of characteristic 2 are exploited multiple
times in the construction of gx,y,Z and in the PCP as a whole. For example:

• Let us briefly recall a key aspect of the transformation from Section 6.5 that turned a RAM M into an
equivalent circuit satisfiability instance {C,x,y}. De Bruijn graphs played a role in the construction
of C, where they were used to “re-sort” a purported trace of the execution of M from time order into
memory order.

To ensure that the MIP or PCP verifier does not have to fully materialize C (which is of size at
least T , far larger than the verifier’s allowed runtime of n · polylog(T )), it is essential that C have an
“algebraically regular” wiring pattern. In particular, in both the PCP of this section and the MIP of
Section 8.2, it is important that C’s wiring pattern be “capturable” by a low-degree polynomial that the
verifier can quickly evaluate. This is essential for ensuring that the polynomial gx,y,Z used within the
MIP or PCP satisfies the following two essential qualities: (1) the degree of gx,y,Z is not much larger
than that of Z (2) the verifier can efficiently evaluate gx,y,Z(r) at any point r, if given Z’s values at a
handful of points derived from r.

In Ben-Sasson and Sudan’s PCP, the construction of gx,y,Z exploits the fact that there is a way to
assign labels from F= F2ℓ to nodes in a De Bruijn graph such that, for each node v, the labels of the
neighbors of v are affine (i.e., degree 1) functions of the label of v. (Similar to Section 6.5, the reason
this holds boils down to the fact that the neighbors of a node with label v are simple bit-shifts of v.
When v is an element of F2ℓ , a bit-shift of v is an affine function of v.).

This is crucial for ensuring that the degree of gx,y,Z is not much larger than the degree of Z itself. In
particular, the univariate polynomial gx,y,Z over F used in the PCP has the form

gx,y,Z(z) = A(z,Z(N1(z)), . . . ,Z(Nk(z))), (9.1)

where (N1(z), . . . ,Nk(z)) denotes the neighbors of node z in the De Bruijn graph, and A is a certain
“constraint polynomial” of polylogarithmic degree. Since N1, . . . ,Nk are affine over F2ℓ , deg(gx,y,Z) is
at most a polylogarithmic factor larger than the degree of Z itself. Moreover, the verifier can efficiently
evaluate each affine function N1, . . . ,Nk at a specified input r [BGH+05].

• The set H on which gx,y,Z should vanish if Z extends a correct transcript is chosen to ensure that the
polynomial ZH(z) = ∏α∈H(z−α) is sparse (having O(polylog(S)) nonzero coefficients). The poly-
nomial ZH is referred to as the vanishing polynomial for H, and via Lemma 9.3 in the next section,

115The characteristic of a field F is the smallest number n such that 1+1+ · · ·+1︸ ︷︷ ︸
n times

= 0. If a F has size pk for prime p and integer

k > 0, then its characteristic is p. In particular, any field of size equal to a power of 2 has characteristic 2. We denote the field of
size 2k as F2k .
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it plays a central role in the PCPs, IOPs (Chapter 10), and linear PCPs (Section 17.4) described here-
after in this survey. The sparsity of ZH ensures that it can be evaluated an any point in polylogarithmic
time, even though H is a very large set (of size Ω(S)). This will be crucial to allowing the verifier to
run in polylogarithmic time in Step 2 of the PCP, discussed below. It turns out that if F has character-
istic O(1) and H is a linear subspace of F, then ZH(z) has sparsity O(logS) as desired. Later in this
manuscript (e.g., in the IOP of Section 10.3.2), H will instead consist of all n’th roots of unity in F, in
which case ZH(z) = zn−1 is clearly sparse.

The final difference worth highlighting is that the field F2ℓ over which gx,y,Z is defined must be small in
the PCP (or, at least, the set of inputs at which the verifier might query gx,y,Z must be a small). In particular,
the set must be of size O(S · polylog(S)), since the proof length is lower bounded by the size of the set of
inputs at which the verifier might ask for any evaluation of gx,y,Z . This is in contrast to the MIP setting, where
we were happy to work a very large field size (of size, say, 2128 or larger) to ensure negligible soundness
error. This is a manifestation of the fact (mentioned in Section 9.1) that in an MIP the prover only has to
“think up” answers to queries that the verifier actually asks, while in a PCP, the prover has to write down the
answer to every possible query that the verifier might ask.

9.4.2 Step 2: Reduce to Checking that a Related Polynomial is Low-Degree

Note that checking whether a low-degree polynomial gx,y,W vanishes on H is very similar to the core state-
ment checked in our MIP from Section 8.2. There, we checked that a multilinear polynomial derived from
x,y, and W vanished on all Boolean inputs. Here, we are checking whether a univariate polynomial gx,y,W

vanishes on all inputs in a pre-specified set H. We will rely on the following simple but essential lemma,
which will arise several other times in this survey (including when we cover linear PCPs in Chapter 17).

Lemma 9.3. (Ben-Sasson and Sudan [BS08]) Let F be a field and H ⊆F. For d≥ |H|, a degree-d univariate
polynomial g over F vanishes on H if and only if the polynomial ZH(t) := ∏α∈H(t−α) divides g, i.e., if and
only if there exists a polynomial h∗ with deg(h∗)≤ d−|H| such that g = ZH ·h∗.

Proof. If g = ZH · h∗, then for any α ∈ H, it holds that g(α) = ZH(α) · h∗(α) = 0 ·α = 0, so g indeed
vanishes on H.

For the other direction, observe that if g(α) = 0, then the polynomial (t−α) divides g(t). It follows
immediately that if g vanishes on H, then g is divisible by ZH .

So to convince V that gx,y,Z vanishes on H, the proof merely needs to convince V that gx,y,Z(z) = ZH(z) ·
h∗(z) for some polynomial h∗ of degree d−|H|. To be convinced of this, V can pick a random point r ∈ F
and check that

gx,y,Z(r) = ZH(r) ·h∗(r). (9.2)

Indeed, if gx,y,Z ̸= ZH · h∗, then this equality will fail with probability 999
1000 as long as |F| is at least 1000

times larger than the degrees of gx,y,Z and ZH ·h∗.
A PCP convincing V that Equation (9.2) holds consists of four parts. The first part contains the eval-

uations of Z(z) for all z ∈ F. The second part contains a proof πZ that Z has degree at most |H| − 1, and
hence that gx,y,Z has degree at most d = |H| ·polylog(S). The third part contains the evaluation of h∗(z) for
all z ∈ F. The fourth part purportedly contains a proof πh∗ that h∗(z) has degree at most d−|H|, and hence
that ZH ·h∗ has degree at most d.
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Let us assume that the verifier can efficiently check πZ and πh∗ to confirm that Z and h∗(z) have the
claimed degrees (this will be the purpose of Step 3 below). V can evaluate gx,y,Z(r) in quasilinear time after
making a constant number of queries to the first part of the proof specifying Z. V can compute h∗(r) with
a single query to the third part of the proof. Finally, V can evaluate ZH(r) without help in polylogarithmic
time as described in Step 1 (Section 9.4.1). The verifier can then check that gx,y,W (r) = h∗(r) ·ZH(r).

In actuality, Step 3 will not be able to guarantee that πZ and πh∗ are exactly equal to low-degree poly-
nomials, but will be able to guarantee that, if the verifier’s checks all pass, then they are each close to some
low-degree polynomial Y and h′ respectively. One can then argue that gx,y,Y vanishes on H, analogously to
the proof of Theorem 8.4 in the context of the MIP from Section 8.2.

9.4.3 Step 3: A PCP for Reed-Solomon Testing

Overview. The meat of the PCP construction is in this third step, which checks that a univariate polynomial
has low-degree. This task is referred to in the literature as Reed-Solomon testing, because codewords in the
Reed-Solomon code consist of (evaluations of) low-degree univariate polynomials (cf. Remark 9.4).

The construction is recursive. The basic idea is to reduce the problem of checking that a univariate
polynomial G1 has degree at most d to the problem of checking that a related bivariate polynomial Q over
F has degree at most

√
d in each variable. It is known (cf. Lemma 9.5 below) how the latter problem can

in turn be reduced back to a univariate problem, that is, to checking that a related univariate polynomial G2
over F has degree at most

√
d. Recursing ℓ = O(log logn) times results in checking that a polynomial Gℓ

has constant degree, which can be done with a constant number of queries to the proof. We fill in some of
the details of this outline below.

The precise soundness and completeness guarantees of this step are as follows. If G1 indeed has degree
at most d, then there is a proof π that is always accepted. Meanwhile, the soundness guarantee is that there is
some universal constant k satisfying the following property: if a proof π is accepted with probability 1− ε ,
then there is a polynomial G of degree at most d such that G1 agrees with G on at least a 1− ε · logk(S)
fraction of points in F (we say that G and G1 are at most δ -far, for δ = ε · logk(S).)

The claimed polylogarithmic query complexity of the PCP as a whole comes by repeating the base
protocol, say, m= log2k(S) times and rejecting if any run of the protocol ever rejects. If a proof π is accepted
by the m-fold repetition with probability 1− ε , then it is accepted by the base protocol with probability at
least 1− ε/ logk m, implying that G is ε-far from a degree d polynomial G1.

Reducing Bivariate Low-Degree Testing on Product Sets to Univariate Testing. The bivariate low-
degree testing technique described here is due to Spielman and Polishchuk [PS94]. Assume that Q is a
bivariate polynomial defined on a product set A×B⊆ F×F, claimed to have degree d in each variable. (In
all recursive calls of the protocol, A and B will in fact both be subspaces of F). The goal is to reduce this
claim to checking that a related univariate polynomial G2 over F has degree at most d.

Definition 9.4. For a set U ⊆ F×F, partial bivariate function Q : U → F, and nonnegative integers d1,d2,
define δ d1,d2(Q) to be the relative distance of Q from a polynomial of degree d1 in its first variable and d2 in
its second variable.116 Formally,

δ
d1,d2(Q) := min

f (x,y) : U→F,degx( f )≤d1,degy( f )≤d2

δ (Q, f ).

Let δ d1,∗(Q) and δ ∗,d2(Q) denote the relative distances when the degree in one of the variables is unrestricted.
116By relative distance between Q and another polynomial P, we mean the fraction of inputs in x ∈U such that Q(x) ̸= P(x).
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Lemma 9.5. (Bivariate test on a product set [PS94]). There exists a universal constant c0 ≥ 1 such that the
following holds. For every A,B ⊆ F and integers d1 ≤ |A|/4, d2 ≤ |B|/8 and function Q : A×B→ F, it is
the case that δ d1,d2(Q)≤ c0 ·

(
δ d1,∗(Q)+δ ∗,d2(Q)

)
.

The proof of Lemma 9.5 is not long, but we omit it from the survey for brevity.
Lemma 9.5 implies that, to test if a bivariate polynomial Q defined on a product set has degree at most d

in each variable, it is sufficient to pick a variable i ∈ {1,2}, then pick a random value r ∈ F and test whether
the univariate polynomial Q(r, ·) or Q(·,r) obtained by restricting the ith coordinate of Q to r has degree at
most d.

To be precise, if the above test passes with probability 1− ε , then
(
δ d,∗(Q)+δ ∗,d(Q)

)
/2 = ε , and

Lemma 9.5 implies that δ d,d(Q) ≤ 2 · c0 · ε . Q(r, ·) and Q(·,r) are typically called a “random row” or
“random column” of Q, respectively, and the above procedure is referred to as a “random row or column
test”.

Note that δ d,d(Q) may be larger than the acceptance probability ε by only a constant factor c1 = 2c0.
Ultimately, the PCP will will recursively apply the “Reducing Bivariate Low-Degree Testing to Univariate
Testing” technique O(log logn) times, and each step may cause δ d1,d2(Q) to blow up, relative to the rejection
probability ε , by a factor of c1. This is why the final soundness guarantee states that, if the recursive test
as a whole accepts a proof with probability 1− ε , then the input polynomial G1 is δ -close to a degree d
polynomial, where δ = ε · cO(log logS)

1 ≤ ε ·polylog(S).117

Reducing Univariate Low-Degree Testing to Bivariate Testing on a Lower Degree Polynomial. Let
G1 be a univariate polynomial defined on a linear subspace L of F (in all recursive calls of the protocol, the
domain of G1 will indeed be a linear subspace L of F). Our goal in this step is to reduce testing that G1 has
degree at most d to testing that a related bivariate polynomial Q has degree at most

√
d in each variable. It

is okay to assume that the number of vectors in L is at most a constant factor larger than d, as this will be
the case every time this step is applied.

Lemma 9.6. [BS08] Given any pair of polynomials G1(z), q(z), there exists a unique bivariate polynomial
Q(x,y) with degx(Q)< deg(G1) and degy(Q)≤ ⌊deg(G1)/deg(q)⌋ such that G1(z) = Q(z,q(z)).

Proof. Apply polynomial long-division to divide G1(z) by (y− q(z)), where throughout the long-division
procedure, terms are ordered first by their degree in z and then by their degree in y.118 This yields a repre-
sentation of G1(z) as:

G1(z) = Q0(z,y) · (y−q(z))+Q(z,y). (9.3)

By the basic properties of division in this ring, degy(Q) ≤ ⌊deg(G1)/deg(q)⌋, and degz(Q) < deg(q). To
complete the proof, set y = q(z) and notice that the first summand on the right-hand side of Equation (9.3)
vanishes.

117This bound on δ is non-trivial only if ε is smaller than some inverse-polylogarithm in S. That is, the analysis only yields
a non-trivial soundness guarantee if the prover convinces the verifier to accept with probability at least 1− ε , which is inverse-
polylogarithmically close to 1. Accordingly, to achieve negligible soundness error, the PCP verifier’s checks must be repeated
polylogarithmically many times, leading to impractical verification costs.

118Polynomial long division repeatedly divides the highest-degree term of the remainder polynomial by the highest-degree term
of the divisor polynomial to determine a new term to add to the quotient, stopping when the remainder has lower degree than the
divisor. See https://en.wikipedia.org/wiki/Polynomial_long_division for details of the univariate case. For division
involving multivariate polynomials, the “term of highest degree” is not well-defined until we impose a total ordering on the degree
of terms. Ordering terms by their degree in z and breaking ties by their degree in y ensures that the polynomial long division is
guaranteed to output a representation satisfying the properties described immediately after Equation (9.3).
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By Lemma 9.6, to establish that G1 has degree at most d, it suffices for a PCP to establish that G1(z) =
Q(z,q(z)), where the degree of Q in each variable is at most

√
d. Thus, as a first (naive) attempt, the proof

could specify Q’s value on all points in L×F. Then V can check that G1(z) = Q(z,q(z)), by picking a
random r ∈ L and checking that G1(r) = Q(r,q(r)). If this check passes, it is safe for V to believe that
G1(z) = Q(z,q(z)), as long as Q is indeed low-degree in each variable, and we have indeed reduced testing
that G1 has degree at most d to testing that Q has degree at most

√
d in each variable.

The problem with the naive attempt is that the proof has length |L| · |F|, which is far too large; we need
a proof of length Õ(|L|). A second attempt might be to have the proof specify Q’s value on all points in the
set T := {(z,q(z)) : z ∈ L}. This would allow V to check that G1(z) = Q(z,q(z)) by picking a random r ∈ L
and checking that G1(r) = Q(r,q(r)). While this shortens the proof to an appropriate size, the problem is
that T is not a product set, so Lemma 9.5 cannot be applied to check that Q has low-degree in each variable.

To get around this issue, Ben-Sasson and Sudan ingeniously choose the polynomial q(z) in such a way
that there is a set B of points, of size O(|L|), at which it suffices to specify Q’s values. Specifically, they
choose q(z) = ∏α∈L0(z−α), where L0 is a linear subspace of L containing

√
d vectors. Then q(z) is not

just a polynomial of degree
√

d, it is also a linear map on L, with kernel equal to L0. This has the effect of
ensuring that q(z) takes on just |L|/|L0| distinct values, as z ranges over L.

Ben-Sasson and Sudan use this property to show that, although T is not a product set, it is possible
to add O(L) additional points S to T to ensure that B := S ∪T contains within it a large subset that is
product. So P need only provide Q’s evaluation on the points in B: since T ⊆ B, the verifier can check
that G1(z) = Q(z,q(z)) by picking a random r ∈ L and checking that G1(r) = Q(r,q(r)), and since there is a
large product set within S ∪T , Lemma 9.5 can be applied.
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Chapter 10

Interactive Oracle Proofs

10.1 IOPs: Definition and Associated Succinct Arguments

The concrete costs of the PCP prover of the previous section are very large. In this section, we describe
more efficient protocols that operate in a generalization of the PCP setting, called Interactive Oracle Proofs
(IOPs). Introduced by [BCS16,RRR16], IOPs in fact generalize both PCPs and IPs. An IOP is an IP where,
in each round the verifier is not forced to read the prover’s entire message, but rather is given query access
to it, meaning it can choose to look at any desired symbol of the message at the “cost” of a single query.
This enables the IOP verifier to run in time sub-linear in the total proof length (i.e., the sum of the lengths
of all the messages sent by the prover during the IOP).

Ben-Sasson, Chiesa, and Spooner [BCS16] showed that any IOP can be transformed into a non-interactive
argument in the random oracle model using Merkle-hashing and the Fiat-Shamir transformation, in a man-
ner entirely analogous to the Kilian-Micali transformation from PCPs to succinct arguments of Section 9.2.
Specifically, rather than sending the IOP prover’s message in each round of the IOP, the argument sys-
tem prover sends a Merkle-commitment to the IOP prover’s message. The argument system verifier then
simulates the IOP verifier to determine which elements of the message to query, and the argument system
prover reveals the relevant symbols of the message by providing authentication paths in the Merkle tree. The
interactive argument is then rendered non-interactive using the Fiat-Shamir transformation.119

The IOPs of this chapter. In this chapter, we give an IOP for R1CS-satisfiability that is concretely much
more efficient for the prover than the PCP of the previous chapter. The IOP can be understood as a com-
bination of two constituent protocols. The first is a so-called polynomial IOP [BFS20]; this is a variant of
the IOP model described shortly. The specific polynomial IOP for R1CS that we cover, and optimizations
thereof, was developed over a sequence of works [BSCR+19, CHM+20, COS20].

The second is a polynomial commitment scheme (a notion introduced in Section 7.3) that is itself in-
stantiated via an IOP. We give two such IOP-based polynomial commitment schemes in this chapter: one
called FRI (short for Fast Reed-Solomon Interactive Oracle Proof of Proximity) with polylogarithmic proof
length [BSBHR18] (Section 10.4), and another implicit in a system called Ligero [AHIV17] with larger
proofs but a concretely faster prover (Section 10.5). We also cover a generalization of Ligero with interest-
ing performance characteristics, namely asymptotically optimal prover runtime, and no restrictions on the

119In the random oracle model, this IOP-to-SNARK transformation preserves both standard soundness and knowledge-soundness
of the underlying IOP—see the end of Section 9.2.1 for details.
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underlying field [BCG+17, BCG20a, GLS+21]. We refer to this as the Brakedown commitment, as that is
the name of the first practical implementation of this variant [GLS+21].

10.2 Polynomial IOPs and Associated Succinct Arguments

As with standard IOPs introduced in Section 10.1 above, a polynomial IOP is an interactive proof, except
that a subset of the prover’s messages are not read in full by the verifier V—let us call these messages
“special”. In a standard IOP, each special message is a string, and the verifier is given query access to
individual symbols of the string. In a polynomial IOP, each special message i specifies a polynomial hi over
a finite field F, with degree at most some specified upper bound di. In the IOPs of this chapter, hi will always
be a univariate polynomial, but in general hi may be a multivariate polynomial.

Think of hi as having a very large number of coefficients—in fact, in the polynomial IOP for R1CS
given in this chapter, the degree di of hi may be as large as the entire R1CS instance. This is why we do not
want V to have to read a description of hi in full, as that would require far more time than we’d like V to
have to spend to check the proof. Rather, V is given query access to evaluations of hi, meaning that V can
choose any input r to hi and learn hi(r).

Roughly speaking, the polynomial commitment schemes we cover in this chapter (Sections 10.4 and
10.5) allow the special messages themselves to be “implemented” via standard IOPs. That is, each polyno-
mial hi will be specified via a certain string mi. An IOP will be given such that, when the verifier requests
hi(r) and the prover sends back a claimed evaluation vi, the verifier is able to confirm that mi indeed specifies
a polynomial hi of the prescribed degree, with vi = hi(r).

In summary, when one takes a polynomial IOP for R1CS-satisfiability, and replaces each “special mes-
sage” and associated evaluation queries with a polynomial commitment scheme based on a standard IOP as
above, the entire protocol is a standard IOP, which can then be transformed into a succinct argument via the
transformation of [BCS16].

Even if the polynomial commitment scheme is not implemented via a standard IOP (as with the schemes
of Chapters 14-16) one can still obtain a succinct argument via the following three-step design process.

• First, design a public-coin polynomial IOP for circuit- or R1CS-satisfiability.

• Obtain a public-coin, interactive succinct argument by replacing each “special” message hi in the
polynomial IOP with a polynomial commitment scheme.

• Remove interaction via Fiat-Shamir.

In fact, as explained next, all SNARKs covered in this survey are designed via this recipe, with the lone
exception of those based on linear PCPs (Chapter 17).

Recasting Chapters 7 and 8 as polynomial IOPs. In Section 10.6, we recast the IP- and MIP-derived
succinct arguments of Chapters 7 and 8 as polynomial IOPs (in which there is a single special message, sent
at the start of the protocol, which specifies a multilinear rather than univariate polynomial). This recasting
provides a unified view of IP-, MIP-, and IOP-based SNARKs, and allows for a clean comparison of the
pros and cons of the various approaches.
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Relevant costs of a polynomial IOP. In a SNARK resulting from the above three-step design paradigm,
the prover must (a) compute the polynomial hi contained in each special message, and commit to it with
the relevant polynomial commitment scheme (b) answer each evaluation query hi(r) made by the verifier
and produce an associated evaluation-proof as per the polynomial commitment scheme (c) compute any
non-special messages in the polynomial IOP. In practice, (a) and (b) are often the concrete bottlenecks for
the prover. When hi is a univariate polynomial, these costs grow at least linearly with the degree di of hi, and
hence a major goal when designing polynomial IOPs is to keep di linear in the size of the circuit or R1CS
instance under consideration.

In terms of proof length and verifier time, verifying the evaluation-proofs sent in (b) above is often the
concrete bottleneck. Hence, to minimize verification costs in the resulting SNARKs, a major goal is to
minimize the number of evaluation queries that the polynomial IOP verifier makes to special messages.

10.3 A Polynomial IOP for R1CS-satisfiability

10.3.1 The univariate sum-check protocol

The key technical fact exploited in this section relates the sum of any low-degree polynomial over a po-
tentially large subset of inputs H to the polynomial’s evaluation at a single input, namely 0. Below, a
non-empty subset H ⊆ F is said to be a multiplicative subgroup of field F if H is closed under multiplication
and inverses, i.e., for any a,b ∈ H, a ·b ∈ H, and a−1,b−1 ∈ H.

Fact 10.1. Let F be a finite field and suppose that H is a multiplicative subgroup of F of size n. Then for
any polynomial q of degree less than |H| = n, ∑a∈H q(a) = q(0) · |H|. It follows that ∑a∈H q(a) is 0 if and
only if q(0) = 0.

We provide a proof of this fact. Our proof assumes several basic results in group theory, and may be
safely skipped with no loss of continuity.

Proof. When H is a multiplicative subgroup of order n, it follows from Lagrange’s Theorem in group theory
that an = 1 for any a ∈ H. Hence, H is precisely the set of n roots of the polynomial Xn−1, i.e.,

∏
a∈H

(X−a) = Xn−1. (10.1)

We begin by proving the fact for q(X) = X , i.e., we show that ∑a∈H a = 0. Indeed, it is easily seen that the
coefficient of Xn−1 when expanding out the left hand side of Equation (10.1) equals−∑a∈H a, and this must
equal 0 because the coefficient of Xn−1 on the right hand side of Equation (10.1) is 0.

Now let q(X) be any monomial X 7→ Xm for 1 < m < n. It is known that any multiplicative subgroup of
a finite field F is cyclic, meaning there is some generator h such that H = {h,h2, . . . ,hn}. Then

∑
a∈H

q(a) = ∑
a∈H

am =
n

∑
j=1

hm· j. (10.2)

Another application of Lagrange’s theorem implies that if m and n are coprime, then hm is also a gener-
ator of H, and hence ∑

n
j=1 hm· j = ∑

n
j=1 h j = ∑a∈H a = 0, where the final equality was established above.

If m and n are not coprime, then it is known that the order of hm is d := gcd(m,n), and hence letting
H ′ := {hm,h2m, . . . ,h(n/d)m}, H is the disjoint union of the sets H ′, h ·H ′, h2 ·H ′, . . . , and hd−1 ·H ′, where
for any a ∈ F, a ·H ′ denotes the set {a ·b : b ∈ H ′}.
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Since H ′ is a multiplicative subgroup of order n/d, the reasoning in the first paragraph of the proof shows
that ∑a∈H ′ a = 0. Hence, the right hand size of Equation (10.2) equals (1+h+h2 + · · ·+hd) ·∑a∈H ′ a = 0.

The lemma now follows for general polynomials q(X) = ∑
n−1
i=1 ciX i by linearity, combined with the fact

that for any constant c ∈ F, ∑a∈H c = |H| · c.

For the remainder of this section, let H be a multiplicative subgroup of F of size n as in Fact 10.1. Let p
be any univariate polynomial of degree at most D, where D may be greater than |H|= n. Recall that

ZH(X) = ∏
a∈H

(X−a)

denotes the vanishing polynomial of H. Note that Equation (10.1) implies that ZH(X) = Xn−1, i.e., ZH is
sparse, and hence can be evaluated at any desired input r in time O(logn) via repeated squaring. We derive
the following simple consequence of Fact 10.1.

Lemma 10.2. ∑a∈H p(a) = 0 if and only if there exists polynomials h∗, f with deg(h∗)≤D−n and deg( f )<
n−1 satisfying:

p(X) = h∗(X) ·ZH(X)+X · f (X). (10.3)

Proof. Suppose first that Equation (10.3) holds. Then clearly

∑
a∈H

p(a) = ∑
a∈H

(h∗(a) ·ZH(a)+a · f (a)) = ∑
a∈H

(h∗(a) ·0+a · f (a)) = ∑
a∈H

a · f (a) = 0,

where the final equality holds by Fact 10.1 and the fact that X · f (X) evaluates to 0 on input 0.
Conversely, suppose that ∑a∈H p(a) = 0. Dividing p by ZH allows us to write p(X) = h∗(X) ·ZH(x)+

r(X) for some remainder polynomial r of degree less than n. Since 0=∑a∈H p(a) =∑a∈H r(a), we conclude
by Fact 10.1 that r has no constant term. That is, we can write r(X) as X · f (X) for some f of degree less
than n−1.

The univariate sum-check protocol. Lemma 10.2 offers a polynomial IOP for verifiably computing sums
of evaluations of univariate polynomials over multiplicative subgroup H (rather than sums of multivariate
polynomial evaluations over the Boolean hypercube as considered in the sum-check protocol of Section
4.2). Specifically, in order to prove that a specified univariate polynomial p of degree D sums to 0 over a
multiplicative subgroup H with |H| = n, Lemma 10.2 implies that it is sufficient for a prover to establish
that there exists functions h∗ and f of degrees at most D−n and n−1 such that h∗ and f satisfy Equation
(10.3).

The natural way to accomplish this is to have the prover send two special messages specifying f and h∗

respectively. The verifier can then confirm (with high probability) that Equation (10.3) holds by evaluating
the left hand side and right hand side of Equation (10.3) at a random point r ∈ F and checking that the two
evaluations are equal. This requires the verifier to evaluate p, f , and h∗ at a single point r. Since both the
right hand side and left hand side of Equation (10.3) are polynomials of degree at most max{D,n}, up to
soundness error max{D,n}/|F| over the choice of r, if Equation (10.3) holds at the randomly chosen point
r, then it is safe for the verifier to believe that Equation (10.3) holds as an equality of formal polynomials.

Remark 10.1. It is also possible to give an analogous IOP for confirming that p sums to 0 over an additive
rather than multiplicative subgroup H of F. This can be useful when working over fields of characteristic 2
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(i.e., of size equal to a power of 2), since if a field has size 2k for positive integer k, then it has an additive
subgroup H of size 2k′ for every positive integer k′ < k; moreover the vanishing polynomial ZH(Y ) =
∏a∈H(a−h) is sparse (just as in the PCP of Section 9.4.1).

10.3.2 A Polynomial IOP for R1CS-SAT via Univariate Sum-Check

Motivation. In this section, we explain how to use the univariate sum-check protocol to give a polynomial
IOP for R1CS-SAT. The reader may wonder, since IOPs are able to leverage interaction, why not just use the
same techniques as in the MIP for R1CS-SAT of Section 8.4.2, which indeed we recast as a polynomial IOP
in Section 10.6? The answer is that the MIP worked with multilinear polynomials over O(logn)-variables,
resulting in a protocol with at least O(logn) rounds. Here, we are seeking to have the prover only send
univariate polynomials. This happens to result in a polynomial IOP with just constantly many rounds.120121

As we discuss in Section 10.6, this ultimately leads to SNARKs with a different cost profile than MIP-
derived SNARKs.

In summary, in this section we wish for the prover to exclusively send univariate polynomials, and hence
we have to “redo” the MIPs of Chapter 8, replacing each constituent multilinear polynomial appearing in
that protocol with a univariate analog.

Protocol description. Recall from Section 8.4 that an R1CS-SAT instance is specified by m×n matrices
A,B,C, and the prover wishes to demonstrate that it knows a vector z such that Az◦Bz =Cz, where ◦ denotes
Hadamard (entrywise) product. For simplicity, we assume that m = n and that there is a multiplicative
subgroup H of F of size exactly n. Let us label the n entries of z with elements of H, and let ẑ be the unique
univariate polynomial of degree at most n−1 over F that extends z in the sense that ẑ(h) = zh for all h ∈ H
(see Lemma 2.4). Similarly, let zA = Az, zB = Bz, and zC =Cz be vectors in Fn, and let ẑA, ẑB, ẑC extend zA,
zB, zC. To check that indeed Az◦Bz =Cz, the verifier must confirm two properties. First:

for all h ∈ H, ẑA(h) · ẑB(h) = ẑC(h). (10.4)

Second:

for all h ∈ H, and M ∈ {A,B,C}, ẑM(h) = ∑
j∈H

Mh, j · ẑ( j). (10.5)

Equation (10.5) ensures that zA, zB, zC are indeed equal to Az, Bz, and Cz. Assuming this to be so, Equation
(10.4) confirms that Az◦Bz =Cz.

The prover sends four special messages, respectively specifying the degree-n polynomials ẑ, ẑA, ẑB, and
ẑC.

Checking Equation (10.4). By Lemma 9.3 from the previous chapter, the first check is equivalent to the
existence of a polynomial h∗ of degree at most n such that

ẑA(X) · ẑB(X)− ẑC(X) = h∗(X) ·ZH(X). (10.6)

120Of course, if the polynomial IOP is combined with an IOP-based polynomial commitment scheme such as FRI that uses
logarithmically many rounds, then the resulting (standard) IOP will have logarithmically many rounds.

121Another benefit of having the prover send only univariate polynomials is that one of the two polynomial commitment schemes
considered in this chapter, namely FRI, directly applies only to univariate polynomials. Though we nonetheless explain in Section
10.4.5 how to build upon such a polynomial commitment in an indirect manner to obtain one for multilinear polynomials in the
IOP model, albeit with additional overheads.
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The prover sends a special message specifying the polynomial h∗. The verifier probabilistically checks that
Equation (10.6) holds by choosing a random r ∈ F and confirming that

ẑA(r) · ẑB(r)− ẑC(r) = h∗(r) ·ZH(r). (10.7)

This requires querying the committed polynomials ẑA, ẑB, ẑC, and h∗ at r; the verifier can evaluate ZH(r) on
its own in logarithmic time because ZH(r) is sparse. Since all of the special messages sent by the prover are
polynomials of degree at most n, up to soundness error 2n/|F| over the choice of r, if Equation (10.7) holds
at r then it is safe for the verifier to believe that Equation (10.6) holds, and hence also Equation (10.4).

Checking Equation (10.5). To check that Expression (10.5) holds, we leverage interaction, a resource
that was not available to the PCP of Section 9.4. Fix M ∈ {A,B,C} for the remainder of the paragraph. Let
M̂(X ,Y ) denote the bivariate low-degree extension of the matrix M, interpreted in the natural manner as a
a function M(x,y) : H ×H → F via M(x,y) = Mx,y That is, M̂(x,y) is the unique bivariate polynomial of
degree at most n in each variable that extends M. Since ẑM is the unique extension of zM of degree less than
n, it is easily seen that Equation (10.5) holds for all h ∈ H if and only if the following equality holds as
formal polynomials:

ẑM(X) = ∑
j∈H

M̂(X , j)ẑ( j). (10.8)

Since any two distinct polynomials of degree at most n can agree on at most n inputs, if the verifier chooses
r′ at random from F, then up to soundness error n/|F| over the choice of r′, Equation (10.5) holds if and
only if

ẑM(r′) = ∑
j∈H

M̂(r′, j)ẑ( j). (10.9)

The verifier checks Equation (10.9) by sending r′ to the prover and proceeding as follows. Let

q(Y ) = M̂(r′,Y )ẑ(Y )− ẑM(r′) · |H|−1,

so that the validity of Equation (10.9) is equivalent to ∑ j∈H q(Y ) = 0. The verifier requests that the prover
establish that ∑ j∈H q(Y ) = 0 by applying the univariate sum-check protocol from Section 10.3.1.

At the end of the univariate sum-check protocol applied to q, the verifier needs to evaluate q at a ran-
domly chosen point r′′. Clearly this can be done in a constant number of field operations if the verifier is
given ẑ(r′′), ẑM(r′), and M̂(r′,r′′). The first two evaluations, ẑ(r′′) and ẑM(r′), can be obtained with one
query each to the special messages specifying the polynomials ẑ and ẑM.

How the verifier computes M̂(r′,r′′). All that remains is to explain how and when the verifier can ef-
ficiently obtain M̂(r′,r′′). For some “structured” matrices M, it is possible that M̂ may be evaluatable in
time polylogarithmic in n. This is analogous to how the verifier in the GKR protocol or the MIP of Section
8.2 avoids pre-processing so long as the multilinear extensions of the wiring predicates of the circuit- or
R1CS-satisfiability instance can be evaluated efficiently.

For unstructured matrices M, time linear in the number K of nonzero entries of M may be required to
evaluate M̂(r′,r′′) (Equation (10.11) later in this section offers one way M̂(r′,r′′) can be evaluated in this
time bound). If one is unhappy with this runtime for the verifier, one can seek to have a trusted party, in
pre-processing, commit to M̂, which then permits the untrusted prover to efficiently and verifiably reveal
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M̂(r′,r′′) to the verifier as needed during the polynomial IOP just described.122 Ideally, the pre-processing
time, and the runtime of the prover when revealing M̂(r′,r′′) to the verifier, will be just linear in the number K
of nonzero entries of M. This goal is sometimes called holography [CHM+20] or computation commitments
[Set20].

If the matrix M were dense (i.e., with K = Ω(n2)), it would be straightforward to use polynomial com-
mitment schemes such as those given in this chapter (Section 10.4.2 and 10.5) or Chapter 14 to accomplish
this goal. But typically R1CS matrices are sparse, meaning K is Θ(n) (see for example Section 8.4.1). In
this case, the goal is more challenging to achieve.

Chiesa et al. [CHM+20, COS20] nonetheless give a way to achieve it. Their technique is analogous
in many ways to the commitment scheme for sparse multilinear polynomials described later in this survey
(Section 16.2), which can be used to commit to the sparse multilinear extensions ãdd and m̃ult of the wiring
predicates used in the GKR protocol and the MIPs of Chapter 8, thereby achieving holography for those
protocols. In both cases, the general idea is to express the “sparse” polynomial to be committed in terms of
a constant number of dense polynomials, each of which can be straightforwardly committed in time linear
in the sparsity K.123

Overview of achieving holography. The key to achieving this in the IOP setting is to give an explicit
expression for M̂, analogous to how Lemma 4.9 from Section 4.6.7.1 represents the multilinear extension of
any function in terms of a higher-degree extension of the function. In more detail, recall that in Lemma 4.9,
we defined β̃ to be the unique multilinear extension of the “equality function” that takes two inputs from
the Boolean hypercube and outputs 1 if and only if they are equal (see Equation (4.19)). In the setting of
this section, the analog of the Boolean hypercube is the subgroup H, and the analog of β̃ is the following
bivariate polynomial: uH(X ,Y ) := ZH(X)−ZH(Y )

X−Y . Though it is not immediately obvious, uH is a polynomial
of degree at most |H|= n in each variable.124 For example, if ZH(X) = Xn−1, then

uH(X ,Y ) :=
Xn−Y n

X−Y
= Xn−1 +Xn−2Y +Xn−3Y 2 +Xn−4Y 3 + · · ·+XY n−2 +Y n−1. (10.10)

It is easy to check that for x,y ∈ H with x ̸= y, uH(x,y) = 0. While less obvious, it is also true that for
all x ∈ H, uH(x,x) ̸= 0 (though unlike β̃ , it is not necessarily the case that uH(x,x) = 1 for all x ∈ H. For
example, in Equation (10.10), uH(x,x) = nxn−1.).

Let K be a multiplicative subgroup of F of order K. Let us define three functions val, row, col mapping
K to F as follows. We impose some canonical bijection between the nonzero entries of M and K, and for
κ ∈ K, we define row(κ) and col(κ) to be the row index and column index of the κ’th nonzero entry of M,
and define val(κ) to be the value of this entry, divided by:

uH(row(κ),row(κ)) ·uH(col(κ),col(κ)).

122As observed in [SL20], one can reduce the work done by the trusted party by orders of magnitude, by having an untrusted
party commit to the M̂, and the trusted party to merely evaluate M̂ at a random point. The trusted party then asks the untrusted party
to reveal the committed polynomial’s evaluation at that same point. If the two evaluations are equal, then (up to some negligible
soundness error) it is safe to believe that the committed polynomial is M̂.

123Both here and in Section 16.2, K refers to the number of nonzero evaluations of the sparse polynomial over the relevant
interpolating set defining the polynomial. In this section, that set is H×H. In Section 16.2 and its application to the GKR protocols
and the MIPs of Chapter 8, the relevant interpolating set is the Boolean hypercube.

124To see that p1(X ,Y ) := ZH(X)−ZH(Y ) is divisible by p2 := X −Y , observe that standard properties of polynomial division
imply that when p1 is divided by p2, the remainder polynomial r(X ,Y ) can be taken to have degree in X strictly less than that of
p2 in X , which is 1. Hence, r(X ,Y ) has degree 0 in X . Since p1 is symmetric, it can be seen that r is also symmetric, and hence
r(X ,Y ) is constant.
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Let ˆval, ˆrow, and ˆcol be their unique extensions of degree at most K. Then we can express

M̂(X ,Y ) = ∑
κ∈K

uH(X , ˆrow(κ)) ·uH(Y, ˆcol(κ)) · ˆval(κ). (10.11)

Indeed, it is easy to see that the right hand side of the above equation has degree at most |H| in both X and
Y , and agrees with M̂ at all inputs in H×H. Since M̂ is the unique polynomial with these properties, the
right hand side and left hand side are the same polynomial.

A first attempt. Equation (10.11) expresses M̂ in terms of degree-κ polynomials ˆrow, ˆcol, and ˆval, which
suggests the following approach to permitting the verifier to efficiently learn M̂(r′,r′′) at the end of the
polynomial IOP. The pre-processing phase can have a trusted party commit to the polynomials ˆval, ˆrow, ˆcol
(note that these are degree-K polynomials) and then when the verifier needs to know M̂(r′,r′′), the univariate
sum-check protocol is invoked to establish that the polynomial

p(κ) := uH(r′, ˆrow(κ)) ·uH(r′′, ˆcol(κ)) · ˆval(κ) (10.12)

sums to the claimed value over inputs in K.
This unfortunately does not yield the efficiency we desire, because uH(r′, ˆrow(κ)) and uH(r′′, ˆcol(κ))

have degree as large as n ·K, since uH has degree n in both of its variables. This means that applying the
univariate sum-check protocol to p(κ) would require the prover to send a polynomial h∗ of degree Θ(n ·K),
when we are seeking a prover runtime (and hence degree bound on all special messages) proportional just
to K.

The actual holography protocol. In the actual protocol, the pre-processing phase still commits to the
three degree-K polynomials ˆval, ˆrow, and ˆcol.

To address the issue with the first attempt, we have to modify the “online phase” of the protocol, whereby
the prover reveals to the verifier M̂(r′,r′′) to reduce its cost for the prover. Let us define f to be the unique
polynomial of degree at most K that agrees with p (Equation (10.12)) at all inputs in K. We are going to
have the prover commit to f , and in order for the verifier to be able to check that f and p agree at all inputs
in K, we will need to identify a new expression (simpler than Equation (10.12)) that describes p’s values at
inputs in K.

Specifically, observe that for any a ∈ K,

uH(r′, ˆrow(a)) =
ZH(r′)−ZH( ˆrow(a))

(r′− ˆrow(a))
=

ZH(r′)
(r′− ˆrow(a))

,

where the final equality uses the fact that ˆrow(a) ∈ H. Similarly, for any a ∈ K,

uH(r′′, ˆcol(a)) =
ZH(r′′)

(r′′− ˆcol(a))
.

Hence, for any a ∈ K,

p(a) =
ZH(r′)ZH(r′′) · ˆval(a)

(r′− ˆrow(a)) · (r′′− ˆcol(a))
. (10.13)

This discussion leads to the following protocol enabling the verifier to efficiently learn M̂(r′,r′′) fol-
lowing a pre-processing phase during which a trusted party commits to the degree-K polynomials ˆrow, ˆcol,

153



and ˆval. First, the prover commits to the degree-K polynomial f defined above, and the prover and verifier
apply the univariate sum-check protocol to compute ∑a∈K f (a). Recall from Equation (10.11) that if f is as
claimed, then this quantity equals M̂(r′,r′′).

Second, observe that for all a ∈ K, f (a) equals the expression in Equation (10.13) if and only if the
following polynomial vanishes for all a ∈ K:

(r′− ˆrow(a)) · (r′′− ˆcol(a)) · f −ZH(r′)ZH(r′′) · ˆval(a). (10.14)

By Lemma 9.3, Expression (10.14) vanishes for all a ∈ K if and only if it is divisible by ZK(Y ) =
∏a∈K(Y−a). The prover establishes this by committing to a polynomial q such that q ·ZK equals Expression
(10.14), and the verifier checks the claimed polynomial equality by confirming that it holds at a random input
r′′′ ∈ F. This does require the verifier to evaluate ˆrow, ˆcol, ˆval, f , q, and ZK at r′′′; the first three evaluations
can be obtained from the pre-processing commitments to these polynomials, while f (r′′′) and q(r′′′) can
be obtained from the prover’s commitments to f and q, and ZK(r) can be computed in logarithmic time
because it is sparse.

The polynomials that the prover commits to in the univariate sum-check protocol and in verifier’s second
check (namely, f and q) have degree at most 2K.

Costs of the polynomial IOP. Ignoring holography, the prover in the above polynomial IOP for R1CS-
SAT sends five polynomials of degree at most n to check Equation (10.4): ẑ, ẑA, ẑB, ẑC, and h∗, each of which
the verifier queries at a single point r. To check Equation (10.5) for each M ∈ {A,B,C}, the prover sends
two polynomials of degree at most n as part of the sum-check protocol. During the univariate sum-check
protocol, the verifier evaluates each of these polynomials at a random point r′′ and also evaluates ẑ at r′′ and
ẑM at r′. In summary, if implemented naively, the prover in the polynomial IOP commits to 11 polynomials
of degree at most n, and makes a total of 17 evaluation queries to the various polynomials. The number of
evaluation queries can be reduced to 12 as follows: one can use the same random values r′ and r′′ for all
three instances of Equation 10.5; also, by performing all evaluation queries at the end of the protocol, it is
safe for the verifier to set r = r′′.

[BSCR+19, CHM+20, COS20] describe a number of additional optimizations that improve concrete
efficiency of the polynomial IOP and/or the resulting SNARK when the polynomial IOP is combined with
various polynomial commitment schemes. We briefly describe one of these optimizations for illustration.
When evaluating multiple different committed polynomials at the same point r, as the verifier in the above
polynomial IOP does, it is typically more efficient, at least for the proof length and verifier time, to “batch-
verify” the claimed evaluations, rather than perform each verification independently.125 Exactly how much
more efficiently depends on the polynomial commitment scheme used—the IOP-based polynomial commit-
ments covered in this chapter have worse amortization properties than the homomorphic commitments of
Chapter 14. Section 16.1 has details in the homomorphic case.

This type of efficient batch-verification of multiple evaluations of committed polynomials will recur in
Chapter 18.

125Batching techniques are also known when evaluating multiple different committed polynomials at distinct points rather than
the same point [BDFG21].
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10.4 FRI and Associated Polynomial Commitments

10.4.1 Overview

FRI was introduced by Ben-Sasson, Bentov, Horesh, and Riabzev [BSBHR18], and its analysis has been
improved over a sequence of works [BKS18a, SGKS20, BSCI+20]. While we defer details of how FRI
works until Section 10.4.4, it is useful now to precisely state the guarantee that it provides. Let d be a
specified degree bound. The prover’s first message in FRI specifies a function g : L0 → F, where L0 is
carefully chosen subset of F. The prover claims that g is a polynomial of degree at most d; an equivalent
way of saying this is that g is a codeword in the Reed-Solomon code of degree d. L0 is chosen to have size
ρ−1 ·d, where 0 < ρ < 1 is a specified constant that is referred to as the rate of the Reed-Solomon code that
the FRI prover claims g is a codeword in. In practice, protocols that use FRI choose F to be significantly
bigger than L0, because the message size (and hence prover runtime) is lower-bounded by |L0| (hence |L0|
should be kept as small as possible) yet |F| should be large to ensure a strong soundness guarantee.

The “remainder” of the FRI protocol is an IOP with the following guarantee. For specified parameter
δ ∈ (0,1−√ρ), known analyses of FRI guarantee that if the verifier accepts, then with overwhelming
probability (say, at least 1−2−128), g is within relative distance δ of some polynomial p of degree at most
d. That is, the number of points r ∈ L0 for which g(r) ̸= p(r) is at most δ · |L0|.

The query complexity of the FRI IOP is the dominant factor determining the proof length in succinct
argument systems derived thereof, as each IOP query translates into a Merkle-tree authentication path that
must be sent in the resulting argument system (see Section 9.2). Meanwhile, the prover runtime in FRI is
mainly determined by the rate parameter ρ . This is because the smaller ρ is chosen, the longer the prover’s
messages in the IOP, and hence the bigger the prover runtime to generate those messages. However, we will
see that smaller choices of ρ potentially permit the FRI verifier to make fewer queries for a given security
level, and hence keeps the proof shorter when the IOP is ultimately converted into an argument system.
Argument system designers can choose ρ to obtain their preferred tradeoff between prover time and proof
size.

10.4.2 Polynomial commitments and queries to points outside of L0

We highlight the following subtlety of FRI. As we have seen (e.g., Section 10.2), the prevailing paradigm
for SNARK design demands the functionality of a polynomial commitment scheme. That is, the prover in
the IOP must somehow send or commit to a low-degree polynomial p and the verifier must be able to force
the prover to later evaluate the committed polynomial p at any point r ∈ F of the verifier’s choosing.

A natural attempt to use FRI to achieve this functionality is the following. To commit to a degree d
polynomial p, the prover would send a function g (claimed to equal p) by specifying g’s values over L0
(a strict subset of F). And the verifier can run FRI to confirm that (with overwhelming probability) g has
relative distance at most δ from some degree d polynomial p. Note that if δ < 1−d/|L0|

2 = 1−ρ

2 , then p is
unique, i.e., there can be only one degree d polynomial within relative distance δ of g. This is because any
two distinct polynomials of degree at most d can agree on at most d points (Fact 2.1).

Already, there is the nuisance that g is only guaranteed to be close to p, not exactly equal to p. This is
closely analogous to the “relaxed” nature of the polynomial commitment scheme arising in Chapter 7 and
the MIPs of Chapter 8.

But there is an additional issue as well: since g is only specified via its evaluations at inputs in L0,
how can the verifier determine evaluations of p on inputs r ∈ F \ L0? The research literature posits two
approaches to dealing with this. The first is to carefully design polynomial IOPs, so that the verifier need
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not ever evaluate a polynomial specified by the prover at an input outside of L0 (for brevity, we do not
cover this approach in this survey). The second approach utilizes an observation that will recur later in this
survey when we cover pairing-based polynomial commitment schemes (Section 15.2). Specifically, for any
degree-d univariate polynomial p, the assertion “p(r) = v” is equivalent to the assertion that there exists a
polynomial w of degree at most d−1 such that

p(X)− v = w(X) · (X− r). (10.15)

This is a special case of Lemma 9.3.
As observed in [VP19], the above observation means that in order to confirm that p(r) = v, the verifier

can apply FRI to the function X 7→ (g(X)−v) · (X− r)−1 using degree bound d−1 (we define this function
to be 0 at input r). Note that whenever the FRI verifier queries this function at a point in L0, the evaluation
can be obtained with one query to g at the same point. If the FRI verifier accepts, then with overwhelming
probability this function is within distance δ of some polynomial q of degree at most d−1. Since g and p
have relative distance at most δ over domain L0, this means that the polynomials q(X)(X− r) and p(X)− v
agree on at least (1−2δ ) · |L0| inputs in L0, and both have degree at most d.

Suppose that δ < 1−ρ

2 , which guarantees that (1− 2δ )|L0| > d. Since any two distinct polynomials of
degree at most d can agree on at most d inputs, this implies that q(X) · (X − r) and p(X)− v are the same
polynomial, and this in turn implies by Equation (10.15) that p(r) = v.

In summary, if the prover sends a function g : L0→ F and convinces the FRI verifier that g has distance
at most δ < 1−ρ

2 from some degree d polynomial p, and moreover the FRI verifier accepts when applied
to X 7→ (g(X)− v) · (X − r)−1 using degree bound d− 1, then with overwhelming probability, p(r) indeed
equals v. That is, the verifier can safely accept that the low-degree polynomial p committed to via g evaluates
to v at input r.

Note that the prover in this polynomial commitment scheme is bound to an actual polynomial p of
degree at most d, in the sense that the prover must answer any evaluation request at input r ∈ F with p(r) in
order to convince the verifier to accept with non-negligible probability. This is in contrast to FRI by itself,
which only binds the prover to a function g over domain L0 that is close to p.

In summary, the technique of this section addressed both issues that prevented FRI from giving a poly-
nomial commitment scheme directly. As described, the technique introduces a concrete overhead for the
verifier of a factor close to two. To commit to a degree-d polynomial p, the prover sends (a Merkle-hash of)
all evaluations of p over domain L0, and FRI is applied to confirm that the function g actually sent is indeed
close to some degree d polynomial. But then when the verifier queries the committed polynomial p at a
point r outside of L0, FRI has to be applied a second time, to confirm that the function (g(X)−v) · (X− r)−1

is (close to) some polynomial of degree at most d−1.
In fact, the first application of FRI can be omitted, thereby avoiding the overhead above. Indeed, since

the second application of FRI guarantees that (g(X)− v) · (X − r)−1 has relative distance at most δ over L0
from a polynomial q(X) of degree d−1, it follows that the degree-d polynomial p(X) := q(X) · (X − r)+ v
has relative distance at most δ from g over L0. Guaranteeing the existence of such a polynomial p was the
entire point of the first application of FRI.

10.4.3 Costs of FRI

Prover time. In applications of FRI (e.g., transforming the polynomial IOP of Section 10.3 into a SNARK),
the prover will know the coefficients of a degree-d polynomial p or its evaluations on a size-d subset of L0.
To apply FRI to p, the prover must evaluate p at the remaining points in L0. This is the dominant cost
in terms of prover runtime. The fastest known algorithms for this are essentially FFTs, and they require
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Θ(|L0| · log |L0|) = Θ(ρ−1d log(ρ−1d)) field operations. For constant rate parameters ρ , this is Θ(d logd)
time. We remark that Ben-Sasson et al. [BSBHR18] describe the prover time in FRI as O(d) field opera-
tions, but this assumes that the prover already knows the evaluations of p at all inputs in L0, which will not
be the case in applications of FRI.

Proof length. FRI can be broken into two phases: a commitment phase and a query phase. The commit-
ment phase is when the prover sends all of its messages in the IOP phase (during this phase, the verifier need
not actually query any of the prover’s messages) and the verifier sends one random challenge to the prover
in each of log2 |L0| rounds.

The query phase is when the verifier actually queries the prover’s messages at the necessary points to
check the prover’s claims. The query phase in turn consists of a “basic protocol” that must be repeated many
times to ensure good soundness error. Specifically, in the basic query protocol the verifier makes 2 queries
to each each of the log2 |L0| messages sent by the prover. To ensure a 2−λ upper bound on the probability
that the FRI verifier accepts a function g of relative distance more than δ from any degree-d polynomial, the
basic protocol must be repeated roughly λ/ log2 (1/(1−δ )) times. This query phase is the dominant cost in
the proof length of the argument systems obtained by combining FRI-based IOPs with Merkle-hashing. The
argument system prover must send a Merkle-tree authentication path (consisting of O(logd) hash values)
for each query in the IOP, the proof length of the resulting arguments is O

(
λ · log2(d)/ log2 (1/(1−δ ))

)

hash values. For constant values of δ , this is O(λ · log2(d)) hash values.

Remark 10.2. The FRI proof system is largely independent of the setting of the parameter δ . The only
reason that the prover and verifier within FRI need to “know” what δ will be set to in the soundness analysis
is to ensure that they repeat the query phase of FRI at least λ/ log2 (1/(1−δ )) times.

10.4.4 Details of FRI: Better Reed-Solomon Proximity Proofs via Interaction

Recall that the PCP for Reed-Solomon testing sketched in Section 9.4.3 worked by iteratively reducing the
problem of testing a function Gi for proximity to a degree di polynomial to the problem of testing a related
function Gi+1 for proximity to a degree di+1 polynomial where di+1≪ di (more precisely, di+1 ≈

√
di). A

source of inefficiency in this construction was that each iterative reduction incurred a constant-factor loss
in the distance from any low-degree polynomial of the function being analyzed. That is, if Gi is at least
δi-far from every degree di polynomial, then Gi+1 is only guaranteed to be at least (δi/c0)-far from every
polynomial of degree at most

√
di for some universal constant c0 > 1. This constant-factor loss in distance

per iteration meant that we had to keep the number of iterations small if we wanted to maintain meaningful
soundness guarantees. This in turn meant we needed to make sure that we made a lot of progress in reducing
the degree parameter in each iteration. This is why we choose for di+1 to be just

√
di—this ensured the di fell

doubly-exponentially quickly in i, i.e., only Θ(log logd0) iterations were required before the degree became
0, i.e., the function Gi became constant.

Unlike PCPs, IOPs such as FRI are allowed to be interactive, and FRI exploits interaction to ensure
that the distance parameter δi does not fall by a constant factor in each round. This permits FRI to use ex-
ponentially more iterations—Θ(logd0) rather than Θ(log logd0)—while maintaining meaningful soundness
guarantees, with corresponding efficiency benefits.

Recall from Section 10.4.1 that FRI proceeds in two phases, a commitment phase and a query phase. The
commitment phase is when the prover sends all of its messages in the IOP (during this phase, the verifier
need not actually query any of the prover’s messages) and the verifier sends one random challenge to the
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prover in each round. The query phase is when the verifier queries the prover’s messages at the necessary
points to check the prover’s claims.

Comparison of the IOP Commitment Phase to Section 9.4.3. For simplicity, let us suppose that in round
i of the IOP, Gi is a function defined over a multiplicative subgroup Li of F, where |Li| is a power of 2, and
the current degree bound di is also a power of 2. In round 0, G0 is the evaluation table of the polynomial
defined over domain L0, for which we are testing proximity to univariate polynomials of degree d0.

Recall that in Section 9.4.3, to show that Gi was a degree di polynomial, for any desired polynomial qi

of degree
√

di, it sufficed for the PCP to establish that Gi(z) = Qi(z,qi(z)) for some bivariate polynomial
Qi of degree at most

√
di in each variable. When Gi indeed has degree at most di, the existence of such a

polynomial Qi was guaranteed by Lemma 9.6.
In the FRI IOP, qi(z) will simply be z2 (since this choice of qi does not depend on i, we omit the subscript

i from q henceforth). When Gi indeed has degree at most di, Lemma 9.6 guarantees that there is a Qi(X ,Y )
of degree at most 1 in X and at most di/2 in Y such that Qi(z,z2) = Gi(z). Under this setting of qi(z), this
representation of Gi has an especially simple form. Let Pi,0 (respectively, Pi,1) consist of all monomials of
Gi of even (respectively, odd) degree, but with all powers divided by two and then replaced by their integer
floor. For example, if Gi(z)= z3+3z2+2z+1, then Pi,0 = 3z+1 and Pi,1(z)= z+2. When q(z)= z2, Lemma
9.6 is simply observing that we can ensure that Gi(z) = Qi(z,z2) by defining Qi(z,y) := Pi,0(y)+ z ·Pi,1(y).

In the PCP for Reed-Solomon testing of Section 9.4.3, q(z) was chosen to be a polynomial of degree√
di such that the size of the image q(Li) was much smaller than |Li| itself (smaller by a factor of

√
di).

Similarly, when Li is a multiplicative subgroup of F, the map z→ z2 is two-to-one on Li,126 so under our
choice of q(z) := z2, if we define

Li+1 = q(Li), (10.16)

then |Li+1|= |Li|/2.

Complete Description of the IOP Commitment Phase. After the IOP prover commits to the polynomial
Gi defined over domain Li, the IOP verifier chooses a random value xi ∈ F and requests that the prover send
it the univariate polynomial

Gi+1(Y ) := Qi(xi,Y ) = Pi,0(Y )+ xi ·Pi,1(Y ), (10.17)

defined over the domain Li+1 given in Equation (10.16).
This proceeds for rounds i = 0,1, . . . , log2(d0). Finally for i∗ = log2(d0), Gi∗(Y ) is supposed to have

degree 0 and hence be a constant function. In this round, the prover’s message simply specifies the constant
C, which the verifier interprets to specify that Gi∗(Y ) =C.

Query Phase. The verifier V repeats the following ℓ times, for a parameter ℓ we set later. V picks an input
s0 ∈ L0 at random, and for i = 0, . . . , i∗−1, V sets si+1 = q(si) = s2

i . The verifier then wishes to check that
Gi+1(si+1) is consistent with Equation (10.17) at input si+1, i.e., that Gi+1(si+1) indeed equals Qi(xi,si+1).
We now explain how this check can be performed with two queries to Gi.

126To see this, recall from the proof of Fact 10.1 that any multiplicative subgroup H of a finite field F is cyclic, meaning there is a
h ∈H such that H = {h,h2, . . . ,h|H|}, where h|H| = 1. If |H| is even, this means that H ′ := {h2,h4, . . . ,h|H|} is also a multiplicative
subgroup of F, of order |H|/2, and H ′ consists of all perfect squares (also known as quadratic residues) in H. For each element h2i

in H ′, h2i is the square of both hi and hi+|H|/2 =−hi.
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Let g(X) := Qi(X ,si+1) and observe that g(X) is a linear function in X . Hence the entire function g can
be inferred from its evaluations at two inputs.

Specifically, let s′i ̸= si denote the other element of Li satisfying (s′i)
2 = si+1. Since we have assumed

that Li is a multiplicative subgroup of even order, Li contains −1 (see Footnote 126), and hence s′i = −si.
We know that g(si) = Qi(si,si+1) = Gi(si), while g(s′i) = Qi(s′i,si+1) = Gi(s′i). And since g is linear, these
two evaluations are enough to infer the entire linear function g, and thereby evaluate g(xi). More concretely,
it holds that

g(X) = (X− si) · (s′i− si)
−1 ·Gi(s′i)+(X− s′i) · (si− s′i)

−1 ·Gi(si),

as this expression is a linear function of X that takes the appropriate values at X = si and X = s′i.
Accordingly, to check that Gi+1(si+1) indeed equals Qi(xi,si+1), the verifier queries Gi at s′i and si, and

checks that

Gi+1(si+1) = (xi− si) · (s′i− si)
−1 ·Gi(s′i)+(xi− s′i) · (si− s′i)

−1 ·Gi(si). (10.18)

Completeness and Soundness. Completeness of the protocol holds by design: it is clear that if G0 is
indeed a univariate polynomial of degree at most d0 over domain L0 and sends the prescribed messages,
then all of the verifier’s checks will pass. Indeed, all of the consistency checks will pass, and Gi∗ will indeed
be a constant function.

The state-of-the-art soundness guarantee for FRI is stated in Theorem 10.4 below. Its proof is quite
technical and is omitted from the survey, but we sketch the main ideas in detail.

Worst-Case to Average-Case Reductions for Reed-Solomon Codes. The key technical notion in the analysis
of FRI is the following statement. Let f1, . . . , fℓ be a collection of ℓ functions on domain Li, and suppose
that at least one of f j has relative distance at least δ from every polynomial of degree at most di over Li.
Then if f := ∑

ℓ
j=1 r j f j denotes a random linear combination of f1, . . . , fℓ (i.e., each r j is chosen at random

from F), then with high probability over the random choices of r1, . . . ,rℓ, f also has distance at least δ

from every polynomial of degree at most di over Li. This statement is far from obvious, and to give a
sense of why it is true, in Lemma 10.3 below we prove the following weaker statement that does not suffice
to yield a tight analysis of FRI because it incurs a factor-of-2 loss in the distance parameter δ . Lemma
10.3 is due to Rothblum, Vadhan, and Wigdersen [RVW13]; our proof follows the presentation of Ames et
al. [AHIV17, Proof of Case 1 of Lemma 4.2] almost verbatim.

Lemma 10.3. Let f1, . . . , fℓ be a collection of ℓ functions on domain Li, and suppose that at least one of
the functions, say f j∗ , has relative distance at least δ from every polynomial of degree at most di over Li. If
f := ∑

ℓ
j=1 r j · f j denotes a random linear combination of f1, . . . , fℓ, then with probability at least 1−1/|F|,

f has distance at least δ/2 from every polynomial of degree at most di over Li.

Proof. Let V denote the span of f1, . . . , fℓ, i.e., V is the set of all functions obtained by taking arbitrary linear
combinations of f1, . . . , fℓ. Observe that a random element of V can be written as α · f j∗ + x where α is a
random field element and x is distributed independently of α . We argue that conditioned on any choice of
x, there can be at most one choice of α such that α · f j∗ + x has relative distance at most δ/2 from some
polynomial of degree at most di. To see this, suppose by way of contradiction that α · f j∗ + x has relative
distance less than δ/2 from some polynomial p of degree di and α ′ · f j∗ + x has relative distance less than
δ/2 from some polynomial q of degree di, where α ̸= α ′. Then by the triangle inequality, (α−α ′) f j∗ has
relative distance less than δ/2+δ/2 = δ from p−q. This contradicts the assumption that f j∗ has distance
at least δ from every polynomial of degree at most di.
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A line of work [RVW13, AHIV17, BKS18b, SGKS20, BSCI+20] has improved Lemma 10.3 to avoid
the factor-of-2 loss in the distance parameter δ . That is, rather than concluding that the random linear
combination f has relative distance at most δ/2 from every low-degree polynomial, these works show that
f has relative distance at most δ from any low-degree polynomial. Two caveats are that these improvements
do require δ to be “not too close to 1”, and they also have worse failure probability than the 1/|F| probability
appearing in Lemma 10.3—see Theorem 10.4 for details on these caveats.

Detailed Soundness Analysis Sketch for FRI. The soundness analysis overview provided here below is
merely a sketch, and we direct the interested reader to [BKS18b, Section 7] for a very readable presen-
tation of the full details. Suppose that the function G0 over domain L0 has relative distance more than δ

from every degree d0 polynomial. We must show that for every prover strategy, with high probability the
prover fails at least one of the FRI verifier’s consistency checks during the Query Phase of FRI.

For any fixed value of x0 chosen by the verifier, Equation (10.18) specifies a function G1 over L1 such
that if the prover sends G1 in round 1 of the Commitment Phase of FRI, then G1 will always pass the
verifier’s consistency check. Namely if for any s1 ∈ L1 we let s0,s′0 ∈ L0 denote the two square roots of s1,
then

G1(s1) = (x0− s0) · (s′0− s0)
−1 ·G0(s′0)+(x0− s′0) · (s0− s′0)

−1 ·G0(s0). (10.19)

Note that G1 depends on x0; when we need to make this dependence explicit, we will write G1,x0 rather than
G1.

In round 1 of the Commitment Phase of FRI, a prover can hope to “luck out” in one of two ways. The
first way is if the verifier happens to select a value x0 ∈ F such that G1,x0 has relative distance significantly
less than δ from a polynomial of degree d1. The second way is that the prover could send a message G′1 ̸=G1
such that G′1 is much closer to a low-degree polynomial than is G1, and hope the verifier doesn’t “detect”
the deviation from G1 via its consistency checks.

It turns out that the second approach, of sending G′1 ̸= G1, never increases the probability that the prover
passes the verifier’s checks. Roughly speaking, this is because any “distance improvement” that the prover
achieves by sending a function G′1 that deviates from G1 is compensated for by an increased probability that
the prover fails the verifier’s consistency checks.

Let us now explain why the probability that the prover lucks out in the first sense is at most some small
quantity ε1. The idea is that G1,x0 is essentially a random linear combination of G1,0 and G1,1. Specifically,
since G1,x0 is a linear function in x0 (see Equation (10.19)), we can write G1,x0 = G1,0 + x0 ·G1,1. Since
x0 is chosen by the verifier uniformly at random from F this means G1,x0 is essentially a random linear
combination of G1,0 and G1,1 (not quite, because the coefficient of G1,0 is fixed to 1 rather than a random
field element, but let us ignore this complication). Moreover, it is possible to show (though we omit the
derivation) that if G1,0 and G1,1 are each of relative distance at most δ over L1 from some polynomials p(X)
and q(X) of degree less than d1 = d0/2, then G0 is of relative distance at most δ over L0 from the polynomial
p(X2)+X ·q(X2), which has degree less than 2d1 = d0, contradicting our assumption. The strengthening of
Lemma 10.3 discussed earlier in this section asserted that a random linear combination of two functions, at
least one of which has relative distance at least δ from every polynomial of degree d1, is very likely to itself
have relative distance at least δ from every such polynomial. Hence we reach the desired conclusion that
with high probability over the choice of x0, G1,x0 has relative distance at least δ from every polynomial of
degree at most d1.

The above analysis applies for every round i, not just to round i = 1. Specifically, the optimal prover
strategy sends a specified function Gi,xi−1 in each round i, and with high probability every Gi,xi−1 has relative
distance at least δ from a polynomial of degree at most di. If this holds for the final round i∗, then in each
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repetition of the Query Phase of FRI, the verifier’s final consistency check will reject with probability at
least 1− δ . This is because Gi∗,xi∗−1 will have relative distance δ from a constant function, and the prover
in the final round of the commitment phase is forced to send a constant C with the verifier checking in each
execution of the query phase whether Gi∗,xi∗−1(si∗) =C for a point si∗ that is uniformly distributed in Li∗ .

In summary, conditioned on the optimal prover strategy not “lucking out” during the commitment phase
(which happens with probability at most ε1 by the analysis sketched above), each repetition of the query
phase will reveal an inconsistency with probability at least 1−δ . So the probability that all ℓ repetitions of
the query phase fail to detect an inconsistency is ε2 = (1−δ )ℓ. Hence, if G0 has relative distance more than
δ from any polynomial of degree at most d0, then the FRI verifier rejects with probability at least 1−ε1−ε2.
This is formalized in the following theorem from [BSCI+20].

Theorem 10.4 ( [BSCI+20]). Let ρ = d0/|L0|, η ∈ (0,
√

ρ/20), and δ ∈ (0,1−√ρ−η). If FRI is applied
to a function G0 that has relative distance more than δ from any polynomial of degree at most d0, then the
verifier accepts with probability at most ε1 + ε2, where ε2 = (1−δ )ℓ and ε1 =

(d0+1)2

(2η)7·|F| .

To give a sense of how the parameters in Theorem 10.4 may be set, [BSCI+20] work through a numerical
example, setting ρ to 1/16, |F| to be 2256, η to 2−14, and δ to 1−√ρ−η = 3/4−η . They show that if d0
is at most 216 = 65536, then with ℓ := 65 invocations of the basic query phase, this leads to soundness error
ε1 + ε2 ≤ 2−128.

If using FRI-based polynomial commitments to transform the polynomial IOP of Section 10.3.2 into
a holographic SNARK, this setting of d0 is only sufficient to capture R1CS instances Az ◦Bz = Cz such
that each matrix A, B, C, has at at most d0/2 = 32768 nonzero entries. Handling significantly larger R1CS
instances at the same security level would require a larger field, and either more repetitions (increasing proof
length and verification costs), or lower rate (further increasing prover time).

Theorem 10.4 incentivizes protocol designers to set δ as large as possible, because larger values of δ lead
to smaller values of ε2. However, in the context of using FRI-based polynomial commitments to transform
polynomial IOPs into SNARKs, there may be other issues that prevent setting δ as large as it is set in the
above numerical example, at least according to known soundness analyses. For example, deriving an actual
polynomial commitment scheme from FRI as in Section 10.4.2 requires δ < (1−ρ)/2 < 1/2.127 As another
example, some concrete optimizations to various polynomial IOP in the literature that have been combined
with FRI, e.g., [COS20, Theorem 8.2], require the yet more stringent condition δ ≤ (1−ρ)/3 < 1/3. Under
such a restriction, FRI would require over 200 repetitions of the query phase to achieve soundness error less
than 2−128.

It is conjectured that an analog of Theorem 10.4 holds even for δ as large as roughly 1− ρ (see for
example [BBHR19, BSCI+20]) rather than the 1−√ρ−η bound on δ assumed in Theorem 10.4.

10.4.5 From Univariate to Multilinear Polynomials

FRI can be used to give a polynomial commitment scheme for univariate polynomials (Section 10.4.2).
Zhang et al. [ZXZS20] observe that, given any such commitment scheme for univariate polynomials, it
is possible to devise one for multilinear polynomials in the following manner. As observed in Lemma 3.8,
evaluating an ℓ-variate multilinear polynomial q over F at an input r∈Fℓ is equivalent to computing the inner
product of the following two (2ℓ)-dimensional vectors u1,u2 ∈ F2ℓ . Associating {0,1}ℓ with {0, . . . ,2ℓ−1}

127RedShift [KPV19] uses FRI to construct a relaxation of a polynomial commitment called a list polynomial commitment, and
shows this relaxed primitive suffices for transforming some polynomial IOPs into SNARKs (though it drastically increases the cost
of holography). This relaxed primitive can be achieved with δ as large as roughly 1−√ρ .
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in the natural way, the w’th entry of the first vector u1 is q(w) and the w’th entry of the second vector u2 is
χw(r), the w’th Lagrange basis polynomial evaluated at r. This simple observation, that one can view the
task of evaluating a polynomial p at an input r as an inner product between the coefficient vector u1 of the
polynomial over the relevant basis (in this case, the Lagrange basis), and the vector u2 of all basis functions
evaluated at r, will recur over and over again in the many polynomial commitment schemes discussed in this
text.

Let H be a multiplicative subgroup of F of size n := 2ℓ. (A multiplicative subgroup of exactly this
size only exists if and only if 2ℓ divides |F|− 1, so let us assume this). Let b : H → {0,1}ℓ be a canonical
bijection. To commit to a multilinear polynomial q, it suffices to commit to a univariate polynomial Q over
F of degree |H| = n such that for all a ∈ H, Q(a) = q(b(a)), as q is fully specified by its evaluations over
{0,1}ℓ. To later reveal q(z) at a point z ∈ Fℓ of the verifier’s choosing, consider the vector u2 containing all
Lagrange basis polynomials evaluated at z. It suffices to confirm that

∑
a∈H

Q(a) ·u2(a) = v, (10.20)

where v is the claimed value of q(z) and here we associate the |H|-dimensional vector u2 with a function
over H in the natural way.

Let û2 be the unique polynomial of degree at most |H| extending u2, and let

g(X) = Q(X) · û2(X)− v · |H|−1.

Observe that Equation (10.20) holds if and only if ∑a∈H g(a) = 0. Hence, Equation (10.20) can be checked
by applying the univariate sum-check protocol described following Lemma 10.2 to the polynomial g. In
more detail, in this protocol the prover sends a commitment to polynomials h∗ and f such that

g(X) = h∗(X) ·ZH(X)+X · f (X) (10.21)

and f has degree at most n− 1. This requires the verifier to evaluate g(r), h∗(r), ZH(r) and f (r) for a
randomly chosen r ∈ F. As usual ZH(r) is sparse so the verifier can compute this on its own in logarithmic
time, and h∗(r) and f (r) can be obtained by querying the commitments to these polynomials.

Evaluating g(r) requires evaluating Q(r) and û2(r). Q(r) can be obtained by querying the commitment
to Q. However, evaluating û2(r) requires time linear in n (Lemma 3.8). Fortunately, the function r 7→ û2(r)
is computed by a layered arithmetic circuit of size O(n logn), depth O(logn), and a wiring pattern for which
ãddi and m̃ulti can be evaluated in O(logn) time for each layer i. Hence, the verifier can outsource the
evaluation of û2(r) to the prover using the GKR protocol (Section 4.6), with the verifier running in O(log2 n)
time.

Note that this transformation introduces considerable overhead. In order to commit to a single multi-
linear polynomial with n coefficients and later produce a single evaluation-proof, the prover has to commit
to 3 univariate polynomials of degree n rather than just one such polynomial. Moreover, the prover and
verifier have to apply the GKR protocol to a circuit of size superlinear in the number n of coefficients of the
polynomial being committed.

10.5 Ligero and Brakedown Polynomial Commitments

In this section, we describe IOP-based polynomial commitment schemes with a much faster prover than
FRI but larger evaluation proofs. For simplicity, we describe the polynomial commitment scheme here in
the context of univariate polynomials (expressed over the standard monomial basis), but in fact the scheme
applies directly to multilinear polynomials as well (see Figure 14.2 in Chapter 14 for details).
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10.5.1 Identifying Tensor Product Structure in Polynomial Evaluation Queries

Let q be a degree-(n−1) univariate polynomial over field Fp that the prover wishes to commit to, and let u
denote the vector of coefficients of q. Then, as observed in the previous section, we can express evaluations
of q as inner products of u with appropriate “evaluation vectors”. Specifically, if q(X) = ∑

n−1
i=0 uiX i, then for

z ∈ Fp, q(z) = ⟨u,y⟩ where y = (1,z,z2, . . . ,zn−1) consists of powers of z, and ⟨u,y⟩= ∑
n−1
i=0 uivi denotes the

inner product of u and y.
Moreover, the vector y has a tensor-product structure in the following sense. Let us assume that n=m2 is

a perfect square, and define a,b ∈ Fm as a := (1,z,z2, . . . ,zm−1) and b := (1,zm,z2m, . . . ,zm(m−1)). If we view
y as an m×m matrix with entries indexed as (y1,1, . . . ,ym,m), then y is simply the outer product b ·aT of a and
b. That is, yi, j = zi·m+ j = bi ·a j for all 0≤ i, j≤m−1. Equivalently, we can write q(z) as the vector-matrix-
vector product bT ·u ·a. This tensor structure is also exploited in several polynomial commitment schemes
given in Chapter 14—Figure 14.1 in that chapter contains a pictorial example of this tensor structure.

10.5.2 Description of the polynomial commitment scheme

Background on error-correcting codes. To explain the commitment scheme, we need to introduce some
terminology regarding error-correcting codes. An error-correcting code is specified by an encoding function
E. E maps vectors in Fm to slightly longer vectors, in Fρ−1·m, where ρ is called the rate of the code
(think of ρ as a constant such as 1/4). E must be “distance-amplifying”. This means that if messages
u1,u2 ∈ Fm disagree in even a single coordinate, then E(u1) and E(u2) should disagree in a constant fraction
of coordinates. The distance of the code is the minimum disagreement between any two codewords E(u1)
and E(u2). The relative distance γ of the code is the distance divided by the codeword length.

The code is linear if E is a linear function. That is, E(a · u1 + b · u2) = a ·E(u1)+ b ·E(u2) for any
messages u1,u2 ∈ Fm and scalars a,b ∈ F.

A classic example of a linear code is the Reed-Solomon code. As we have seen throughout this survey,
in this code a message u1 ∈ Fm is interpreted as a degree-m− 1 univariate polynomial p over F. E(u1) is
a list of ρ−1m evaluations of p. The distance of code is at least (1−ρ) ·m; this follows from the fact that
any two distinct degree-(m−1) polynomials can agree on at most m−1 inputs. For this code, E(u1) can be
computed in time O(ρ−1m log(ρ−1m)) using FFT-based multi-point evaluation algorithms.

For the rest of this section, let E denote the encoding function of a linear code with message length m,
codeword length ρ−1m, and constant relative distance γ > 0. Let us furthermore assume E is systematic,
meaning for any message u1 ∈ Fm, the first m symbols of E(u1) are the entries of u1 itself.

The commitment scheme described below is implicit in Ligero [AHIV17] in the case that E is the
Reed-Solomon code (or, more precisely, its systematic variant, the univariate low-degree extension code,
see Section 2.4). For general linear codes E, it is essentially implicit in work of Bootle et al. [BCG+17],
see also [BCG20a]. Golovnev et al. [GLS+21] designed a concretely efficient error-correcting code E with
a linear-time encoding procedure, and called the resulting implemented commitment scheme Brakedown
(they also showed that the resulting polynomial commitment scheme is extractable). Xie et al. [XZS22]
refine the error-correcting code to improve performance, and use SNARK composition to reduce the length
of the polynomial evaluation proofs in the resulting commitment scheme.

Commitment Phase. Recalling that [m] denotes the set {1,2, . . .m}, let us view the coefficient vector u of
q as an m×m matrix in the natural way (exactly as we viewed the vector y above as an m×m matrix). See
Figure 14.1 in Chapter 14 for an example.

163



Let us denote the i’th row of u by ui. Let û be the m× (ρ−1m) matrix in which the i’th row is E(ui). In
the IOP, the prover’s commitment to u will simply be a message listing the entries of the matrix û (so in the
final polynomial commitment scheme, the commitment to q will be the Merkle-hash of û).

Let us denote the actual m× (ρ−1m) matrix contained in the prover’s commitment message by M.
M is claimed to be û, but if the prover is cheating, then M may differ from û. Upon receiving M, the
verifier’s initial goal is to try to ascertain whether or not M is actually a “well-formed” commitment matrix,
meaning that every row of M is a codeword in the error-correcting code specified by E. The verifier will
probabilistically check this via a “random linear combination of rows” test.

Specifically, the verifier chooses a random vector r ∈ Fm and sends r to the prover. The prover responds
with a vector w ∈ Fρ−1m claimed to equal rT ·M, and the verifier confirms that w is a codeword. More
precisely, the verifier can confirm this by having the prover not send w itself, but instead send a message
v ∈ Fm, and the verifier sets w to E(v). This means that the verifier reads v in its entirety.

For some integer parameter t = Θ(λ ) that we will specify later, the verifier then randomly selects t
entries of w and confirms that those entries are “consistent” with the actual commitment matrix M. That
is, the verifier picks a size-t subset Q of the ρ−1m entries of w at random. For each i ∈ Q, the verifier
“opens” all m entries in the ith column of M, and confirms that these entries are consistent with wi, i.e., that
wi = rT ·Mi where Mi denotes the ith column of M. Since the verifier “consistency checks” t entries of w
and each check requires opening an entire column of M, the total number of queries the verifier makes to
entries of M is t ·m.

Evaluation Phase. Suppose the verifier requests that the prover reveal q(z) = ⟨u,y⟩ where u and y are
defined as in Section 10.5.1. Recall that, viewing u as a matrix, q(z) = bT ·u ·a, where a,b ∈ Fm are also as
defined in Section 10.5.1. The evaluation phase is entirely analogous to the commitment phase, except that
the random vector r used in the commitment phase is replaced with b.

In more detail, the prover first sends the verifier a vector v′ claimed to equal bT ·u, and analogous to the
“random linear combination test”, the verifier lets w′ := E(v′). The verifier then picks a size-t subset Q′ of
columns of M and checks that for all i ∈ Q′, w′i = bT ·Mi, where Mi denotes the i’th column of M. If these
checks all pass, then the verifier outputs ⟨w′,a⟩ as its accepted value for q(z).

This costs t ·m queries to M. If the verifier’s checks all pass, then the verifier outputs ∑
m
j=1 a j · v′i as the

evaluation q(z) of the committed polynomial.

Intuition for why this scheme is binding. If the prover is honest and every row of M is a codeword, then
so will be any linear combination of the rows, by linearity of the code. Meanwhile, if M is “far” from having
every row be a codeword (we make the relevant notion of “far” precise in the formal binding analysis), then
it should be unlikely that the random linear combination rT M of the rows of M is close to any codeword z. In
this event, since the verifier checks a large number of entries of z for consistency with the actual requested
linear combination of the rows of M, the prover should fail one of the verifier’s consistency checks with
overwhelming probability.

So the “random linear combination” test roughly ensures that all rows of M are codewords, as claimed
(this isn’t quite true, but it is “close enough” to true for the remainder of the analysis to go through). If
indeed all rows of M are codewords, let ui be the message such that the i’th row of M equals E(ui), and
let u denote the m×m matrix with i’th row equal to ui. We claim that the prover is bound to answer any
evaluation query q(z) with bT ·ua, meaning the prover is bound to the polynomial q whose coefficients are
specified by the matrix u.

This holds because, by linearity of the code, the vector bT ·M requested in the evaluation phase is also
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a codeword. This means if the prover sends any codeword other than bT ·M in the evaluation phase, it
will differ form bT ·M in many entries (by the distance properties of the code), and hence the verifier’s
consistency checks in that phase will detect the discrepancy with overwhelming probability. And because
the code is systematic, if the prover indeed sends bT ·M in the evaluation phase, then the verifier outputs
bT ·u ·a as the evaluation.

Details of binding analysis. For concreteness, we express the detailed binding analysis in the case that E
is the Reed-Solomon encoding, but the analysis applies essentially unchanged to a general linear code E.

For the Reed-Solomon encoding of rate ρ , the relative distance of the code is greater than 1−ρ . This
means that for any δ < (1− ρ)/2, and for any vector w ∈ Fρ−1m, there is at most one codeword within
relative distance δ of w.

In this code, there is some designated set L0 ⊆ F of size ρ−1m, a message ui ∈ Fm is interpreted as the
evaluations of a degree-m polynomial pi over the first m points in L0, and the encoding of ui is the vector of
all evaluations of pi at points in L0.

First attempt at a detailed binding analysis. Lemma 10.3, which states that when taking a random linear
combination of functions, if even a single one of the functions is far from all codewords in the Reed-Solomon
code of a given degree, then (with probability at least 1− 1/|F|) so is the random linear combination.
Quantitatively, for any parameter δ > 0, if any row of M has relative distance more than δ from every
codeword, then Lemma 10.3 guarantees that, with probability at least 1− 1/|F|, rT M has relative distance
at least δ/2 from every polynomial of degree at most m. In this event, since the verifier knows that z is a
codeword, rT M and z differ in at least a δ/2 fraction of their entries. Hence, the probability that zi = rT ·Mi

for all i ∈ Q is at most (1− δ/2)t . We can set t to ensure that this probability is below some desired
soundness level, e.g., to ensure that (1−δ/2)t ≤ 2−λ . In summary, we have established the following.

Claim 10.5. If the verifier’s checks in the Commitment Phase all pass with probability more than 1/|F|+
(1−δ/2)t , then each row i of M has relative distance at most δ from some codeword.

Henceforth, let us assume that δ < (1−ρ)/2. This assumption combined with Claim 10.5 ensures that
if the prover passes the verifier’s checks with probability more than (1−δ/2)t , then for each row Mi of M,
there is a unique codeword pi of degree at most m at relative distance at most δ from the ith row of M.

Unfortunately, the above is not enough on its own to guarantee that the scheme is binding. The reason
for this is the following.

Claim 10.5 asserts that the verifier can be confident that each row i of M has relative Hamming distance at
most δ from some codeword pi ∈F|L0|. Let Ei = { j : pi, j ̸=Mi, j} denote the subset of entries on which pi and
row i of M differ, and let E =∪m

i=1Ei. That is, E is the set of columns such that at least one row i deviates from
its closest polynomial pi in that column. Claim 10.5 doesn’t rule out the possibility |E|= ∑

m
i=1 |Ei|. In other

words, it leaves open the possibility that any two different rows i, i′ of M deviate from the corresponding
codewords pi, pi′ in different locations.

Full binding analysis. We need a refinement of Claim 10.5 that does rule out this possibility (this re-
finement also improves the the δ/2 appearing in Claim 10.5 to δ ). We do not prove this refinement—the
interested reader can find the proof in [AHIV17, Lemma 4.2].

Claim 10.6. (Ames et al. [AHIV17, Lemma 4.2]) Suppose that δ < 1−ρ

3 and that the verifier’s checks in the
Commitment Phase all pass with probability more than ε1 := |L0|/|F|+(1−δ )t . Let E = ∪m

i=1Ei be defined
as above. Then |E| ≤ δ · |L0|.
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To argue binding, let h′ := ∑
m
i=1 ai · pi. We claim that, if the prover passes the verifier’s checks in the

Commitment Phase with probability more than ε1 = |L0|/|F|+ (1− δ )t and sends a codeword h in the
Evaluation Phase such that h ̸= h′, then the prover will pass the verifier’s checks in the Evaluation Phase
with probability at most ε2 := (δ +ρ)t . To see this, observe that h and h′ are two distinct codewords in the
Reed-Solomon code with message length m, and hence they can agree on at most m inputs. Denote this
agreement set by A. The verifier rejects in the Evaluation Phase if there is any j ∈ Q′ such that j ̸∈ A∪E,
where E is as in Claim 10.6. |A∪E| ≤ |A|+ |E| ≤ m+ δ · |L0|, and hence a randomly chosen column j
of M is in A∪E with probability at most m/|L0|+ δ ≤ ρ + δ . It follows that the verifier will reject with
probability at least 1− (ρ +δ )t .

In summary, we have shown that for δ < (1− ρ)/2, if the prover passes the verifier’s checks in the
Commitment Phase with probability at least |L0|/|F|+(1−δ )t , then the prover is bound to the polynomial
q∗ whose coefficient matrix u has i’th row equal to the first m symbols of pi. That is, on any evaluation
query z, the verifier either outputs q∗(z), or else rejects in the Evaluation Phase with probability at least
1− (ρ +δ )t .

10.5.3 Discussion of Costs

Let λ denote a security parameter defined as follows. Suppose we wish to guarantee that if the prover
convinces the verifier not to reject in either the Commitment Phase or Query Phase with probability at least
ε1+ε2 = 2−λ , then the prover is forced to answer any evaluation query consistent with a fixed polynomial q∗

of degree at most n−1. The costs of the polynomial commitment scheme are then as follows. Throughout,
we suppress dependence on ρ−1 and δ , as we consider these parameters to be constants in (0,1).

Commitment and Evaluation Proof Sizes. After some optimizations to the above commitment scheme
(omitted from this survey for brevity), one can achieve a commitment that is just a single Merkle-hash, with
evaluation proofs of size O(

√
nλ ). The square root dependence on n arises because the vectors v = rT M

and v′ = bT ·u that the prover sends in response to the random linear combination test and evaluation query
equals the number of columns of the matrices u and M, and because the verifier queries all entries of t
columns of M, each of which has length equal to the number of rows of M. The matrix was chosen to have√

n rows and columns to balance these costs.

Prover Time. The prover’s runtime in the argument resulting from this IOP is dominated by two opera-
tions. The first is to encode each row of the matrix M. If the Reed-Solomon code is used as in Ligero, this
requires one FFT operation per row, on vectors of length Θ(

√
n). Since each such FFT requires O(

√
n logn)

field operations, the total runtime for the FFTs is O(n logn) field operations.
If an error-correcting code with linear-time encoding is used (e.g., the one designed in [GLS+21]), then

the encoding operations require only O(n) time in total.
The second bottleneck is the need for the prover to compute a Merkle-hash of its first message, which

has length O(n). This requires O(n) cryptographic hash evaluations. In practice, it is typically the encoding
operations that dominate the prover’s runtime, not the Merkle-hashing.

Verifier Time. After some concrete optimizations, the verifier’s runtime in the argument system is domi-
nated by the need to apply the error-correcting code’s encoding procedure to two vectors v and v′ of length
O(
√

nλ ). If using the Reed-Solomon code, this is O(
√

nλ logn) field operations; if using a linear-time
encodable code, this is O(

√
nλ ) field operations.
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Comparison to FRI. The communication complexity and verifier runtime of the argument system are
much larger than those of FRI, at least asymptotically. Whereas the FRI proof length and verifier time are
polylogarithmic in n, these costs for the Ligero- and Brakedown- polynomial commitments are proportional
to the square root of n.

The main benefit of Ligero- and Brakedown- polynomial commitments is a significantly faster prover—
over an order of magnitude in practice for large enough values of n [GLS+21]. In the case of Brakedown, the
prover time is asymptotically optimal O(n) instead of O(n logn). Additionally, Brakedown works over any
field of sufficient size, whereas FRI and Ligero’s commitment require a field F that supports FFTs, meaning
F must have a multiplicative or additive subgroup of appropriate size.128

Ligero++ [BFH+20] combines Ligero’s commitment and FRI to obtain a polynomial commitment
scheme with similar prover time to Ligero’s commitment, and similar proof length to FRI’s. However,
this approach increases the verifier’s runtime to close to linear in n.

10.6 Unifying IPs, MIPs, and IOPs via Polynomial IOPs

Chapters 7-10 described succinct arguments for circuit- and R1CS-satisfiability obtained by combining an
IP or MIP with a polynomial commitment scheme. We described the protocol of this chapter (Section 10.3)
as a polynomial IOP. In this section, we recast the IPs and MIPs in the same framework. This permits shorter
descriptions of the protocols and clarifies the pros and cons of the various approaches. To avoid redundancy,
our descriptions here are somewhat sketchy, as this section merely recasts protocols described in full detail
earlier in this manuscript.

Polynomial IOP from the GKR Protocol. Here, we recast the IP-based succinct argument from Chapter
7 as a polynomial IOP. In this argument, the prover claims to know a witness w ∈ Fn such that C(w) = 1,
where C is a circuit known to both the prover and verifier. The one and only “special” message in this
polynomial IOP is the first one. Specifically, the prover begins the protocol by sending the (logn)-variate
polynomial w̃, i.e., the multilinear extension of the witness w. The prover and verifier then apply the GKR
protocol (Section 4.6) to the claim that C(w) = 1. Note that the verifier in the GKR protocol does not need
to know anything about w to execute its part of the protocol, until the very end of the protocol when it needs
to know w̃(r) for a randomly chosen r ∈ Flogn. This is why the verifier in this polynomial IOP does not need
to learn the special message in full, but rather just a single evaluation of the polynomial w̃ described therein.

Polynomial IOP from Clover. Here, we recast the MIP-based succinct argument from Section 8.2 as a
polynomial IOP (the MIP for R1CS from Section 8.4 can be similarly recast). The section defined the notion
of a correct transcript W for the claim that C(w) = 1: a transcript W assigns a value to each of the S gates
of C, and W is correct if it assigns the output gate value 1, and actually corresponds to the gate-by-gate
evaluation of C on some input w.

As with the GKR-based polynomial IOP, the one and only “special” message in this polynomial IOP is
the first one. The prover begins the protocol by sending the (logS)-variate polynomial W̃ , i.e., the multilinear
extension of the correct transcript W .

128Recent work [BCKL21, BCKL22] provides FFT-like algorithms and associated argument systems running in O(n logn) time
in arbitrary fields, but a more expensive field-dependent pre-processing phase is required and at the time of writing the concrete
costs of these algorithms are unclear.

167



Equation (8.2) in Section 8.2 defines a derived polynomial hW̃ such that the following two properties
hold: (1) W̃ extends a correct transcript if and only if129

∑u∈{0,1}3logS hW̃ (u) = 0. (2) For any r1,r2,r3 ∈ FlogS,
hW̃ (r1,r2,r3) can be efficiently computed given W̃ (r1), W̃ (r2), W̃ (r3).

Hence, the polynomial IOP simply applies the sum-check protocol to the polynomial hW̃ . Note that
the verifier in the sum-check protocol does not need to know anything about hW̃ to execute its part of the
protocol, until the very end of the protocol when it needs to know hW̃ (r1,r2,r3) for a randomly chosen
(r1,r2,r3) ∈ F3logS. By the second property above, this evaluation can be efficiently obtained given W̃ (r1),
W̃ (r2), W̃ (r3).

Using the interactive proof of Section 4.5.2, the verifier can avoid making three evaluation-queries to
W̃ , instead making only a single evaluation query. Specifically, the verifier asks the prover to tell it (claimed
values for) W̃ (r1), W̃ (r2), W̃ (r3), and the technique of Section 4.5.2 allows the verifier to check this claim
by evaluating W̃ (r4) at a single randomly chosen point r4 ∈ FlogS.

Remark 10.3. The above two protocol descriptions assume that the multilinear extensions of the “wiring
predicates” of C used internally in the protocols can be evaluated quickly by the verifier. If not, holography
can nonetheless be achieved via the commitment scheme for sparse multilinear polynomials given later, in
Section 16.2.

Comparison of IP-, MIP-, and constant-round-polynomial-IOP-derived arguments. The above re-
casting makes clear that in the arguments derived from IPs and MIPs above (which are both based on
multilinear polynomials), the prover commits to only a single multilinear polynomial. In contrast, in the
polynomial IOP of this chapter (Section 10.3), which exclusively uses univariate polynomials, the prover
needs to commit to many polynomials, each at least as big as the polynomial committed from the IP- and
MIP-derived arguments. Specifically, the prover from this chapter commits to 11 univariate polynomials,
at least if naively implemented (and not counting the cost of holography). This is a major reason that ar-
guments derived from constant-round polynomial IOPs tend to be much more expensive for the prover in
terms of both time and space requirements.130131

On the other hand, the fact that the univariate-polynomial-based IOP of this chapter is only a constant
number of rounds is a significant benefit. This means that, if combined with a polynomial commitment
scheme with constant-sized commitments and evaluation proofs (i.e., KZG commitments covered later in
Section 15.2), it yields a SNARK with constant proof size.132 In contrast, the use of multilinear polynomials
and the sum-check protocol in the IP- and MIP-derived SNARKs results in at least logarithmically many
rounds, and hence at least logarithmic proof size and verifier time.

In summary, the IP- and MIP-derived SNARKs tend to have much lower prover costs, but have higher
verification costs than alternatives based on constant-round polynomial IOPs. The IP-based argument takes
this to an extreme, because it applies the polynomial commitment scheme only to the circuit witness w;
if w is smaller than the full circuit C, this keeps prover costs low. But the resulting proofs can be quite
large. Indeed, ignoring the cost of evaluation-proofs from the chosen polynomial scheme, the MIP-derived

129More precisely, the definition of hW̃ is randomized, with some small probability that W̃ does not extend a correct transcript,
yet hW̃ ’s evaluations over the Boolean hypercube do not sum to 0.

130The constant-round polynomial IOP described in this chapter underlies systems including Marlin [CHM+20] and Fractal
[COS20]. Another popular constant-round polynomial IOP with a similar cost profile to Marlin is PlonK [GWC19].

131There may be additional reasons constant-round polynomial IOPs are more expensive for the prover. For example, existing
SNARKs derived from constant-round polynomial IOPs require the prover to perform FFTs, even when using a polynomial com-
mitment scheme that does not require FFTs. This is not the case for the IP- and MIP-derived arguments above, which entirely avoid
FFTs if they use a multilinear polynomial commitment scheme that does not require them.

132By constant proof size, we mean a constant number of elements of a cryptographic group G.
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argument for circuit-satisfiability above has proofs that are shorter than the IP-based one by a factor roughly
equal to the circuit depth. On the other hand, it applies the polynomial commitment scheme to the entire
circuit transcript extension W̃ rather than just the witness extension w̃, which can lead to larger prover costs
than the IP-derived arguments.
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Chapter 11

Zero-Knowledge Proofs and Arguments

11.1 What is Zero-Knowledge?

The definition of a zero-knowledge proof or argument captures the notion that the verifier should learn
nothing from the prover other than the validity of the statement being proven.133 That is, any information
the verifier learns by interacting with the honest prover could be learned by the verifier on its own without
access to a prover. This is formalized via a simulation requirement, which demands that there be an efficient
algorithm called the simulator that, given only as input the statement to be proved, produces a distribution
over transcripts that is indistinguishable from the distribution over transcripts produced when the verifier
interacts with an honest prover (recall from Section 3.1 that a transcript of an interactive protocol is a list of
all messages exchanged by the prover and verifier during the execution of the protocol).

Definition 11.1 (Informal definition of zero-knowledge). A proof or argument system with prescribed prover
P and prescribed verifier V for a language L is said to be zero-knowledge if for any probabilistic polyno-
mial time verifier strategy V̂ , there exists a probabilistic polynomial time algorithm S (which can depend
on V̂ ), called the simulator, such that for all x ∈ L, the distribution of the output S(x) of the simulator is
“indistinguishable” from ViewV̂ (P(x),V̂ (x)). Here, ViewV̂ (P(x),V̂ (x)) denotes the distribution over tran-
scripts generated by the interaction of prover strategy P and verifier strategy V̂ within the proof or argument
system.

Informally, the existence of the simulator means that, besides learning that x ∈ L, the verifier V does
not learn anything from the prover beyond what V could have efficiently computed herself. This is because,
conditioned on x being in L, V cannot tell the difference between generating a transcript by interacting with
the honest prover versus generating the transcript by ignoring the prover and instead running the simulator.
Accordingly, any information the verifier could have learned from the prover could also have been learned
from the simulator (which is an efficient procedure, and hence the verifier can afford to run the simulator
herself).

In Definition 11.1, there are three natural meanings of the term “indistinguishable”.

• One possibility is to require that S(x) and ViewV̂ (P(x),V̂ (x)) are literally the same distribution. In
this case, the proof or argument system is said to be perfect-zero knowledge.134

133Recall that a proof satisfies statistical soundness, while an argument satisfies computational soundness. See Definitions 3.1
and 3.2.

134In the context of perfect zero-knowledge proofs, it is standard to allow the simulator to abort with probability up to 1/2, and
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• Another possibility is to require that the distributions S(x) and ViewV̂ (P(x),V̂ (x)) have negligible
statistical distance. In this case, the proof or argument system is said to be statistical zero-knowledge.

Here, the statistical distance (also called total variation distance) between two distributions D1 and D2
is defined to be

1
2 ∑

y
|Pr[D1(x) = y]−Pr[D2(x) = y]|,

and it equals the maximum over all algorithms A (including inefficient algorithms) of

| Pr
y←D1

[A(y) = 1]− Pr
y←D2

[A(y) = 1]|,

where y← Di means that y is a random draw from the distribution Di. Hence, if two distributions
have negligible statistical distance, then no algorithm (regardless of its runtime) can distinguish the
two distributions with non-negligible probability given a polynomial number of samples from the
distributions.

• The third possibility is to require that all polynomial time algorithms A cannot distinguish the distri-
butions S(x) and ViewV̂ (P(x),V̂ (x)) except with negligible probability, when given as input a poly-
nomial number of samples from the distributions. In this case, the proof or argument system is said to
be computational zero-knowledge.

Accordingly, when someone refers to a “zero-knowledge protocol”, there are actually at least 6 types
of protocols they may be referring to. This is because soundness comes in two flavors—statistical (proofs)
and computational (arguments)—and zero-knowledge comes in at least 3 flavors (perfect, statistical, and
computational). In fact, there are even more subtleties to be aware of when considering how to define the
notion of zero-knowledge.

• (Honest vs. dishonest verifier zero-knowledge). Definition 11.1 requires an efficient simulator for
every possible probabilistic polynomial time verifier strategy V̂ . This is referred to as malicious-
or dishonest-verifier- zero knowledge (though papers often omit the clarifying phrase malicious or
dishonest-verifier). It is also interesting to consider only requiring an efficient simulator for the pre-
scribed verifier strategy V . This is referred to as honest-verifier zero-knowledge.

• (Plain zero-knowledge vs. auxiliary-input zero-knowledge). Definition 11.1 considers the verifier
V̂ to have only one input, namely the public input x. This is referred to as plain zero-knowledge, and
was the original definition given in the conference paper of Goldwasser, Micali, and Rackoff [GMR89]
that introduced the notion of zero-knowledge (along with the notion of interactive proofs). However,
when zero-knowledge proofs and arguments are used as subroutines within larger cryptographic pro-
tocols, one is typically concerned about dishonest verifiers that may compute their messages to the
prover based on information acquired from the larger protocol prior to executing the zero-knowledge
protocol. To capture such a setting, one must modify Definition 11.1 to refer to verifier strategies V̂
that take two inputs: the public input x known to both the prover and verifier, and an auxiliary input
z known only to the verifier and simulator, and insist that the output S(x,z) of the simulator is “in-
distinguishable” from ViewV̂ (P(x),V̂ (x,z)). This modified definition is referred to as auxiliary-input

require S(x) to be distributed identically to ViewV̂ (P(x),V̂ ) conditioned on S(x) not aborting. This is because, if the simulator is
not permitted to abort, no perfect-zero knowledge proofs are known for any non-trivial problems (meaning problems not known to
be in BPP, the class of problems solvable in randomized polynomial time). This subtlety will not be relevant to this survey.
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zero-knowledge. Of course, the distinction between auxiliary-input and plain zero-knowledge is only
relevant when considering dishonest verifiers.

An added benefit of considering auxiliary-input computational zero-knowledge is that this notion
is closed under sequential composition. This means that if one runs several protocols satisfying
auxiliary-input computational zero-knowledge, one after the other, the resulting protocol remains
auxiliary-input computational zero-knowledge. This is actually not true for plain computational zero-
knowledge, though known counterexamples are somewhat contrived. The interested reader is directed
to [BV10] and the references therein for a relatively recent study of the composition properties of
zero-knowledge proofs and arguments.

The reader may be momentarily panicked at the fact that we have now roughly 24 notions of zero-
knowledge protocols, one for every possible combination of (statistical vs. computational soundness),
(perfect vs. statistical vs. computational zero-knowledge), (honest-verifier vs. dishonest-verifier zero-
knowledge), and (plain vs. auxiliary input zero-knowledge). That’s 2 · 3 · 2 · 2 combinations in total,
though for honest-verifier notions of zero-knowledge the difference between auxiliary-input and plain zero-
knowledge is irrelevant. Fortunately for us, there are only a handful of variants that we will have reason to
study in this manuscript, summarized below.

In Sections 11.2-11.4 below, we briefly discuss statistical zero-knowledge proofs. Our discussion is
short because, as we explain, statistical zero-knowledge proofs are not very powerful (e.g., while they are
capable of solving some problems believed to be outside of BPP, they are not believed to be able to solve
NP-complete problems). Roughly all we do is describe what is known about their limitations, and then
give a sense of what they are capable of computing by presenting two simple examples: a classic zero-
knowledge proof system for graph non-isomorphism due to [GMW91] (Section 11.3), and a particularly
elegant protocol for a problem called the Collision Problem (this problem is somewhat contrived, but the
protocol is an instructive example of the power of zero-knowledge).

In subsequent chapters, we present a variety of perfect zero-knowledge arguments. All are non-interactive
(possibly after applying the Fiat-Shamir transformation), rendering the distinction between malicious- and
honest-verifier (and auxiliary-input vs. plain) zero-knowledge irrelevant.135136137

Remarks on simulation. A common source of confusion for those first encountering zero-knowledge is to
wonder whether an efficient simulator for the honest verifier’s view in a zero-knowledge proof or argument

135More precisely, when the Fiat-Shamir transformation is applied to an honest-verifier zero-knowledge proof or argument and is
instantiated in the plain model (by replacing the random oracle with a concrete hash function), the resulting non-interactive argument
is zero-knowledge so long as the hash family used to instantiate the random oracle satisfies a property called programmability. The
result applies even to dishonest verifiers, since non-interactive protocols leave no room for misbehavior on the part of the verifier.
Roughly speaking, the simulator for the non-interactive argument obtains a transcript by running the simulator for the interactive
argument, and then samples the hash function h used in the Fiat-Shamir transformation at random conditioned on it producing the
verifier challenges in the transcript (this ability to perform such conditional sampling of h is what is referred to by programmability).
This produces the same distribution over (hash function, transcript) pairs as first selecting h at random, and then having the honest
prover use h when applying the Fiat-Shamir transformation to the interactive protocol. See [Rot19] for additional details.

136When working in the random oracle model instead of the plain model, there are some subtleties regarding how to formalize
zero-knowledge that we elide in this survey (the interested reader can find a discussion of these subtleties in [Pas03, Wee09]).

137For non-interactive arguments that use a structured reference string (SRS), such as the one we describe later in Section 17.5.6,
one may consider (as an analog of malicious-verifier zero-knowledge) settings in which the SRS is not generated properly. For
example, the notion of subversion zero knowledge demands that zero-knowledge be maintained even when the SRS is chosen
maliciously. SNARKs that we describe in this survey that use an SRS can be tweaked to satisfy subversion zero-knowledge
[BFS16,ABLZ17,Fuc18]. On the other hand, it is not possible for a SNARK for circuit satisfiability to be sound in the presence of
a maliciously chosen SRS if the SNARK is zero-knowledge [BFS16].
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for a language L implies that the problem can be solved by an efficient algorithm (with no prover). That is,
given input x, why can’t one run the simulator S on x several times and try to discern from the transcripts
output by S whether or not x ∈ L? The answer is that this would require that for every pair of inputs
(x,x′) with x ∈ L and x′ ̸∈ L, the distributions S(x) and S(x′) are efficiently distinguishable. Nothing in the
definition of zero-knowledge guarantees this. In fact, the definition of zero-knowledge says nothing about
how the simulator S behaves on inputs x′ that are not in L.

Indeed, it is entirely possible that an efficient simulator S can produce accepting transcripts for a zero-
knowledge protocol even when run on inputs x′ ̸∈ L. Similarly, in the context of zero-knowledge proofs of
knowledge, where the prover is claiming to know a witness w satisfying some property, the simulator will be
able to produce accepting transcripts without knowing a witness.

One may initially wonder whether the preceding paragraph contradicts soundness of the protocol: if
the simulator can find accepting transcripts for false claims, can’t a cheating prover somehow use those
transcripts to convince the verifier to accept false claims as valid? The answer is no. One reason for this
is that a zero-knowledge protocol may be interactive, yet the simulator only needs to produce convincing
transcripts of the interaction. This means that the simulator is able to do things like first choose all of
the verifier’s challenges, and then choose all of the prover’s messages in a manner that depends on those
challenges. In contrast, a cheating prover must send its message in each round prior to learning the verifier’s
challenge in that round. So even if the simulator can find accepting transcripts for inputs x ̸∈ L, it will be of
no help to a dishonest prover trying to convince V that x ∈L. This will be the situation for the simulators we
construct in Section 11.4 for the Collision Problem, and the zero-knowledge proofs of knowledge that we
develop in Section 12.2 (e.g., in Schnorr’s protocol for establishing knowledge of a discrete logarithm).138

Some final intuition. Another way of thinking about a zero-knowledge protocol is as follows. If the
prover P convinces the verifier V to accept, then V can infer (unless P got very lucky in terms of the
random challenges the verifier happened to send to the prover during the interaction) that P must have had
an effective strategy for answering verifier challenges. That is, P must have been prepared to successfully
answer many different challenges that V might have asked (but did not actually ask) during the protocol’s
execution. If the protocol has low soundness error, this implies that P’s claim is accurate, i.e., that x ∈ L.

Meanwhile, zero-knowledge guarantees that P’s answers to the actual challenges asked by V during
the protocol reveal no other information whatsoever. Put another way, P’s answers to the challenges sent
during the zero-knowledge protocol are only useful for convincing V that P was prepared to answer other
challenges that were not actually asked. P’s preparation reveals to V that P’s claim is accurate, but reveals
nothing else.

This intuition will become clearer in Section 12.2, when we cover so-called special-sound protocols.
These are three-message protocols in which the verifier V sends a single random challenge to the prover
(this challenge is the protocol’s second message). Following the prover’s first message, if V were somehow
able to obtain the prover’s answers to two different challenges, then V would indeed learn information from
the two responses. This does not violate zero-knowledge because the verifier in the protocol only interacts
with P once, and can only send a single challenge during that interaction.

138A second possible reason that the existence of a simulator may not help a cheating prover is that, if the protocol is private coin,
then the simulator can choose the verifier’s private coins and use its knowledge of the private coins to produce accepting transcripts,
while a cheating prover does not have access to the verifier’s private coins. We only cover one such example of a private-coin
zero-knowledge protocol: the graph non-isomorphism protocol given in Section 11.3.
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11.2 The Limits of Statistical Zero Knowledge Proofs

It is known that any language solvable by a statistical zero-knowledge proof with a polynomial time verifier
is in the complexity class AM∩ coAM [AH91, For87].139 This means that such proof systems are certainly
no more powerful than constant-round (non-zero-knowledge) interactive proofs, and such proof systems are
unlikely to exist for any NP-complete problems.140 In contrast, the SNARKs we give in this survey with
polynomial time verifiers are capable of solving problems in NEXP, a vastly bigger class than NP (and
with linear-time verifiers and logarithmic proof length, the SNARKs in this survey can solve NP-complete
problems). The upshot is that statistical zero-knowledge proof systems are simply not powerful enough to
yield efficient general-purpose protocols (i.e., to verifiably outsource arbitrary witness-checking procedures
in zero-knowledge). Accordingly, we will discuss statistical zero-knowledge proofs only briefly in this
survey. The reason we discuss them at all is because they do convey some intuition about the power of
zero-knowledge that is useful even once we turn to the more powerful setting of (perfect honest-verifier)
zero-knowledge arguments.

11.3 Honest-Verifier SZK Protocol for Graph Non-Isomorphism

Two graphs G1,G2 on n vertices are said to be isomorphic if they are the same graph up to labelling of
vertices. Formally, for a permutation π : {1, . . . ,n} → {1, . . . ,n}, let π(Gi) denote the graph obtained by
replacing each edge (u,v) with (π(u),π(v)). Then G1 is isomorphic to G2 if there exists a permutation π

such that π(G1) = G2. That is, π is an isomorphism between G1 and G2 so long as (i, j) ∈ G1 if and only if
(π(i),π( j)) is an edge of G2.

There is no known polynomial time algorithm for the problem of determining whether two graphs are
isomorphic (though a celebrated recent result of Babai [Bab16] has given a quasipolynomial time algorithm
for the problem). In Protocol 2, we give a perfect honest-verifier zero-knowledge protocol for demonstrating
that two graphs are not isomorphic, due to seminal work of Goldreich, Micali, and Wigderson [GMW91].
Note that it is not even obvious how to obtain a protocol for this problem that is not zero-knowledge. While
a (non-zero-knowledge) proof that two graphs are isomorphic can simply specify the isomorphism π ,141 it
is not clear that there is a similar witness for the non-existence of any isomorphism.

Protocol 2 Honest-verifier perfect zero-knowledge protocol for graph non-isomorphism

Verifier picks b ∈ {1,2} at random, and chooses a random permutation π : {1, . . . ,n}→ {1, . . . ,n}.
Verifier sends π(Gb) to prover.
Prover responds with b′.
Verifier accepts if b′ = b and rejects otherwise.

We now explain that the protocol in Protocol 2 is perfectly complete, has soundness error at most 1/2,
and is honest-verifier perfect zero-knowledge.

139AM (respectively, coAM) is the class of languages, membership (respectively, non-membership) in which can be established
via a 2-message interactive proofs with a polynomial time verifier. Intuitively, AM captures “minimally interactive” proofs. There
is evidence that such proof systems are no more powerful than non-interactive proofs [MV05, KVM02].

140If AM∩ coAM contains NP-complete problems, then AM = coAM, which many people believe to be false. That is, the
existence of efficient one-round proofs of membership in a language does not seem like it should necessarily imply the existence of
efficient one-round proofs of non-membership in the same language.

141A perfect zero-knowledge proof for graph isomorphism is also known, an exposition of which can be found in [Gol07, Section
4.3.2].
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Perfect Completeness. If G1 and G2 are not isomorphic, then π(Gi) is isomorphic to Gi but not to G3−i.
Hence, the prover can identify b from π(Gb) by determining which of G1,G2 it is that π(G) is isomomorphic
to.

Soundness. If G1 and G2 are isomorphic, then π(G1) and π(G2) are identically distributed when π is
a permutation chosen uniformly at random over the set of all n! permutations over {1, . . . ,n}. Hence,
statistically speaking, the graph π(Gb) provides no information as to the value of b, which means regardless
of the prover’s strategy for selecting b′, b′ will equal b with probability exactly 1/2. The soundness error
can be reduced to 2−k by repeating the protocol k times sequentially.

Perfect honest-verifier zero-knowledge. Intuitively, when the graphs are not isomorphic, the honest veri-
fier cannot possibly learn anything from the prover because the prover just sends the verifier a bit b′ equal
to the bit b that the verifier selected on its own. Formally, consider the simulator that on input (G1,G2),
simply chooses b at random from {1,2} and chooses a random permutation π , and outputs the transcript
(π(Gb),b). This transcript is distributed identically to the honest verifier’s view when interacting with the
prescribed prover.

Discussion of zero-knowledge. We remark that the protocol is not zero-knowledge against malicious ver-
ifiers (assuming there is no polynomial time algorithm for graph isomorphism142). Imagine a dishonest
verifier that somehow knows a graph H that is isomorphic to one of G1,G2, but the verifier does not know
which. If the verifier replaces its prescribed message π(Gb) in the protocol with the graph H, then the
honest prover will reply with the value b′ such that H is isomorphic to Gb′ . Hence, this dishonest verifier
learns which of the two input graphs H is isomorphic to, and if there is no efficient algorithm for graph
isomorphism, then this is information that the verifier could not have computed efficiently on its own.

It is possible to transform this protocol into a proof that is zero-knowledge even against dishonest ver-
ifiers. Our sketch of this result follows [Gol07, Section 4.7.4.3]. The rough idea is that if the verifier only
sends query graphs H to the prover such that the verifier already knows which of G1,G2 it is that H is
isomorphic to, then the verifier cannot possibly learn anything from the prover’s response (as the prover’s
response is simply a bit b′ such that H is isomorphic to Gb′). Hence, we can insist that the verifier first prove
to the prover that the verifier knows a bit b such that H is isomorphic to Gb.

For this approach to preserve soundness, it is essential that the verifier’s proof not leak any information
to the prover about b (i.e., the verifier’s proof to the prover should itself be zero-knowledge, or at least
satisfy a weaker property called witness-independence (see [Gol07, Section 4.6])). This is because, if G1
and G2 are isomorphic (i.e., the prover is lying when it claims that G1 and G2 are not isomorphic), a cheating
prover could use information leaked from the verifier’s proof about bit b in order to guess the value of b with
probability more than 1/2.

Of course, we are omitting many details of how the verifier might prove to the prover in zero-knowledge
that it knows a b such that H is isomorphic to Gb. But hopefully this gives some sense of how one
might transform honest-verifier zero-knowledge proofs into dishonest-verifier proofs. Clearly, the result-
ing dishonest-verifier zero-knowledge protocol is more expensive than the honest-verifier zero-knowledge
one, because achieving zero-knowledge against dishonest verifiers requires the execution of a second zero-
knowledge proof (with the role of prover and verifier reversed).

142Though it may not be terribly surprising if this assumption turns out to be false, in light of the recent result of Babai [Bab16].
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11.4 Honest-Verifier SZK Protocol for the Collision Problem

In the Collision Problem, the input is a list (x1, . . . ,xN) of N numbers from a range of size R = N (while the
list length and the range size are equal, it is helpful to distinguish the two quantities, with N referring to the
former and R referring to the latter). The goal of the problem is to determine whether every range element
appears in the list. Since R = N, this holds if and only if every range element appears exactly once in the list.
However, there is a twist to make the problem easier: it is assumed that either every range element appears
exactly once in the list (call such inputs YES instances), or exactly R/2 range elements appear twice in the
list (this means, of course, that the other R/2 range elements do not appear in the list at all). Call such inputs
NO instances. Algorithms for the Collision Problem are allowed to behave arbitrarily on inputs that fail to
satisfy the above assumption.

The name Collision Problem refers to the fact that if the input list is interpreted as the evaluation table
of a function h mapping domain {1, . . . ,N} to range {1, . . . ,R}, then YES instances have no collisions (i.e.,
h(i) ̸= h( j) unless i = j), while NO instances have many collisions (there are N/2 pairs (i, j) such that
h(i) = h( j) yet i ̸= j). This problem was originally introduced as a loose and idealized model of the task
of finding collisions in a cryptographic hash function h.143 With this interpretation as motivation, for each
range element k ∈ {1, . . . ,R}, we refer to any i with xi = k as a pre-image of k.

In the Collision Problem, since N is thought of as modeling the domain size and range size of a cryp-
tographic hash function, we consider N to be “exponentially large”.144 Accordingly, for this problem, an
algorithm should be considered “efficient” (i.e., “polynomial time”) only if it runs in time polylog(N).

Fastest Algorithm with no Prover. It is known that the fastest possible algorithm for the Collision prob-
lem runs in time Θ(

√
N) (see Footnote 96 in Section 7.3.2.2), i.e., there is no “efficient” algorithm for the

Collision Problem. We briefly sketch how to show this. The best algorithm simply inspects c ·
√

N randomly
chosen list elements for a sufficiently large constant c > 0, and outputs 1 if they are all distinct, and outputs
0 otherwise. Clearly, when run on a YES instance, the algorithm outputs 1 with probability 1, since for YES
instances every list element is distinct. Whereas when run on a NO instance, the birthday paradox implies
that for a large enough constant c> 0, there will be a “collision” in the sampled list elements with probability
at least 1/2.145 This runtime is optimal up to a constant factor, because it is known that any algorithm that
“inspects”≪

√
N list elements cannot effectively distinguish YES instances from NO instances (intuitively,

this is because any algorithm that inspects fewer than Θ(
√

N) list elements of a random NO instance will
with probability 1− o(1) fail to find a collision, and in this case the algorithm has no way to tell the input
apart from a random YES instance).146

143A key difference between finding collisions in a real-world cryptographic hash function h and the Collision Problem is that in
the former task, h will have a succinct implicit description (e.g., via a computer program or circuit that on input i quickly outputs
h(i)), while in the Collision Problem h does not necessarily have a description that is shorter than the list of all of its evaluations.

144Strictly speaking, this is a misnomer, because the size of the input to the Collision Problem is N. But the Collision Problem
is modeling a setting where the size of the input (namely, the description of a cryptographic hash function h with domain size and
range size N) is really polylog(N).

145Let c = 2. If there is a collision within the first
√

N samples, we are done. Otherwise, the probability that none of the first√
N sampled range elements appear within the second

√
N sampled range elements is at most (1−

√
N/N)

√
N = (1−1/

√
N)
√

N ≈
1/e < 1/2.

146The expected number of collisions observed on a random NO instance after inspecting at most T items of the input list is
O(T 2/N), so if T ≤ o(

√
N) this expectation is o(1). Markov’s inequality then implies that with probability 1−o(1), no collision is

observed by the algorithm.

176



HVSZK Protocol with Efficient Verifier. Here is an honest-verifier statistical zero-knowledge proof for
the Collision Problem. The protocol consists of just one round (one message from verifier to prover and one
reply from prover to verifier), and the verifier runs in time just O(logN) (both messages consist of logN
bits, and to check the proof the verifier inspects only one element of the input list).

The first message of the protocol, from verifier to prover, consists of a random range element k ∈
{1, . . . ,R}. The prover responds with a pre-image i of k. The verifier simply checks that indeed xi = k,
outputting ACCEPT if so and REJECT otherwise.

We now explain that the protocol is complete, sound, and honest-verifier perfect zero-knowledge. Recall
that this means there is a simulator running in time polylog(N) that, on any YES instance, produces a
distribution over transcripts identical to that of that of the honest verifier interacting with the honest prover.

Completeness is clear because for YES instances, each range element appears once in the input list, and
hence regardless of which range element k ∈ {1, . . . ,R} is selected by the verifier, the prover can provide a
pre-image of k. Soundness holds because for NO instances, R/2 range elements do not appear at all in the
input list, and hence with probability 1/2 over the random choice of k ∈ {1, . . . ,R}, it will be impossible for
the prover to provide a pre-image of k.

To establish honest-verifier perfect zero-knowledge, for any YES instance (x1, . . . ,xN), we have to give
an efficient simulator that generates transcripts distributed identically to those generated by the honest ver-
ifier interacting with the honest prover. The simulator picks a random domain item i ∈ {1, . . . ,N}, and
outputs the transcript (xi, i). Clearly, the simulator runs in logarithmic time (it simply chooses i, which
consists of logN bits, and inspects one element of the input list, namely xi). Since in any YES instance,
each range element appears exactly once in the input list, picking a random domain item i ∈ {1, . . . ,N} and
outputting the transcript (xi, i) yields the same distribution over transcripts as picking a random range ele-
ment k and outputting (xi, i) where i is the unique pre-image of k. Hence, on YES instances, the simulator’s
output is distributed identically to the view of the honest verifier interacting with the honest prover. Put
more intuitively, the honest verifier in this protocol, when run on a YES instance, simply learns a random
pair (xi, i) where i is chosen at random from {1, . . . ,N}, and this is clearly information the verifier could
have efficiently computed on its own, by choosing i at random and inspecting xi.

Discussion. This protocol is included in this survey because it cleanly elucidates some of the counter-
intuitive features of zero-knowledge protocols.

• The simulator, even if run on a NO instance, will always output an accepting transcript (xi, i). This
fact may initially feel like it contradicts soundness of the protocol. However, it does not. This is
because, if run on a NO instance, the simulator picks the verifier challenge xi specifically to be an
“answerable” challenge, i.e., a range element that appears in the input list. The actual verifier would
have chosen a random range element as a challenge, which on a NO instance will, with probability
1/2, have no pre-image and hence not be answerable.

• The existence of an efficient simulator is no barrier to intractability of the problem. While the simu-
lator runs in time O(logN), the fastest algorithm for the problem requires time Θ(

√
N).

• While the protocol is honest-verifier zero-knowledge, it is not dishonest-verifier zero-knowledge. In-
deed, a dishonest verifier can “use” the honest prover to solve the problem of finding a pre-image of a
specific range element of the verifier’s choosing (a problem that would require Θ(N) queries without
access to a prover). That is, on a YES instance, if the dishonest verifier sent to the prover a range
element k of its choosing (rather than a uniform random range element as the honest verifier does),
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then the prover will reply with a pre-image of k. The verifier would not have been able to compute
such a pre-image on its own in o(N) time, except with probability o(1).
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Chapter 12

Σ-Protocols and Commitments from
Hardness of Discrete Logarithm

12.1 Cryptographic Background

12.1.1 A Brief Introduction to Groups

Informally, a group G is any set equipped with an operation that behaves like multiplication. To be more
precise, a group is a collection of elements equipped with a binary operation (which we denote by · and refer
to in this manuscript as multiplication) that satisfies the following four properties.

• Closure: the product of two elements in G are also in G, i.e., for all a,b ∈G, a ·b is also in G.

• Associativity: for all a,b,c ∈G, a · (b · c) = (a ·b) · c.

• Identity: there an element denoted 1G ∈G such that 1G ·g = g ·1G = g for all g ∈G.

• Invertibility: For each g∈G, there is an element h in G such that g ·h = 1G. This element h is denoted
g−1.

One important example of a group is the set of nonzero elements of any field, which forms a group
under the field multiplication operation. This is referred to as the multiplicative group of the field. Another
is the the set of invertible matrices, which forms a group under the matrix multiplication operation. Note
that matrix multiplication is not commutative. In cases where the group operation is commutative, the group
is called abelian.

Sometimes it is convenient to think of the group operation as addition rather than multiplication, in
which case the operation is denoted with a + symbol instead of ·. Whether a group is considered additive
or multiplicative is a matter of context, convenience, and convention. As an example, any field is a group
under the field’s addition operation, and the set of all n× n matrices over the field form a group under the
matrix addition operation. For these groups it is of course natural to denote the group operation with +
rather than ·. Henceforth in this manuscript, with the lone exception of two subsections in the Chapter 14
and 15 (Sections 14.4 and 15.4), we will exclusively refer to multiplicative groups, using · to denote the
group operation.

A group G is said to be cyclic if there is some group element g such that all group elements can be
generated by repeatedly multiplying g with itself, i.e., if every element of G can be written as gi for some
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positive integer i. Here, in analogy to how exponentiation refers to repeated multiplication in standard
arithmetic, gi denotes g ·g · · · · ·g︸ ︷︷ ︸

i copies of g

.147 Such an element of g is called a generator for G. Any cyclic group is

abelian.
The cardinality |G| is called the order of G. A basic fact from group theory is that for any element

g ∈ G, g|G| = 1G. This implies that when considering any group exponentiation, i.e., gℓ for some integer
ℓ, reducing the exponent ℓ modulo the group size |G| does not change anything: for any integer ℓ, if z ≡ ℓ
mod |G|, then gℓ = gz.

A subgroup of a group G is a subset H of G that itself forms a group under the same binary operation as
G itself. Another basic fact from group theory states that the order of any subgroup H of G divides the order
of G itself. A consequence is that any prime-order group G is cyclic: in fact, each non-identity element
g ∈ G is a group generator. This is because the set {g,g2,g3, . . . ,} of powers of g is easily seen to be a
subgroup of G, referred to as the subgroup generated by g. Since g ≥ 1G, its order is an integer strictly
between 1 and |G|, and since |G| is prime, the order must equal |G|. Hence, the subgroup generated by g in
fact equals the entire group G.

12.1.2 The Discrete Logarithm Problem and Background on Elliptic Curves

12.1.2.1 Discrete log problem

For a specified group G the discrete logarithm problem takes as input two group elements g and h, and the
goal is to output a positive integer i such that gi = h (if G is of prime order then such an i is guaranteed to
exist).

The discrete logarithm problem is believed to be computationally intractable in certain groups G. In
modern cryptography, the groups used are typically cyclic subgroups of groups defined via elliptic curves
over finite fields, or the multiplicative group of integers modulo a very large prime p. An important caveat is
that quantum computers can solve the discrete logarithm problem in polynomial time via Shor’s algorithm
[Sho94]. Hence, cryptosystems whose security is based on the assumed hardness of the discrete logarithm
problem are not post-quantum secure.

12.1.2.2 Elliptic curve groups

Though it is a fascinating and important topic, we will not go into great detail on elliptic curve cryptography
in this manuscript, and restrict ourselves to the following comments. Any elliptic curve group is defined
with respect to a (finite) field F, called the base field of the curve. Group elements correspond to pairs of
points (x,y) ∈ F×F that satisfy an equation of the form y2 = x3+ax+b for designated field elements a and
b.148 Given two elements P and Q of the group, the precise definition of the group product P ·Q will not be
important in this manuscript, but for the interested reader, here is a rough sketch.

Sketch of the group operation. Recalling that P and Q each consist of a pair of elements of the base
field F satisfying the curve equation, we can visualize P and Q as two points in the two-dimensional plane.
Draw a line through these two points. This line typically turns out to intersect the elliptic curve at a third
point R = (x,y). The group product P ·Q is defined to equal (x,−y). Here, if R = (x,y) is on the curve
y2 = x3 +ax+b, then so is (x,−y), owing to the fact that y2 = (−y)2.

147Similarly, g−i denotes the ith power of the inverse of g, i.e,
(
g−1)i.

148The group also contains one extra element known as the point at infinity; this detail will not be relevant to this manuscript.
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Algorithms for computing discrete logarithms. The fastest known classical algorithm to solve the Dis-
crete Logarithm problem over most elliptic curve groups used in practice runs in time O(

√
|G|).149 Under

the assumption that these are in fact the fastest attacks possible, this means that to obtain “λ bits of security”
(meaning security against attackers running in time 2λ , see Footnote 96 in Section 7.3.2.2), one should use
an elliptic curve group of order 22λ . For example, a popular elliptic curve called Curve25519, which is
defined over base field F of size 2255− 19, defines a cyclic group of order close to 2252; hence, this group
provides slightly less than 128 bits of security [Ber06].

One reason Curve25519 is popular is efficiency of group operations: the computational bottleneck in
multiplying elliptic curve group elements turns out to be performing multiplications in the base field F. Be-
cause p = 2255−19 is a power of two minus a small constant, multiplication in F can be implemented more
efficiently than if p did not have this form. As general (rough) guidance, the time cost of performing one
group multiplication in an elliptic curve group defined over field F is typically about 10 times as expensive
as performing one multiplication in F.

Scalar field vs. base field. Elliptic curve groups used in practice are chosen to have large prime order.150

This is because there are known algorithms, such as the Pohlig-Hellman algorithm [PH78], that can compute
discrete logarithms in group G in time proportional to the largest prime-order subgroup of G, The field of
size equal to the (prime) order of the elliptic curve group G is typically referred to as the scalar field of G.

Recall that prime-order groups G are cyclic: for any group element g ̸= 1G, we can write G= {gx : x =
0,1, . . . , |G|−1}. Hence, we can think of elements x of the scalar field of G as exponents, when expressing
G as powers of a generator g.

Note that the scalar field of the elliptic curve group is not the same as the base field F over which the
curve is defined.151152 This is particularly relevant to the concrete performance of “SNARK composition”,
a topic discussed at length later in this survey (Section 18.2).

Readers interested in more detailed (and illustrated) introductions to elliptic curve groups are directed
to [Bot21, Dri22].

12.2 Schnorr’s Σ-Protocol for Knowledge of Discrete Logarithms

In this section, we describe several perfect honest-verifier zero-knowledge proof systems. These proof
systems have a very simple structure, involving only three messages exchanged between prover and verifier.
They are special-purpose, meaning that, as standalone objects, they do not solve NP-complete problems
such as circuit satisfiability. Rather, they solve specific problems including (a) establishing that the prover
has knowledge of a discrete logarithm of some group element (Section 12.2.2); (b) allowing the prover to
cryptographically commit to group elements without revealing the committed group element to the verifier

149See, for example, the wikipedia article on Pollard’s rho algorithm https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm_for_logarithms,
introduced in [Pol78].

150A subtlety arising in modern elliptic curves used in cryptography is that the group order is typically a small constant—typically
4 or 8—times a prime. For example, the order of Curve25519 is 8 times a prime. For this reason, implementations typically work
over the prime-order subgroup of the full elliptic curve group, or they add a layer of abstraction that exposes a prime-order interface.
The interested reader is directed to [Ham15] and https://ristretto.group/why_ristretto.html for an overview of these
details.

151However, the sizes of the two fields cannot be too far apart: a result known as Hasse’s theorem [Has36] states that for all
elliptic curve groups G over field F, |G|− (|F|+1)≤ 2

√
|F|.

152The discrete logarithm problem is easy in elliptic curve groups for which the base field and scalar field are the same. So for
all curves used in cryptography, the two fields are different.
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until later (Section 12.3); and (c) establishing product relationships between committed values (Section
12.3.2).

While the protocols covered in this section are special-purpose, we will see (e.g., Section 13.1) that they
can be combined with general-purpose protocols such as IPs, IOPs, and MIPs to obtain general-purpose
zk-SNARKs.

12.2.1 Σ-Protocols

The presentation in this section closely follows other authors [BLAG21]. A relationR specifies a collection
of “valid” instance-witness pairs (h,w). For example, given a group G and a generator g, the discrete
logarithm relationRDL(G,g) is the collection of pairs (h,w) ∈G×Z such that h = gw.

A Σ-protocol for a relation R is a 3-message public coin protocol between prover and verifier in which
both prover and verifier know a public input h, and the prover knows a witness w such that (h,w) ∈ R.153

Let us denote the three messages by (a,e,z), with the prover first sending a, the verifier responding with a
challenge e (chosen via public random coin tosses), and the prover replying with z. A Σ-protocol is required
to satisfy perfect completeness, i.e., if the prover follows the prescribed protocol then the verifier will accept
with probability 1. It is also required to satisfy two additional properties.

Special soundness: There exists a polynomial time algorithm Q such that, when given as input a pair of
accepting transcripts (a, e, z) and (a, e′, z′) with e ̸= e′, Q outputs a witness w such that (h,w) ∈R.

Intuitively, special soundness guarantees that if, after sending its first message in the Σ-protocol, the
prover is prepared to answer more than one challenge from the verifier, then the prover must know a witness
w such that (h,w) ∈R.

Honest Verifier Perfect Zero-Knowledge. There must be a randomized polynomial time simulator that
takes as input the public input h from the Σ-protocol, and outputs a transcript (a,e,z) such that the distribu-
tion over transcripts output by the simulator is identical to the distribution over transcripts produced by the
honest verifier in the Σ-protocol interacting with the honest prover.

Remark 12.1. Special soundness implies that, if the verifier in the Σ-protocol were to be given “rewinding
access” to the prover, then the Σ-protocol would not be zero-knowledge. That is, special soundness says
that if the verifier could run the protocol to completion to obtain the transcript (a,e,z), then “rewind” to just
after the prover sent its first message a, and restart the protocol with a new challenge e′, then, assuming both
transcripts lead to acceptance, the verifier would learn a witness (see Section 12.2.3 for additional discussion
of this witness-extraction procedure). This clearly violates zero-knowledge if witnesses are assumed to be
intractable to compute. Hence, the honest-verifier zero-knowledge property of Σ-protocols only holds if the
verifier is never allowed to run the prover more than once with the same first prover message a.

12.2.2 Schnorr’s Σ-Protocol for the Discrete Logarithm Relation

Let G be a cyclic group of prime order generated by g. Recall that in any Σ-protocol for the discrete
logarithm relation, P holds (h,w) such that h = gw in G, while V knows h and g.154

153The term Σ-protocol was coined because pictorial diagrams of 3-message protocols are vaguely reminiscent of the Greek letter
Σ.

154In this manuscript we only consider Σ-protocols for groups of prime order. Σ-protocols (and related proof systems) for
problems over composite and hidden-order groups have also been studied, see for example [FO97, BCK10, BBF19].
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To convey the intuition behind Schnorr’s [Sch89] protocol, we describe a number of progressively more
sophisticated attempts at designing a proof of knowledge for the discrete logarithm relation.

Attempt 1. The most straightforward possible proof of knowledge for any relation is to simply have the
prover P send the witness w for the public input h, so the verifier V can check that (h,w) ∈ R. However,
this reveals w to the verifier, violating zero-knowledge (assuming the verifier could not efficiently compute
the witness on her own).

Attempt 2. P could pick a random value r ∈ {0, . . . , |G|−1} and send (w+ r) mod |G| to V . This totally
“hides” w in that (w+ r) mod |G| is a uniform random element of the set {0, . . . , |G|−1}, and hence this
message does not violate zero-knowledge. But for the same reason, (w+ r) mod |G| is useless to V as far
as ensuring soundness goes. It is simply a random number, which V could have generated on her own.

Attempt 3. To address the issue in Attempt 2 that (w+ r) mod |G| is useless on its own, P could first
send r, followed by a value z claimed to equal (w+ r) mod |G|. V checks that gr ·h = gz.

This protocol is complete and sound, but it is not zero-knowledge. Completeness is easy to check, while
special soundness holds because if gr · h = gz, then gz−r = h, i.e, z− r is a witness. That is, a witness can
be extracted from even a single accepting transcript. Of course, for the same reason, this protocol is not
zero-knowledge.

Effectively, Attempt 3 broke w into two pieces, z := w+ r mod |G| and r, such that each piece individ-
ually reveals no information to V (because each is simply a random element of {0,1, . . . |G|}). But together,
the pieces reveal the witness w to the verifier (since z− r = w). Hence, this attempt is no closer to satisfying
zero-knowledge than Attempt 1.

Attempt 4. We could modify Attempt 3 above so that, rather than P sending r to V , P instead sends a
group element a claimed to equal gr, followed by a number z exactly as in Attempt 3, i.e., z is claimed to
equal (w+ r) mod |G|. V checks that a ·h = gz.

This attempt turns out to be complete and zero-knowledge, but not special sound. Completeness is easy
to verify: if the prover is honest, then a ·h = gr ·h = gr+w = gz. It is zero-knowledge because a simulator can
choose an element z ∈ {0,1, . . . , |G|− 1} at random, and then set a to be gz · h−1, and output the transcript
(a,z). This generates a transcript distributed identically to that generated by the honest prover.

Conceptually, while the honest prover in Attempt 4 chooses a random group element a = gr and then
chooses z to be the unique number such that the verifier accepts (a,z), the simulator chooses z first at
random and then chooses a to be the unique group element causing the verifier to accept (a,z). The two
distributions are identical—in both cases, a and z are individually uniformly distributed (a from G and z
from {0,1, . . . , |G|−1}), with the value of a determining the value of z and vice versa.

Sadly, Attempt 4 is not special sound for the same reason it is zero-knowledge. The simulator is able
to generate accepting transcripts, and since the protocol is totally non-interactive (there is no challenge sent
by verifier to prover), the simulator itself acts as a “cheating” prover capable of convincing the verifier to
accept despite not knowing a witness.

Comparison of Attempts 3 and 4. The reason Attempt 4 is zero-knowledge while Attempt 3 is not is that
whereas Attempt 3 has P send r “in the clear”, Attempt 4 “hides” r in the exponent of g, and accordingly the
subtraction of r from z by the verifier in Attempt 4 happens “in the exponent” of g rather than in the clear.

The fact that Attempt 4 is zero-knowledge may seem surprising at first. After all, on an information-
theoretic level, r can be derived from gr, and then the witness z− r can be computed, and this may seem
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like a violation of zero-knowledge. But the derivation of r requires finding the discrete logarithm of gr,
which is just as hard as deriving a witness w (i.e., a discrete logarithm of h). In summary, the fact that
Attempt 4 reveals r to the verifier in an information-theoretic sense does not contradict zero-knowledge,
because the public input h = gw itself information-theoretically specifies w in the same way that a = gr

information-theoretically specifies r. In fact, gr combined with (w+ r) mod |G| does not actually reveal
any new information to the verifier beyond what was already revealed by h itself.

Schnorr’s Σ-Protocol. Protocol 3 describes Schnorr’s Σ-protocol. Essentially, Schnorr’s protocol modi-
fies Attempt 4 so that, after P sends a but before P sends z, the verifier sends a random challenge e drawn
from {0,1, . . . , |G| − 1}. Compared to Attempt 4, the verifier’s check is modified so that it will pass if
z = w · e+ r (Attempt 4 above is identical to Schnorr’s protocol with the verifier’s challenge e fixed to 1).

These modifications to Attempt 4 do not alter the completeness or zero-knowledge properties of the
protocol. The intuition for why Schnorr’s protocol is special sound is that if P’s first message is a = gr and
P can produce accepting transcripts (a,e,z) and (a,e′,z′) with e ̸= e′, then V’s acceptance criterion implies
that z = w · e+ r and z′ = w · e′+ r.155 These are two linearly independent equations in two unknowns,
namely w and r. Hence, one can take these two transcripts and efficiently solve for both w and r.

Protocol 3 Schnorr’s Σ-protocol for the Discrete Logarithm Relation
1: Let G be a (multiplicative) cyclic group of prime order with generator g.
2: Public input is h = gw, where only prover knows w.
3: P picks a random number r in {0, . . . , |G|−1} and sends a← gr to the verifier.
4: Verifier responds with a random element e ∈ {0, . . . , |G|−1}.
5: Prover responds with z← (we+ r) mod |G|.
6: Verifier checks that a ·he = gz.

We now turn to formally proving that Schnorr’s protocol satisfies perfect completeness, special sound-
ness, and honest-verifier zero-knowledge.

Perfect completeness is easy to establish: if a← gr and z← (we+ r) mod |G|, then

a ·he = gr ·he = gr · (gw)e = gr+we = gz,

so the verifier accepts transcript (a,e,z).

Special soundness: Suppose we are given two accepting transcripts (a,e,z) and (a,e′,z′) with e ̸= e′. We
must show that a witness w∗ can be extracted in polynomial time from these two transcripts.

Let (e− e′)−1 denote the multiplicative inverse of e− e′ modulo |G|, i.e., (e− e′)−1 denotes a number ℓ
such that ℓ · (e− e′)≡ 1 mod |G|. Since e ̸= e′, such a multiplicative inverse is guaranteed to exist because
|G| is prime and every nonzero number has a multiplicative inverse modulo any prime, and in fact ℓ can be
computed efficiently via the Extended Euclidean algorithm.

Let w∗ =
(
(z− z′) · (e− e′)−1

)
mod |G|. To see that w∗ is a witness, observe that since (a,e,z) and

(a,e′,z′) are both accepting transcripts, it holds that a ·he = gz and a ·he′ = gz′ . Since G is cyclic and g is a
generator of G, both a and h are powers of g, say, a = g j and h = gw for integers j,w. Then the preceding
two equations imply that

g j+we = gz

155Similar to Attempt 4, note that V’s check on transcript (a,e,z) in Schnorr’s protocol confirms “in the exponent” that z =
w · e+ r. V is able to perform this check in the exponent despite only knowing z, gr, and h (in particular, without knowing r and w,
which are the discrete logarithms of gr and h).
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g j+we′ = gz′ .

Together, these two equations imply that

gw(e−e′) = gz−z′ .

Hence, w(e−e′)≡ z− z′ mod |G|, i.e., w≡ (z− z′) · (e−e′)−1 mod |G|= w∗. That is, hw = hw∗ , meaning
that w∗ is a witness.

Honest-Verifier Perfect Zero Knowledge. We need to construct a polynomial time simulator that produces
a distribution over transcripts (a,e,z) identical to the distribution produced by the honest verifier and prover.
The simulator selects e uniformly at random from {0, . . . , |G|−1} and samples z uniformly at random from
{0, . . . , |G|−1}. Finally, the simulator sets a← gz · (he)−1.

The distribution over transcripts produced by the simulator is identical to that produced by the hon-
est verifier interacting with the prescribed prover. In both cases, the distribution produces a random e ∈
{0, . . . , |G|−1}, and then chooses a pair (a,z) such that a is chosen uniformly random from G and z from
{0, . . . , |G|−1}, subject to the constraint that a ·he = gz (the key observation from which this follows is that,
for fixed e, for any a ∈G there is exactly one z ∈ {0, . . . , |G|−1} satisfying this equality, and vice versa).

Remark 12.2. Schnorr’s protocol is only honest-verifier zero knowledge (HVZK) because the simulated
distribution over transcripts is identical to the verifier’s view in the actual protocol only if the verifier’s
message e is a uniformly random element from {0, . . . , |G| − 1}. Two remarks are in order. First, if we
render the protocol non-interactive using the Fiat-Shamir transformation (see Section 12.2.3), the distinction
between honest-verifier and dishonest-verifier zero-knowledge is eliminated (see Footnote 136 for a brief
discussion of this point). Second, it turns out that Schnorr’s protocol actually is dishonest-verifier zero-
knowledge, with the following caveat: the simulation is efficient only if the challenge e is not selected at
random from {0, . . . , |G|−1}, but rather is only permitted to be selected from a designated polynomial-size
subset S of G (this is because the known simulator for an arbitrary dishonest verifier’s view has a runtime
that grows with |S|). To obtain negligible soundness error from such a protocol, one must repeat it ω(1)
many times sequentially, adding additional communication and computation costs. The interested reader is
directed to [Mau09, Section 4] for details.

12.2.3 Fiat-Shamir Applied to Σ-Protocols

In this section, we explain that applying the Fiat-Shamir transformation (Section 5.2) to any Σ-protocol
(such as Schnorr’s) yields a non-interactive argument of knowledge in the random oracle model. This result
is originally due to Pointcheval and Stern [PS00].

For concreteness, we couch the presentation in the context of Schnorr’s protocol, where the input is
a group element h, and the prover claims to know a witness w such that h = gw, where g is a specified
group generator. Recall that in the resulting non-interactive argument, the honest prover aims to produce an
accepting transcript (a,e,z) for the Σ-protocol, where e = R(h,a) and R denotes the random oracle.

Let I refer to the Σ-protocol and Q refer to the non-interactive argument obtained by applying the
Fiat-Shamir transformation to I. Let PFS be a prover for Q that produces a convincing proof on input h
with probability at least ε . That is, when PFS is run on input h, it outputs a transcript (a,e,z) that, with
probability at least ε , is an accepting transcript for I and satisfies e = R(h,a) (here, the probability is over
the choice of random oracle and any internal randomness used by PFS). We show that by running PFS at
most twice, we can, with probability at least Ω(ε4/T 3), “extract” from PFS two accepting transcripts for I
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of the form (a,e,z) and (a,e′,z′) with e ̸= e′.156 By special soundness of I, these two transcripts can in turn
be efficiently transformed into a witness w. If T is polynomial and ε is non-negligible, then Ω(ε4/T 3) is
non-negligible, contradicting the assumed intractability of finding a witness.157

What we can assume about PFS without loss of generality. As in the proof of Theorem 5.1, we will
assume that PFS always makes exactly T queries to the random oracle R, that all queries PFS makes are
distinct, and that PFS always outputs a transcript of the form (a,e,z) with e = (h,a), such that at least one
of PFS’s T queries to R was at point (h,a). See the proof of Theorem 5.1 for an explanation of why these
assumptions are without loss of generality.

The witness extraction procedure. There is a natural way to extract from PFS two accepting transcripts
(a,e,z) and (a,e′,z′). First, fix the value of any internal randomness used by PFS . The first transcript is
obtained by simply runningPFS once, generating a random value for R’s response to each queryPFS makes
to the random oracle. This yields a transcript (a,e,z) satisfying e = R(h,a) such that with probability at least
ε the transcript is an accepting one for I. By assumption, during this execution of PFS , exactly one of the
T queries to R was equal to (h,a). Rewind PFS to just before it queries R at (h,a), and change R’s response
to this query from e to a fresh randomly chosen value e′. Then run PFS once again to completion (again
generating a random value from R’s response to each query made by PFS ), and hope that PFS outputs an
accepting transcript of the from (a,e′,z′).

Analysis of the witness extraction procedure. We must show that the probability this procedure outputs
two accepting transcripts of the form (a,e,z) and (a,e′,z′) with e ̸= e′ is at least Ω(ε3/T 2). Note that e will
not equal e′ with probability 1− 1/2λ , where λ denotes the number of bits output by R on any query. For
simplicity, let us assume henceforth that e ̸= e′, as this will affect the success probability of the extraction
procedure by at most 1/2λ .

Key to the analysis is the following basic result in probability theory.

Claim 12.1. Suppose (X ,Y ) are jointly distributed random variables and let A(X ,Y ) be any event such that
Pr[A(X ,Y )]≥ ε . Let µX be the marginal distribution of X, and for x in the support of µX , call x good if the
conditional probability Pr[A(X ,Y )|X = x] is at least ε/2. Let p = Prx∼µX [x is good] denote the probability
that an x drawn at random from the distribution µX is good. Then p≥ ε/2.

Proof. If x is not good, let us call x bad. We can write:

Pr[A(X ,Y )] =Pr[A(X ,Y )|X is good] ·Pr[X is good]+Pr[A(X ,Y )|X is bad] ·Pr[X is bad]
=Pr[A(X ,Y )|X is good] · p+Pr[A(X ,Y )|X is bad](1− p)≤ 1 · p+ ε/2,

where the final inequality holds by the definition of “bad” outcomes x of X . Since Pr[A(X ,Y )] ≥ ε , we
conclude that p≥ ε/2.

Say that PFS wins if the transcript (a,e,z) that PFS produces is an accepting one satisfying e = R(h,a).
Consider applying Claim 12.1, with X equal to PFS’s internal randomness, Y equal to the evaluations of
the random oracle R, and A(X ,Y ) equal to the event that PFS wins when run with internal randomness X

156For simplicity, we do not provide a quantitatively tight analysis of the witness extraction procedure.
157One can find a witness with constant probability instead of just with non-negligible probability by running the witness-

finding procedure ℓ = O(T 3/ε4) times. The probability that all ℓ invocations of the procedure fail to find a witness is at most
(1−1/ℓ)ℓ ≤ 1/e < 1/2.
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and random oracle Y . Claim 12.1 implies that with probability at least ε/2, PFS’s internal randomness is
“good”, which in this context means that when the internal randomness is set to X , the probability over the
random oracle R that PFS produces an accepting transcript (a,e,z) with e = R(h,a) is at least ε/2. Let E be
the event that PFS’s internal randomness is good. We can write the probability that the witness extraction
procedure succeeds as

Pr[E] ·Pr[witness extraction succeeds|E]≥ (ε/2) ·Pr
R
[witness extraction succeeds|E].

Here, the subscript R indicates that the probability is over the randomness in the random oracle R.
For the remainder of the proof, we bound PrR[witness extraction succeeds|E]. For notational brevity,

we will leave the conditioning on E implicit when writing out the probabilities of various events. By condi-
tioning on E, we may henceforth considerPFS to be a deterministic algorithm (i.e., no internal randomness),
that wins with probability at least ε/2 over the random choice of the random oracle R.

Let Q1, . . . ,QT denote the T queries that PFS makes to the random oracle (note that these are random
variables that depend on R). Next, we claim that there is at least one integer i∗ ∈ {1, . . . ,T} such that

Pr
R
[PFS wins∩Qi∗ = (h,a)]≥ ε/(2T ). (12.1)

Indeed, if PrR[PFS wins∩Qi = (h,a)] < ε/(2T ) for all i = 1, . . . ,T , then since we have assumed that for
any transcript (a,e,z) output by PFS there is some i ∈ {1, . . . ,T} such that Qi = (h,a),

Pr
R
[PFS wins]≤

T

∑
i=1

Pr
R
[PFS wins∩Qi = (h,a)]< T · (ε/(2T )) = ε/2,

a contradiction.
Let i∗ satisfy Equation (12.1). Consider applying Claim 12.1, now with X equal to R’s responses to the

first i∗−1 queries, and Y equal to R’s responses to the remaining T − i∗+1 queries. And now let A be the
event that PFS , when run with random oracle R, produces a winning transcript (a,e,z) with (h,a) equal to
PFS’s (i∗)’th query, namely Qi∗ .

For a value of x in the support of X , call x good if Pr[A(X ,Y )|X = x]≥ ε/(4T ). Equation (12.1) asserts
that Pr[A(X ,Y )]≥ ε/(2T ). Hence, Claim 12.1 asserts that X is good with probability at least ε/(4T ).

We can think of the process of generating the two transcripts (a,e,z) and (a′,e′,z′) as first selecting X
(thereby determining the first i∗ queries Q1, . . . ,Qi∗ made by PFS), then drawing two independent copies Y ′

and Y ′′ of Y . Both (a,e,z) and (a′,e′,z′) are accepting transcripts with Qi∗ = (h,a) = (h,a′) if (X ,Y ′) and
(X ,Y ′′) both satisfy event A. This probability is at least

Pr[X is good] ·Pr[A(X ,Y ′)|X is good] ·Pr[A(X ,Y ′′)|X is good]≥ (ε/(4T ))3.

In conclusion (taking into account that the argument above has conditioned on the event E that the choice
of PFS’s internal randomness is good, an event that happens with probability at least ε/2), we have shown
our witness-extraction procedure succeeds with probability at least Ω(ε4/T 3) as claimed.

Remark 12.3. Results lower bounding the success probability of witness extraction procedures related to
the one in this section are called forking lemmas. The terminology highlights the fact that the witness
extraction procedure runs PFS twice, once using random oracle responses (X ,Y ′) and once using (X ,Y ′′),
where X captures the random oracle’s responses to the first i∗ queries made by PFS and Y ′ and Y ′′ capture
responses to the remaining queries. One thinks of the random oracle generation process as “forking” into
two different paths after the first i∗ responses are generated.
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Knowledge-soundness of the Σ-protocol itself. We have just seen how to generate a 2-transcript-tree
given a convincing prover for any Σ-protocol that has been rendered non-interactive via the Fiat-Shamir
transformation. If the Fiat-Shamir transformation has not been applied, generating a 2-transcript-tree for
a Σ-protocol is even simpler: run (P,V) once to generate an accepting transcript for the Σ-protocol, then
rewind the Σ-protocol to just after P sent its first message, and restart the Σ-protocol with a fresh random
challenge to generate a new transcript (see Remark 12.1). A similar analysis to the above shows that both
generated transcripts will be accepting with probability at least Ω(ε3) where ε is the probability P passes
V’s checks in the Σ-protocol. And with overwhelming probability the two verifier challenges in the two
transcripts will be distinct—specifically, with probability at least 1− 1/2λ , where 2λ is the size of the set
from which the verifier’s challenge is chosen. In this event, the two transcripts form a 2-transcript tree. This
procedure can be repeated O(1/ε3) times to ensure that the probability of successfully generating at least
one 2-transcript-tree is at least, say, 9/10.

12.3 A Homomorphic Commitment Scheme

Commitment Schemes. In a commitment scheme, there are two parties, a committer and a verifier. The
committer wishes to bind itself to a message without revealing the message to the verifier. That is, once the
committer sends a commitment to some message m, it should be unable to “open” to the commitment to any
value other than m (this property is called binding). But at the same time the commitment itself should not
reveal information about m to the verifier (this is called hiding).

Most properties come in statistical and computational flavors, just like soundness in interactive proofs
and arguments. That is, binding can hold statistically, meaning that even computationally unbounded com-
mitters are unable to open a commitment to two different messages except with negligible probability of
success. Or it can hold only computationally: polynomial-time committers are unable to open commitments
to two different messages. Similarly, hiding may be statistical: even computationally unbounded verifiers
cannot extract any information about m from the commitment to m. Or it may be computational: polynomial
time verifiers are unable to extract information about m from the commitment.

A commitment can be statistically binding and computationally hiding or vice versa, but it cannot be
simultaneously statistically hiding and binding. This is because any commitment that statistically binds the
committer to a message must by definition reveal the message in a statistical sense.158 In this manuscript,
we will only consider commitment schemes that are computationally binding and perfectly hiding.

Formally, a commitment scheme is specified by three algorithms, KeyGen, Commit, and Verify. KeyGen
is a randomized algorithm that generates a commitment key ck and verification key vk that are available
to the committer and the verifier respectively (if all keys are public then ck = vk), while Commit is a
randomized algorithm that takes as input the committing key ck and the message m to be committed and
outputs the commitment c, as well as possibly extra “opening information” d that the committer may hold
onto and only reveal during the verification procedure. Verify takes as input the commitment, the verification
key, and a claimed message m′ provided by the committer, and any opening information d and decides
whether to accept m′ as a valid opening of the commitment.

A commitment scheme is correct if Verify(vk,Commit(m,ck),m) accepts with probability 1, for any m
(i.e., an honest committer can always successfully open the commitment to the value that was committed). A
commitment scheme is perfectly hiding if the distribution of the commitment Commit(m,ck) is independent

158A computationally unbounded verifier could simulate a computationally unbounded cheating prover’s efforts to open the
commitment to multiple messages; statistical binding guarantees that these efforts will succeed for only one message except with
negligible probability.
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of m. Finally, a commitment scheme is computationally binding if for every polynomial time algorithm Q,
the probability of winning the game depicted in Protocol 4 is negligible (i.e., inverse-superpolynomial in the
security parameter).

Protocol 4 Binding Game for Commitment Schemes
1: (vk,ck)← KeyGen()
2: (c,d,m,d′,m′)←Q(ck)

▷ c should be thought of as a commitment.
▷ d and d′ should be thought of as opening information, to open c to messages m and m′ respectively.

3: Q wins if Verify(vk,(c,d),m) = Verify(vk,(c,d′),m′) = 1 and m ̸= m′

A Perfectly Hiding Commitment Scheme from any Σ-Protocol. Informally, a relation R is said to be
hard if there is no efficient algorithm for identifying a witness w such that (h,w)∈R. More precisely, a hard
relation is one for which there is some efficient randomized algorithm Gen that generates “hard instances”
of the relation in the following sense. Gen outputs pairs (h,w), and there is no polynomial time algorithm
that, when fed the value h output by Gen, can find a witness w′ such that (h,w′) ∈R except with negligible
probability. For example, for the discrete logarithm relation in prime order groups G with generator g
for which the discrete logarithm problem is believed to be intractable, Gen would pick a random integer
r ∈ {0, . . . , |G|−1} and output (h,r) where h = gr.

Damgård [Dam89] showed how to use any Σ-protocol for any hard relation to obtain a perfectly hiding,
computationally binding commitment scheme. By instantiating Damgård’s construction with Schnorr’s Σ-
protocol [Sch89] for the discrete logarithm relation, one recovers a well-known commitment scheme due to
Pedersen [Ped91] that will play an important role in this manuscript. (The typical presentation of Pedersen’s
commitment scheme differs slightly, in an entirely cosmetic manner, from the version recovered here. See
Protocols 5 and 6 for details.)

Actually, to ensure hiding, Damgård’s transformation does require the Σ-protocol to satisfy one property
that was not mentioned above. The simulator used to establish HVZK must be able to take as input not
only the public input h, but also a challenge e∗, and output a transcript (a,e∗,z) such that the distribution
over transcripts produced by the simulator is identical to the distribution over transcripts produced by the
interaction of the verifier and prescribed prover when the verifier’s challenge is fixed to e∗. This property
is called special honest-verifier perfect zero-knowledge. The simulator for Schnorr’s Σ-protocol satisfies
this property simply by fixing the challenge chosen by the simulator to e∗, rather than having the simulator
choose the challenge at random from the challenge space.

Here is how Damgård’s commitment scheme works. The key generation procedure runs the generation
algorithm for the hard relation R to obtain an (instance, witness) pair (h,w)← Gen, and declares h to be
both the committing key ck and the verification key vk. Note that the witness w represents “toxic waste” that
must be discarded, in the sense that anyone who knows w may be able to break binding of the commitment
scheme. To commit to a message m, the committer runs the simulator from the Σ-protocol for R (whose
existence is guaranteed by the special HVZK property of the Σ-protocol) on public input h to generate a
transcript in which the challenge is the message m (this is where the property of the simulator described in
the previous paragraph is exploited). Let (a,e,z) be the output of the simulator. The committer sends a as the
commitment, and keeps e = m and z as opening information. In the verification stage for the commitment
scheme, the committer sends the opening information e = m and z to the verifier, who uses the verification
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procedure of the Σ-protocol to confirm that (a,e,z) is an accepting transcript for public input h.159

We need to show that the commitment scheme satisfies correctness, computational binding, and perfect
hiding. Correctness is immediate from the fact that the HVZK property of the Σ-protocol guarantees that the
simulator only outputs accepting transcripts. Perfect hiding follows from the fact that in any Σ-protocol, the
first message a sent by the prover is independent of the verifier’s challenge in the Σ-protocol (which equals
the message being committed to in the commitment scheme). Computational binding follows from special
soundness of the Σ-protocol: if the committer could output a commitment a and two sets of “opening infor-
mation” (e,z) and (e′,z′) that both cause the commitment verifier to accept, then (a,e,z) and (a,e′,z′) must
be accepting transcripts for the Σ-protocol, and there is an efficient procedure to take two such transcripts
and produce a witness w such that (h,w) ∈R. The fact thatR is hard means that this can only be done with
non-negligible probability if the committer runs in superpolynomial time.

Note that when applying the transformation to Schnorr’s protocol for the discrete logarithm relation, the
key generation procedure produces a random power of generator g, which is simply a random group element
h. Hence, the commitment key and verification key in the resulting commitment scheme can be generated
transparently (meaning no toxic waste produced). That is, rather than choosing a witness r at random and
letting h = gr, thereby producing toxic waste r that could be used to break binding of the commitment
scheme, h can be directly chosen to be a random group element. In this way, no one knows the discrete
logarithm of h to base g (and by assumption, computing this discrete logarithm given h and g is intractable).

The resulting commitment scheme is displayed in Protocol 6. The traditional (and equivalent, up to
cosmetic differences) presentation of Pedersen commitments is given in Protocol 5 for comparison. To
maintain consistency with the literature, for the remainder of this manuscript we follow the traditional
presentation of Pedersen commitments (Protocol 5). In the traditional presentation, to commit to a message
m, the committer picks a random exponent z in {0, . . . , |G|−1} and the commitment is gm ·hz. One thinks
of hz as a random group element that operates as a “blinding factor”: by multiplying gm by hz, one ensures
that the commitment is a random group element, statistically independent of m.160

Protocol 5 Standard presentation of Pedersen commitments in a cyclic group G for which the Discrete
Logarithm problem is intractable.

1: Let G be a (multiplicative) cyclic group of prime order. The key generation procedure publishes ran-
domly chosen generators g,h ∈G, which serve as both the commitment key and verification key.

2: To commit to a number m ∈ {0, . . . , |G|−1}, committer picks a random z ∈ {0, . . . , |G|−1} and sends
c← gm ·hz.

3: To open a commitment c, committer sends (m,z). Verifier checks that c = gm ·hz.

12.3.1 Important Properties of Pedersen Commitments

Additive Homorphism. One important property of Pedersen commitments is that they are additively
homomorphic. This means that the verifier can take two commitments c1 and c2, to values m1,m2 ∈

159If the committed message m contains data that the verifier couldn’t compute on its own, then revealing m to the verifier violates
zero-knowledge. In our actual zero-knowledge arguments that make use of Pedersen commitments, the prover will never actually
open any commitment, but rather will prove in zero-knowledge that it could open the commitment if it wanted to. See Protocol 7.

160The blinding factor hz ensures that the Pedersen commitment is perfectly (i.e., statistically) hiding. Even if the blinding factor
is omitted, the commitment may not reveal m to a polynomial-time receiver. This is because computing m from the “unblinded”
commitment gm requires solving the discrete logarithm problem to base g. If m is itself uniformly distributed, the binding analysis
already assumes this is intractable. Intuitively, m is “hidden in the exponent” of g.
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Protocol 6 Commitment scheme obtained from Schnorr’s protocol via Damgård’s transformation. This is
the same as Protocol 5 except for the cosmetic difference that the commitment is taken to be h−m ·gz instead
of gm ·hz, with the verification procedure modified accordingly (i.e., the roles of g and h are reversed, and m
is replaced with −m).

1: Let G be a (multiplicative) cyclic group of prime order.
2: The key generation procedure publishes randomly chosen generators g,h ∈ G, which serve as both the

commitment key and verification key.
3: To commit to a number m ∈ {0, . . . , |G|−1}, committer picks a random z ∈ {0, . . . , |G|−1} and sends

c← h−m ·gz.

4: To open a commitment c, committer sends (m,z). Verifier checks that c ·hm = gz.

{0, . . . , |G| − 1} (with m1,m2 known to the committer but not to the verifier), and the verifier on its own
can derive a commitment c3 to m3 := m1 +m2, such that the prover is able to open c3 to m3. This is done
by simply letting c3 ← c1 · c2. As for “opening information” provided by the prover, if c1 = hm1 · gz1 and
c2 = hm2 · gz2 , then c3 = hm1+m2 · gz1+z2 , so the opening information for c3 is simply (m1 +m2,z1 + z2). In
summary, Pedersen commitments over a multiplicative group G are additively homomorphic, with addition
of messages corresponds to group-multiplication of commitments.

Perfect HVZK Proof of Knowledge of Opening. We will see that in the design of general-purpose zero-
knowledge arguments, it will occasionally be useful for the prover to prove that it knows how to open a
commitment c to some value, without actually opening the commitment. As observed by Schnorr, Pedersen
commitments have this property, using similar techniques to his Σ-protocol for the Discrete Logarithm
relation. See Protocol 7.

The idea is that, for P to prove it knows m,z such that c = gmhz, in the first round of the proof, the
prover sends a group element a← gd · hr for a random pair of exponents d,r. One should think of a as
Com(d,r), i.e., a commitment to d using randomness r. Then the verifier sends a random challenge e, and
the verifier on its own can derive a commitment to me+d via additive homomorphism, and the prover can
derive an opening for this commitment. Specifically, gme+d · hze+r commits to me+ d, using randomness
ze+ r. Finally, the prover responds with opening information (me+d,ze+ r) for this derived commitment.
An equivalent description of the protocol using this perspective is given in Protocol 8.

The idea for why the protocol is zero-knowledge is that since the verifier never learns d or r, the quanti-
ties me+d and ze+ r that the prover sends to the verifier simply appear to be random elements modulo |G|
from the verifier’s perspective. The intuition for why this is special sound is that since the committer does
not know e before choosing d, there is no way for the prover to open the commitment to me+ d unless it
knows how to open the commitment to m. In more detail, if the input commitment is Com(m,z) = gmhz, and
P’s first message in the protocol is a = gdhr, then if P can produce two accepting transcripts (a,e,(m′,z′))
and (a,e′,(m′′,z′′)) with e ̸= e′, V’s acceptance criterion roughly implies that m′ = m ·e+d and z′ = z ·e+ r
while m′′ = m · e′+ d and z′′ = z · e′+ r. These are four linearly independent equations in four unknowns,
namely m, z, d, and r. Hence, one can take these two transcripts and efficiently solve for both m and z, as
m = (m′−m′′)/(e− e′) and z = (z′− z′′)/(e− e′).

These intuitions are made formal below.
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Protocol 7 Zero-Knowledge Proof of Knowledge of Opening of Pedersen Commitment
1: Let G be a (multiplicative) cyclic group of prime order over which the Discrete Logarithm relation is

hard, with randomly chosen generators g and h.
2: Input is c = gm ·hz. Prover knows m and z, Verifier only knows c,g,h.
3: Prover picks d,r ∈ {0, . . . , |G|−1} and sends to verifier a← gd ·hr.
4: Verifier sends challenge e chosen at random from {0, . . . , |G|−1}.
5: Prover sends m′← me+d and z′← ze+ r.
6: Verifier checks that gm′ ·hz′ = ce ·a.

Protocol 8 Equivalent Exposition of Protocol 7 in terms of commitments and additive homomorphism.
1: Let G be a (multiplicative) cyclic group of prime order over which the Discrete Logarithm relation is

hard, with randomly chosen generators g and h.
2: Let Com(m,z) denote the Pedersen commitment gm · hz. Prover knows m and z, Verifier only knows

Com(m,z),g,h.
3: Prover picks d,r ∈ {0, . . . , |G|−1} and sends to verifier a← Com(d,r).
4: Verifier sends challenge e chosen at random from {0, . . . , |G|−1}.
5: Let m′ ← me+ d and z′ ← ze+ r, and let c′ ← Com(m′,z′). While Verifier does not know m′ and z′,

Verifier can derive c′ unaided from Com(m,z) and Com(d,r) using additive homomorphism.
6: Prover sends (m′,z′).
7: Verifier checks that m′,z′ is valid opening information for c′, i.e., that gm′ ·hz′ = c′ .

Perfect Completeness. If prover follows the prescribed protocol in Protocol 7 then

gm′ ·hz′ = gme+d ·hze+r = ce ·a.

Special Soundness. Given two accepting transcripts (a,e,(m′1,z
′
1)) and (a,e′,(m′2,z

′
2)) with e ̸= e′, we have

to extract a valid opening (m,z) for the commitment c, i.e., gm ·hz = c. As in the analysis of the Σ-protocol
for the Discrete Logarithm relation, let (e−e′)−1 denote the multiplicative inverse of e−e′ modulo |G|, and
define

m∗ = (m′1−m′2) · (e− e′)−1 mod |G|,
z∗ = (z′1− z′2) · (e− e′)−1 mod |G|.

Then

gm∗ ·hz∗ =
(

g(m
′
1−m′2)h(z

′
1−z′2)

)(e−e′)−1

=

(
ce ·a ·

(
ce′ ·a

)−1
)(e−e′)−1

= c,

where the penultimate equality follows from the fact that (a,e,(m′1,z
′
1)) and (a,e′,(m′2,z

′
2)) are accepting

transcripts. That is, (m∗,z∗) is a valid (message, opening information) pair for the commitment c.

Perfect HVZK. The simulator samples e,m′,z′ uniformly at random from {0, . . . , |G|−1} and then sets

a← gm′ ·he′ · c−e,

and outputs
(a,e,(m′,z′)).

This ensures that e is uniformly distributed, and a, and (m′,z′) are also uniformly distributed over G and
{0, . . . , |G|−1}2 under the constraint that gm′ ·he′ = ce ·a. This is the same distribution as that generated by
the honest verifier interacting with the prescribed prover.
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Perfect HVZK Proof of Knowledge of Opening to A Specific Value. The above protocol allows the
prover to establish it knows how to open a Pedersen commitment c to some value. A variant we will also
find useful allows the prover to establish in zero-knowledge that it knows how to open c to a specific public
value y. Since a Pedersen commitment c to public value y is of the form gyhr for a random r ∈ G, proving
that knowledge of how to open c to y is equivalent to proving knowledge of a value r such that hr = c ·g−y.
This amounts to proving knowledge of the discrete logarithm of c ·g−y in base h, which can be done using
Protocol 3.

A Final Perspective on Protocol 7. Protocol 7 asks the prover not to open c itself (which would violate
zero-knowledge), but instead to open a different commitment c′, to random group element that is derived
homomorphically from both c and a commitment to random value d that the prover sends via its first mes-
sage. Both the prover and verifier “contribute randomness” to the value m′ = me+d committed by c′. The
randomness contributed by the prover (namely d) is used to ensure that m′ is statistically independent of m,
which ensures that the opening m′ for c′ reveals no information about m. The verifier’s contribution e to
m′ is used to ensure special soundness: the prover cannot open c′ for more than one value of the verifier’s
challenge e unless the prover knows how to open c.

We will see more twists on this paradigm (in Sections 12.3.2 and 14.2), in contexts where the prover
wants to establish in zero-knowledge that various committed values satisfy certain relationships. Directly
opening the commitments would enable to verifier to easily check the claimed relationship, but violate zero-
knowledge. So instead the prover opens derived commitments, with both the prover and verifier contributing
randomness to the derived commitments in a manner such that the derived commitments satisfy the same
property that the prover claims is satisfied by the original commitments.

12.3.2 Establishing A Product Relationship Between Committed Values

We have already seen the Pedersen commitments are additively homomorphic, meaning the verifier can
take two commitments c1 and c2 to values m1 and m2 in {0, . . . , |G| − 1}, and without any help from the
committer, the verifier can derive a commitment to m1 +m2 (despite the fact that the verifier has no idea
what m1 and m2 are, owing to the hiding property of the commitments).

Unfortunately, Pedersen commitments are not multiplicatively homomorphic: there is no way for the
verifier to derive a commitment to m1 ·m2 without help from the committer. But suppose the committer
sends a commitment c3 that is claimed to be a commitment to value m1 ·m2 (meaning that the prover knows
how to open up c3 to the value m1 ·m2). Is it possible for the prover to prove to the verifier that c3 indeed
commits to m1 ·m2, without actually opening up c3 and thereby revealing m1 ·m2? The answer is yes, using
a somewhat more complicated variant of the Σ-protocols we have already seen. The Σ-protocol is depicted
in Protocol 9, with an equivalent formulation in terms of commitments and additive homomorphism given
in Protocol 10.

The rough idea of the protocol is that if m3 indeed equals m1 ·m2, then c3 can be thought of not only as
a Pedersen commitment to m1 ·m2 using group generators g and h, i.e., c3 = Comg,h(m1 ·m2,r3), but also as
a Pedersen commitment to m2 using group generators c1 = gm1hr1 and h. That is, if m3 = m1 ·m2, it can be
checked that

c3 = Comc1,h(m2,r3− r1m2).

Equivalently, c3 is a commitment to the same message m2 as c2, just using a different generator (c1 in place
of g) and a different blinding factor (r3− r1m2 in place of r2). The protocol roughly enables the prover to
establish in zero-knowledge that it knows how to open c3 as a commitment of this form.
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Similar to Protocol 7, the idea is to have the prover send commitments to random values b1 and b3, the
latter being committed twice, once using generators (g,h) and once using generators (c1,h). The verifier
then derives commitments to em1 +b1 and em2 +b3 using additive homomorphism (with two commitments
derived for the latter quantity, one under the pair of generators (g,h) and the other under (c1,h)), and then
the prover opens these derived commitments. Roughly speaking, the protocol is zero-knowledge since the
random choice of b1 and b3 ensures that the revealed opening is a random group element independent of m1
and m2.

In more detail, the prover first sends three values α , β , γ , where α =Comg,h(b1,b2) and β =Comg,h(b3,b4)
are commitments to random values b1,b3 ∈{0, . . . , |G|−1} using random blinding factors b2,b4 ∈{0, . . . , |G|−
1}. Here, the group generators used to produce the two commitments are g and h. γ on the other hand is
another commitment to b3 (just as β is), but using group generators c1 and h rather than g and h. That is, γ

is set to Comc1,h(b3,b5) for a randomly chosen b5.
From these three values, and despite not knowing m1, m2, r1, r2, r3, or b1, . . . ,b5, the verifier can,

for any value e ∈ G, use additive homomorphism to derive commitments c′1 = Comg,h(b1 + em1,b2 + er1),
c′2 = Comg,h(b3 + em2,b4 + er2), and c′3 = Comc1,h(b3 + em2,b5 + e(r3− r1m2)). After the verifier sends a
random challenge e, the prover responds with five values z1, . . . ,z5 such that (z1,z2), (z3,z4) and (z3,z5) are
opening information for c′1, c′2 and c′3 respectively.

Completeness, special soundness, and honest-verifier zero-knowledge. Completeness holds by design.
For brevity, we merely sketch the intuition for why special soundness and zero-knowledge hold (though the
formal proofs are not difficult and can be found in [Mau09] or [WTS+18, Appendix A]).

The intuition for why the protocol is honest-verifier zero-knowledge is that the blinding factors b2,b4,b5
ensure that the prover’s first message (α,β ,γ) leaks no information about the random committed values
b1,b3, and this in turn ensures that the prover’s second message (z1, . . . ,z5) reveal no information about m1
and m2.

The intuition for why the protocol is special-sound is that if (a,e,z) and (a,e′,z′) are two accepting
transcripts, where a = (α,β ,γ), z = (z1, . . . ,z5), and z′ = (z′1, . . . ,z

′
5) then the verifier’s checks roughly

ensure that:

• b1 + em1 = z1 and b1 + e′m1 = z′1.

• b2 + er1 = z2 and b2 + e′r1 = z′2.

• b3 + em2 = z3 and b3 + e′m2 = z′3.

• b4 + er2 = z4 and b4 + e′r2 = z′4.

• b5 + e(r3− r1m2) = z5 and b5 + e′(r3− r1m2) = z′5

The first two bullet points refer to the fact that (z1,z2) opens Comg,h(b1 + em1,b2 + er1) and (z′1,z
′
2) open

Comg,h(b1+e′m1,b2+e′r1). As in the special soundness analysis of Protocol 7, if e ̸= e′ then the first bullet
point represents two linearly independent equations in the unknown m1 and hence enables solving for m1
as (z1− z′1) · (e− e′)−1. Similarly, the second bullet point enables solving for r1 as (z2− z′2) · (e− e′)−1.
Formally, one can show that ((z1− z′1) · (e− e′)−1,(z2− z′2) · (e− e′)−1) is a valid opening for c1 using
generators g and h.

The next two bullet points refer to the fact that (z3,z4) opens Comg,h(b3+em2,b4+er2) and (z′3,z
′
4) open

Comg,h(b3+e′m2,b4+e′r2), and enable solving for m2 and r2 as (z3−z′3) ·(e−e′)−1 and (z4−z′4) ·(e−e′)−1.
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Formally, one can show that ((z3− z′3) · (e− e′)−1,(z4− z′4) · (e− e′)−1) is a valid opening for c2 using
generators g and h.

The final bullet point refers to the fact that (z3,z5) opens Comc1,h(b3+em2,b5+e(r3−r1m2)) and (z′3,z
′
5)

opens Comc1,h(b3+e′m2,b5+e′(r3−r1m2)). Since r1 and m2 have already been derived from the preceding
bullet points, the two equations in the final bullet point enable solving for r3 as (z5− z′5) · (e− e′)−1 + r1m2.
Formally, one can show that (m1 ·m2,(z5− z′5) · (e−e′)−1 + r1m2) is a valid opening for c3 using generators
g and h.

Protocol 9 Zero-Knowledge PoK of Opening of Pedersen Commitments Satisfying Product Relationship
1: Let G be a (multiplicative) cyclic group of prime order over which the Discrete Logarithm relation is

hard.
2: Input is ci = gmi ·hri for i ∈ {1,2,3} such that m3 = m1 ·m2 mod |G|.
3: Prover knows mi and ri for all i ∈ {1,2,3}, Verifier only knows c1,c2,c3,g,h.
4: Prover picks b1, . . . ,b5 ∈ {0, . . . , |G|−1} and sends to verifier three values:

α ← gb1 ·hb2 , β ← gb3 ·hb4 , γ ← cb3
1 ·hb5 .

5: Verifier sends challenge e chosen at random from {0, . . . , |G|−1}.
6: Prover sends z1← b1+e ·m1, z2← b2+e ·r1, z3← b3+e ·m2, z4← b4+e ·r2, z5← b5+e ·(r3−r1m2).
7: Verifier checks that the following three equalities hold:

gz1 ·hz2 = α · ce
1,

gz3 ·hz4 = β · ce
2,

and
cz3

1 ·hz5 = γ · ce
3.
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Protocol 10 Equivalent description of Protocol 9 in terms of commitments and additive homomorphism. The
notation Comg,h(m,z) := gmhz indicates that the group generators used to produce the Pedersen commitment
to m with blinding factor z are g and h.

1: Let G be a (multiplicative) cyclic group of prime order over which the Discrete Logarithm relation is
hard.

2: Input is ci = gmi ·hri = Comg,h(mi,ri) for i ∈ {1,2,3} such that m3 = m1 ·m2 mod |G|.
3: Prover knows mi and ri for all i ∈ {1,2,3}, Verifier only knows c1,c2,c3,g,h.
4: Prover picks b1, . . . ,b5 ∈ {0, . . . , |G|−1} and sends to verifier three values:

α ← Comg,h(b1,b2), β ← Comg,h(b3,b4), γ ← Comc1,h(b3,b5).

5: Verifier sends challenge e chosen at random from {0, . . . , |G|−1}.
6: Let z1← b1 + e ·m1, z2← b2 + e · r1, z3← b3 + e ·m2, z4← b4 + e · r2, z5← b5 + e · (r3− r1m2).
7: While Verifier does not know z1, . . . ,z5, using additive homomorphism Verifier can derive the following

three commitments unaided using additive homomorphism:

c′1 = Comg,h(z1,z2) = α · ce
1,

c′2 = Comg,h(z3,z4) = β · ce
2,

c′3 = Comc1,h(z3,z5) = γ · ce
3.

This final equality for c′3 exploits that

ce
3 = gem1m2her3 = cem2

1 her3−er1m2 = Comc1,h(em2,er3− er1m2).

8: Prover sends z1, . . . ,z5.
9: Verifier checks that:

• (z1,z2) is valid opening information for c′1 using generators g,h.

• (z3,z4) is valid opening information for c′2 using generators g,h.

• (z3,z5) is valid opening information for c′3 using generators c1,h.
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Chapter 13

Zero-Knowledge via Commit-And-Prove
and Masking Polynomials

Historically, the first zero-knowledge argument for an NP-complete problem was given by Goldreich, Mi-
cali, and Wigderson (GMW) [GMW91]. GMW designed a zero-knowledge argument with a polynomial-
time verifier for the Graph 3-Coloring problem. This yields a zero-knowledge argument with a polynomial
time verifier for any language L in NP (including arithmetic circuit satisfiability), because any instance of
L can first be transformed into an equivalent instance of Graph 3-Coloring with a polynomial blowup in
instance size, and then GMW’s zero-knowledge argument for Graph 3-Coloring can be applied. However,
this does not yield a practical protocol for two reasons. First, GMW’s construction works by first designing
a “basic” protocol that has large soundness error (1−1/|E|, where |E| denotes the number of edges in the
graph) and hence needs to be repeated a polynomial number of times to ensure negligible soundness error.
Second, for problems in NP that are relevant in practice, reductions to Graph 3-Coloring can introduce large
(polynomial) overheads. That is, we saw in Chapter 6 that arbitrary non-deterministic RAMs running in
time T can be transformed into equivalent circuit satisfiability instances of size Õ(T ), but an analogous
result is not known for Graph 3-Coloring. For this reason, our focus in this manuscript is on directly giving
zero-knowledge arguments for circuit satisfiability and related problems, rather than for other NP-complete
problems. The interested reader can learn more about GMW’s seminal zero-knowledge argument from any
standard text on zero-knowledge (e.g., [Gol07, Section 4.4.2]).

Commit-and-prove zero-knowledge arguments. In this chapter, we describe our first zero-knowledge
arguments for circuit satisfiability. These are based on a technique often called commit-and-prove.161 The
idea is as follows. Suppose that for some agreed-upon circuit C, the prover wants to establish that it knows
a witness w such that C(w) = 1,162 and consider the following naive, information-theoretically secure and
non-interactive proof system, which is (perfectly) sound but not zero-knowledge. The prover sends w to the

161An important warning: some papers use the phrase “commit-and-prove SNARKs”, e.g., [CFQ19], which is related to but
different than our use of the term commit-and-prove in this survey. Commit-and-prove SNARKs are SNARKs in which the verifier
is given a compressing commitment to an input vector (e.g., using the generalized Pedersen commitment we describe later in
Section 14.2), and the SNARK is capable of establishing that the prover knows an opening w for the commitment such that w
satisfies a property of interest. Hence, commit-and-prove SNARKs are SNARKs for a particular type of statement. In contrast, we
use commit-and-prove to refer to a particular design approach for zero-knowledge arguments.

162In previous chapters of this survey, we have considered arithmetic circuits that take as input a public input x and witness w,
and the prover wants to establish knowledge of a w such that C(x,w) = 1. In this chapter we omit the public input x for brevity. It
is easy to modify the arguments given here to support a public input x in addition to a witness w.
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verifier, along with the value of every gate of C when C is evaluated on input w. The verifier simply checks
that the claimed value of the output gate is 1, and checks gate-by-gate that the claimed value of the gate
is accurate (i.e., for any multiplication (respectively, addition) gate, the value the prover sends for that gate
is indeed the product (respectively, sum) of the two in-neighbors of the gate). Clearly, this proof system is
information-theoretically sound, but is not zero-knowledge because the verifier learns the witness w.

To obtain a zero-knowledge argument, the prover will instead send a hiding commitment to each gate,
and prove in zero-knowledge that the committed values satisfy the checks that the verifier in the naive
(non-zero-knowledge) proof system performs. This way the argument system verifier learns nothing about
the committed values, but nonetheless confirms that the committed values would have satisfied the verifier
within the information-theoretically secure protocol.

The next section contains additional details of this approach when the commitment scheme used is
Pedersen commitments.

13.1 Proof Length of Witness Size Plus Multiplicative Complexity

Section 12.3.2 explained that Pedersen commitments satisfy the following properties: (a) they are additively
homomorphic, meaning that given commitments c1,c2 to values m1,m2, the verifier can compute a com-
mitment to m1 +m2 mod |G| directly from c1,c2, even though the verifier does not know m1 or m2 (b)
given commitments c1,c2,c3 to values m1,m2,m3 there is a Σ-protocol (Protocol 9) for which the prover can
establish in (honest verifier) zero-knowledge that c3 is a commitment to m1 ·m2 mod |G|.

Addition and multiplication are a universal basis, meaning that with these two operations alone, one can
compute arbitrary functions of any input. Hence, properties (a) and (b) together effectively mean that a
verifier is able to do arbitrary computation over committed values, without making the prover ever reveal
the committed values.

In more detail, we have the following zero-knowledge argument for arithmetic circuit satisfiability.
While conceptually appealing, this argument is not succinct—the communication complexity is linear in
the witness size |w| plus the number M of multiplication gates of the circuit, leading to very large proofs.

Let C be an arithmetic circuit over F of prime order, and let G be a cyclic group of the same order as F in
which the Discrete Logarithm relation is assumed to be hard. Let us suppose that multiplication gates in C
have fan-in 2 (the zero-knowledge argument in this section naturally supports addition gates of unbounded
fan-in, in which case we can assume without loss of generality that the in-neighbors of any addition gate
consist entirely of multiplication gates). Suppose the prover claims that it knows a w such that C(w) = 1.

At the start of the protocol, the prover sends Pedersen commitments to each entry of w, as well as
Pedersen commitments to the value of every multiplication gate in C. Then, for each entry of witness w, the
prover proves via Protocol 7 that the prover knows an opening of the commitment to that entry. Next, for
each multiplication gate in the circuit, the prover uses Protocol 9 to prove that the committed values respect
the operations of the multiplication gates. That is, if a multiplication gate g1 computes the product of gates
g2 and g3, the verifier can demand that the prover prove in zero-knowledge that the commitment c1 to the
value of gate g1 equals the product of the commitments c2 and c3 to the value of gates g2 and g3. Addition
gates are handled within the protocol without any communication between prover and verifier by using the
additive homomorphism property of Pedersen commitments: if an addition gate g1 computes the sum of
gates g2 and g3, the verifier can on its own, via Property (a), compute a commitment to the value of g1 given
commitments to the values of gates g2 and g3. Finally, at the end of the protocol, the prover uses Protocol 3
to prove knowledge of how to open the commitment to the value of the output gate of C to value y = 1.

The resulting proof system is clearly complete because each of the subroutines (Protocols 3, 7, and 9)
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is complete. To show it is perfect honest-verifier zero-knowledge, one must construct an efficient simulator
whose output is distributed identically to the honest verifier’s view in the protocol. The idea of the construc-
tion is simply that the protocol is comprised entirely of |w|+M + 1 sequential invocations of Σ-protocols
that are themselves perfect honest-verifier zero-knowledge. The simulator for the entire protocol can simply
run the simulator for each of these subroutines in sequence and concatenate the transcripts that it generates.

13.1.1 Establishing Knowledge-Soundness

To establish our argument system is an argument of knowledge for arithmetic circuit satisfiability, we need
to show that if the prover convinces the verifier to accept with non-negligible probability, then it is possible
to efficiently extract from the prover a witness w such that C(w) = 1. Formally, we must show that for any
prover P that convinces the argument system verifier to accept with non-negligible probability, there is a
polynomial-time algorithm E that, given access to a rewindable transcript generator for the prover-verifier
pair (P,V) for the argument system, outputs a w such that C(w) = 1.

Naturally, the procedure to extract the witness w relies on the fact that each of the |w|+M+1 subroutines
used in the argument system protocol themselves satisfies special soundness. Recall that this means the
protocols consist of three messages, and given access to two accepting transcripts that share a first message
and differ in their second message, there is an efficient procedure to extract a witness for the statement being
proven. We call such a set of transcripts a 2-transcript-tree for the subroutine.

Using its access to a rewindable transcript generator for (P,V), E can in polynomial time identify a
2-transcript-tree for each subroutine with high probability.

By special soundness of Protocol 7, given such a set of 2-transcript-trees for all of the subroutines of the
argument system, E can extract an opening of the commitment to each entry i of the witness, and output the
vector w of extracted values. We now explain that the vector w that is output in this manner indeed satisfies
C(w) = 1.

Just as E extracted an opening for each entry of w from the 2-transcript-trees for each invocation of
Protocol 7, given the 2-transcript-trees for the invocation of Protocol 9 to the ith multiplication gate of
C, there is an efficient procedure to extract openings to the commitment for multiplication gate i and the
commitments to its two in-neighbor gates such that the values opened respect the multiplication operation
(one or both of these in-neighbors may be addition gates, the commitments for which are derived via additive
homomorphism from the commitments to multiplication gates sent by the prover). Similarly, given the 2-
transcript-tree for the lone invocation of Protocol 3, there is an efficient procedure to extract an opening of
the commitment to the output gate value to 1.

Observe that a value for any particular gate g in C may be extracted multiple times by these extraction
procedures. For example, the value of a gate g will be extracted via the 2-transcript-tree for any invocation
of Protocol 9 to a gate g′ for which g is an in-neighbor. And if g is itself a multiplication gate, its value will
be extracted an additional time from the application of Protocol 9 to g itself. And the output gate of C will
have an opening of its commitment to value 1 extracted due to the invocation of Protocol 3.

For any gate whose value is extracted multiple times, the extracted values must all be the same, for if
this were not the case, the extraction procedure would have identified two different openings of the same
commitment. This would violate the binding property of the commitment scheme, since all the 2-transcript-
trees were constructed in polynomial time and the extraction procedure from each 2-transcript-tree is also
efficient.

In summary, we have established the following properties of the extracted values:

• A unique value is extracted for every gate of C and entry of the witness w.
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• The extracted values for all multiplication gates respect the multiplication operation of the gate (this
holds by the special soundness of Protocol 9).

• The extracted values of the gates also respect the addition operations computed by all addition gates
of C (this holds by the additive homomorphism of the commitment scheme).

• The extracted value for the output gate is 1.

This four properties together imply that C(w) = 1 where w is the extracted witness.

13.1.2 A Final Perspective on Commit-and-Prove

The commit-and-prove argument described above is conceptually related to fully homomorphic encryption
(FHE). An FHE scheme allows for computation over encrypted data. Specifically, let c1 and c2 by ciphertexts
with corresponding plaintexts m1 and m2. An FHE scheme allows anyone given c1 and c2 (but not the
corresponding plaintexts) to compute encryptions of m1 ·m2 and m1+m2. This allows any arithmetic circuit
to be evaluated gate-by-gate over encrypted data.

For example, a computationally limited user can offload sensitive computation to a cloud computing
service by encrypting their data with an FHE scheme, and asking the cloud computing service to evaluate
an arithmetic circuit over their encrypted data. The cloud service can proceed gate-by-gate through the
circuit. For each addition gate and multiplication gate in the circuit, the service can apply the addition or
multiplication operation to the plaintexts “inside” the ciphertexts of the gate’s in-neighbors, without ever
“opening” the ciphertexts. In this way, the cloud service obtains an encryption of the circuit output, which
it can send to the user, who decrypts it. The use of FHE here avoids leaking the user’s information to the
cloud.163

The commit-and-prove zero-knowledge argument is conceptually similar, with the argument prover
playing the role of user, and the verifier playing the role of the cloud service. To preserve zero-knowledge,
the prover wishes to keep the elements of the witness hidden from the verifier. So the prover commits to
the witness elements using an additively homomorphic commitment scheme (Pedersen commitments)–these
commitments are analogs of the ciphertexts in the FHE scenario above. The verifier seeks to obtain a com-
mitment to the output of the circuit, analogously to how the cloud server seeks to obtain an encryption of
the output. The key difference in the commit-and-prove argument is that the commitment scheme is only
additively homomorphic rather than fully homomorphic. This means that the verifier on its own can “add
two committed values” without ever opening the commitments, but cannot multiply them. So for every
multiplication gate in the circuit, the prover in the commit-and-prove argument helps the verifier compute
the multiplication, by sending a commitment to the product and proving in zero-knowledge that indeed it
can open that commitment to the appropriate product of committed values. This is why the proof length
grows linearly with the number of multiplication gates in the circuit, but has no dependence on the number
of addition gates.

13.1.3 Commit-and-Prove with Other Commitment Schemes

We used Pedersen commitments in the commit-and-prove zero-knowledge argument system above. How-
ever, the only properties of Pedersen commitments we needed were: perfect hiding, computational binding,

163Note that FHE does not provide a guarantee that the cloud correctly evaluated the designated arithmetic circuit on the user’s
data. One would need to combine FHE with a proof or argument system to obtain such a guarantee.
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additive homomorphism, and zero-knowledge arguments of knowledge for opening information and prod-
uct relationships. One can replace Pedersen commitments with any other commitment scheme satisfying
these properties. To this end, several works [WYKW21, BMRS21, DIO20] essentially replace Pedersen
commitments with a commitment scheme derived from a primitive called vector oblivious linear evaluation
(VOLE) [ADI+17]. This has the following benefits over Pedersen commitments. First, using Pedersen com-
mitments to implement commit-and-prove leads to proofs containing 10 elements of a cryptographic group
per multiplication gate. The use of VOLE-based commitments can reduce this communication to as low as
1 or 2 field elements per multiplication gate. Second, the computational binding property of Pedersen com-
mitments is based on the intractability of the discrete logarithm problem, and since quantum computers can
efficiently compute discrete logarithms, the resulting commit-and-prove arguments are not quantum-sound.
In contrast, VOLE-based commitments are believed to be quantum-sound (they are based on variants of the
so-called Learning Parity with Noise (LPN) assumption).

However, the use of VOLE-based commitments comes with significant downsides as well. Specifically,
these commitments currently require an interactive pre-processing phase Unlike commit-and-prove with
Pedersen-based commitments, the interaction cannot be fully removed with the Fiat-Shamir transformation,
and accordingly the resulting arguments for circuit satisfiability are not publicly verifiable.

13.2 Avoiding Linear Dependence on Multiplicative Complexity: zk-Arguments
from IPs

The proof length in the zero-knowledge argument of the previous section is linear in the witness length and
number of multiplication gates of C. Moreover, the verifier’s runtime is linear in the size of C (witness length
plus number of addition and multiplication gates), as the verifier effectively applies every gate operation in
C “underneath the commitments” (i.e., the verifier evaluates every gate on committed values, without ever
asking the prover to open any commitments).

It is possible to reduce the communication complexity and verifier runtime to O(|w|+d ·polylog(|C|)),
where d is the depth of |C|, by combining the ideas of the previous section with the GKR protocol. The idea
is to start with our first, naive protocol for circuit satisfiability, (Section 7.1), which is not zero-knowledge,
and combine it with the ideas of the previous section to render it zero-knowledge without substantially
increasing any of its costs (communication, prover runtime, or verifier runtime). Specifically, recall that in
the naive protocol of Section 7.1 we had the prover explicitly send w to the verifier, and then applied the
GKR protocol to prove that C(w) = 1. This was not zero-knowledge because the verifier learns the witness
w.

To render it zero-knowledge, we can have the prover send Pedersen commitments to each element of w
and use Protocol 7 to prove knowledge of openings of each commitment, exactly as the prover did at the
start of the zero-knowledge argument from the previous section. Then we can apply the GKR protocol to the
claim that C(w) = 1. However, the prover’s messages within the GKR protocol also leak information about
the witness w to the verifier, as the prover’s messages all consist of low-degree univariate polynomials whose
coefficients are derived from C’s gate values when evaluated on w. To address this issue, we do not have the
prover send the coefficients of these polynomials to the verifier “in the clear”, but rather have the prover P
send Pedersen commitments to these coefficients and engage for each one in an invocation of Protocol 7 to
prove that P knows an opening of the commitment. In sum, when the argument system prover and verifier
have finished simulating the GKR protocol, the argument system prover has sent Pedersen commitments to
all entries of the witness w and all entries of the GKR prover’s messages.

We now have to explain how the argument system verifier can confirm in zero-knowledge that the values
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inside these commitments would have convinced the GKR verifier to accept the claim that C(w) = 1. The
idea is roughly that there is a circuit C′ that takes as input the prover’s messages in the GKR protocol
(including the witness w), and such that (1) all of C′ outputs are 1 if and only if the prover’s messages would
convince the GKR verifier to accept, and (2) C′ contains O(d log |C|+ |w|) addition and multiplication gates.
Hence, we can apply the zero-knowledge argument of the previous section to the claim that C′ outputs the
all-1s vector. Recall that at the start of the argument system of the previous section applied to the claim
C′(w′) = 1, the prover sent commitments to each entry of w′. In this case, w′ consists of the witness w for
C and the prover’s messages within the GKR protocol, and the argument system has already committed to
these values (via the last sentence of the previous paragraph). By Property (2) of C′, the total communication
cost and verifier runtime of the zero-knowledge argument applied to C′ is O(|w|+d log |C|).

The argument for C is easily seen to be complete and honest-verifier zero-knowledge (since it consists
of the sequential application of honest-verifier zero-knowledge argument systems). To formally prove that
it is knowledge sound, one needs to show that, given any argument system prover P that runs in polynomial
time and causes the argument system verifier to accept with non-negligible probability, one can extract a
witness w and a prover strategy P ′ for the GKR protocol applied to the claim C(w) = 1 that causes the GKR
verifier to accept with high probability. Soundness of the GKR protocol then implies that C(w) = 1. The
witness w can be extracted from P as in the previous section via the special soundness of Protocol 7. In each
round of the GKR protocol, the message to be sent by the GKR prover P’ in response to the GKR verifier’s
challenge can also be extracted from the commitments sent by the argument system prover P in response to
the same challenge, because Protocol 7 was invoked in each round of the argument system to prove that P ′
knows openings to every commitment sent.

The probability that the GKR verifier accepts when interacting with P ′ is analyzed by exploiting the fact
that the GKR verifier’s checks on the committed messages sent by P ′ are performed by applying the zero-
knowledge proof of knowledge of the previous section to C′. Specifically, soundness of the argument system
applied to C′ ensures that whenever P convinces the argument system verifier to accept, P ′ convinces the
GKR verifier to accept (up to the negligible probability with which a polynomial time adversary is able to
break binding property of the commitment scheme).

To summarize, in the above argument system, we essentially applied the commit-and-prove zero-knowledge
argument of Section 13.1 not to C itself, but rather to the verifier in the GKR protocol applied to check the
claim that C(w) = 1.

Reducing the dependence on witness size below linear. The argument system just described has com-
munication complexity that grows linearly with |w|, because the prover sends a hiding commitment to each
entry of w and proves in zero-knowledge that it knows openings to each commitment. The next chapter
describes several practical polynomial commitment schemes. Rather than committing to each entry of w
individually, the prover could commit to the multilinear extension w̃ of w using an extractable polynomial
commitment scheme as outlined in Section 7.3, and thereby reduce the dependence on the proof length on
|w| from linear to sublinear or even logarithmic. (More precisely, to ensure zero-knowledge, the polynomial
commitment scheme should be hiding, and during its evaluation phase it should reveal to the verifier a hid-
ing commitment to w̃(z) for any point z chosen by the verifier. See for example the multilinear polynomial
commitment scheme in Section 14.3.)

This same approach also transforms the succinct MIP-derived argument of Section 8.3 into a zero-
knowledge one. Specifically, after having the argument system prover first commit to the multilinear poly-
nomial Z claimed to extend a valid circuit transcript (with a hiding commitment scheme), the prover and
verifier then simulate the MIP verifier’s interactions with the first MIP prover, but with the prover sending
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Pedersen commitments to the MIP prover’s messages rather than the messages themselves, and proves in
zero-knowledge that it knows openings for the commitments. The argument system verifier then confirms in
zero-knowledge that the values inside these commitments would have convinced the MIP verifier to accept
the claim.

The ideas in this section and the previous section were introduced by Cramer and Damgård [CD98] and
first implemented and rendered practical via optimizations in [WTS+18, ZGK+17b, Set20].

13.3 Zero-Knowledge via Masking Polynomials

The preceding section (Section 13.2) gave a generic technique for transforming any IP into a zero-knowledge
argument: the argument system prover mimics the IP prover, but rather than sending the IP prover’s mes-
sages in the clear, it sends hiding commitments to those messages, and proves in zero-knowledge that it
knows how to open the commitments. At the end of the protocol, the argument system prover establishes
in zero-knowledge that the committed messages would have caused the IP verifier to accept; this is done
efficiently by exploiting homomorphism properties of the commitments.

In this section, we discuss another technique for transforming any IP into a zero-knowledge argument.
The technique makes use of any extractable polynomial commitment scheme, meaning that we assume the
prover is able to cryptographically bind itself to a desired polynomial p, and later the verifier can force
the prover to reveal the evaluation p(r) for a random input r to p of the verifier’s choosing. Suppose
further that the polynomial commitment scheme is zero-knowledge, meaning that the verifier learns nothing
about p from the commitment, and the evaluation phase reveals no information about p to the verifier
other than the evaluation p(r). One benefit of this technique is that if the polynomial commitment scheme is
binding even against quantum cheating provers, then the resulting zero-knowledge argument is also plausibly
post-quantum sound. For example, the FRI-based polynomial commitment scheme of Section 10.4.2 is
plausibly sound against cheating provers that can run polynomial time quantum algorithms.164 In contrast,
any protocol (such as that of the last section) that makes use of Pedersen commitments is not post-quantum
sound, because Pedersen commitments are only binding if the discrete logarithm problem is intractable, and
quantum computers can compute discrete logarithms in polynomial time.

Another zero-knowledge sum-check protocol. Consider applying the sum-check protocol to an ℓ-variate
polynomial g over F to check the prover’s claim that ∑x∈{0,1}ℓ g(x) equals some value G. Let us assume that
the verifier has oracle access to g, in the sense that for any point r ∈ Fℓ, the verifier can obtain g(r) with one
query to the oracle. Recall (Section 4.1) that the sum-check protocol consists of ℓ rounds, where the honest
prover’s message in each round i is a univariate polynomial of degree degi(g) derived from g, namely

∑
bi+1,...,bℓ∈{0,1}

g(r1, . . . ,ri−1,Xi,bi+1, . . . ,bℓ).

Here, degi(g) is the degree of g in variable i and is assumed known to the verifier, and r1, . . . ,ri−1 are random
field elements chosen by the verifier in rounds 1,2, . . . , i−1.

There are three ways in which the verifier “learns” information about g in the sum-check protocol. First,
the verifier learns that ∑x∈{0,1}ℓ g(x) = G, but this information is not meant to be “protected” as the entire
point of the sum-check protocol is to ensure that the verifier learns this value. Second, the prover’s messages

164FRI-derived polynomial commitments are not zero-knowledge, but can be rendered zero-knowledge using techniques similar
to those in this section.

203



leak information about g to the verifier that the verifier may not be able to compute on her own. Third, the
verifier learns the value g(r) via the oracle query at the end of the protocol.

In the preceding section, we addressed the second source of information leakage by having the prover
send hiding commitments to the messages rather than the messages themselves. Here is a different technique
for ensuring that the prover’s messages do not leak any information about g to the verifier; this approach
originated in [BSCF+17, CFGS18].

To ensure that the prover’s messages in the sum-check protocol reveal no information about g, the
prover can at the very start of the protocol choose a random polynomial p with the same degree as g in
each variable, commit to p, and send to the verifier a value P claimed to equal ∑x∈{0,1}ℓ p(x). The verifier
then picks a random ρ ∈ F\{0} and sends it to the prover, and the prover and verifier apply the sum-check
protocol not to g itself but rather to g+ρ · p, to check that ∑x∈{0,1}ℓ (g+ρ · p)(x) = G+ρ ·P.

At the end of the sum-check protocol, the verifier needs to evaluate g+ρ · p at a random input r ∈ Fℓ.
The value p(r) can be obtained via the evaluation phase of the commitment scheme that was applied to p,
while g(r) is obtained by the verifier with a single oracle query.

Completeness and soundness. The protocol clearly satisfies completeness. To see that it is sound, consider
any prover strategy P capable of convincing the verifier to accept with non-negligible probability. By
extractability of the polynomial commitment scheme, it is possible to efficiently extract fromP a polynomial
p such that the prover is bound to p, in the sense that any value revealed by the prover in the evaluation phase
of the commitment scheme is consistent with p. Letting P be the claimed value of ∑x∈{0,1}ℓ p(x) sent by P ,
consider the two functions π1(ρ) = G+ρP and π2(ρ) = ∑x∈{0,1}ℓ (g+ρ · p)(x). Both are linear functions
in ρ . If either G ̸= ∑x∈{0,1}ℓ g(x) or P ̸= ∑x∈{0,1}ℓ p(x) then π1 ̸= π2, and hence the two linear functions can
agree on at most one value of ρ . This means that with probability at least 1− 1

|F|−1 over the random choice
of ρ , G+ρP ̸= ∑x∈{0,1}ℓ (g+ρ · p)(x). In this event, the sum-check protocol is applied to a false claim, and
we conclude that the verifier will reject with high probability because the sum-check protocol is sound.

Honest-Verifier Zero-Knowledge. We claim that the honest verifier in this protocol learns nothing about g
other than G and g(r). This is formalized by giving an efficient simulator that, given G and the ability to
query g at a single input r, produces a distribution identical to that of the prover’s messages in the above
protocol.

The intuition is that, since p is random, adding ρ · p to g yields a random polynomial satisfying the
same degree bounds as g, and hence the prover’s messages in the sum-check protocol applied to g+ ρ ·
p are indistinguishable from those obtained by applying the sum-check protocol to a randomly chosen
polynomial. Formally, the simulator selects a random polynomial p subject to the appropriate degree bounds
(i.e., degi(p) = degi(g) for all i), commits to p exactly as does the honest prover in the protocol above (here,
we are using the fact that p is chosen totally independent of g and hence the simulator can commit to p
even though the simulator has no knowledge of g), and sets P← ∑x∈{0,1}ℓ p(x). The simulator then chooses
ρ at random from F \ {0}, and chooses a random value r = (r1, . . . ,rℓ) ∈ Fℓ. The simulator queries the
oracle for g at r to obtain g(r) and then chooses a random polynomial f subject to the constraint that f sums
to G over inputs in {0,1}ℓ and f (r) = g(r) (this can be done in time O(2ℓ), which is polynomial in n if
ℓ= O(logn)). The simulator then computes the honest prover’s messages in the sum-check protocol applied
to f +ρ p when the sum-check verifier’s randomness is r. At the end of the sum-check protocol, when the
verifier needs to learn p(r), the simulator simulates the honest prover and verifier in the evaluation phase of
the polynomial commitment scheme applied to reveal p(r) to the verifier. This completes the description
of how the simulator produces a simulated transcript of the verifier’s interaction with the prover in the
zero-knowledge sum-check protocol. We now explain why the simulated prover messages are distributed
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identically to those sent by the honest prover in response to the honest verifier.
By the zero-knowledge property of the polynomial commitment scheme, the evaluation proof of the

commitment scheme can itself be simulated given p(r) alone, and in particular does not depend on p’s
evaluations at any points other than r. This ensures that, conditioned on the values of g(r), ρ , and the
prover’s messages during the evaluation phase of the polynomial commitment scheme, q := g+ ρ p is a
random polynomial with the same variable degrees as g, subject to the constraints that q(r) = g(r)+ρ · p(r)
and ∑x∈{0,1}ℓ q(x) = G+ρ ·P. Since f +ρ p is a random polynomial subject to the same constraints, the
prover messages generated by the simulator are distributed identically to the honest prover’s messages in the
actual protocol (we omit details of how this assertion is achieved, as it does require modest modifications to
the univariate and multilinear polynomial commitment schemes, because p is neither a univariate polynomial
nor multilinear).

Costs. When the sum-check protocol is applied in an IP or MIP for circuit-satisfiability, the polynomial g to
which it is applied has ℓ ≈ 2logS or ℓ ≈ 3logS, where S is either the size of the circuit C or a the number
of gates at a single layer of C (see Sections 4.6 and 8.2). This means that a random polynomial p with the
same variable degree as g has at least S2 coefficients, so even writing p down takes time at least quadratic in
S, which is totally impractical. Fortunately, Xie et al. [XZZ+19] show that p does not actually need to be a
random polynomial of the appropriate variable degrees. Rather, it suffices for p to be a sum of ℓ randomly
chosen univariate polynomials s1, . . . ,sℓ, one for each of the ℓ variables of g, where the degree of si equals
degi(g). This ensures that p can be committed to in time Õ(ℓ) using (zero-knowledge variants of) any of the
polynomial commitment schemes discussed in this manuscript.

Masking g(r). When the sum-check protocol is applied to a polynomial g in an IP or MIP for circuit-
or R1CS-satisfiability, allowing the verifier to learn even a single evaluation g(r) of g will violate zero-
knowledge, because g itself depends on the witness.

For example, recall that in the MIP for circuit satisfiability of Section 8.2, to check the claim that
C(x,w) = y, the prover applies the sum-check protocol exactly once, to the polynomial

hx,y,Z(Y ) := β̃3k(r,Y ) ·gx,y,Z(Y ).

(See Equation (8.2)). Here, Z denotes some polynomial mapping {0,1}logS to F, and

gx,y,Z(a,b,c) := ĩo(a,b,c)· (̃Ix,y(a)−Z(a))+ ãdd(a,b,c)·(Z(a)−Z(b)+Z(c))+m̃ult(a,b,c)·(Z(a)−Z(b)·Z(c)).

The honest prover in the MIP sets Z to the multilinear extension W̃ of a correct transcript W for the claim
that C(x,w) = y (where W is viewed as a function mapping {0,1}logS→ F).

The key point above is that, since the correct transcript W fully determines the multilinear extension W̃ ,
and W depends on the witness w, even a single evaluation of W̃ leaks information about w to the verifier.
Hence, any zero-knowledge argument system cannot reveal W̃ (r) to the verifier for even a single point r.

Here is a technique for addressing this issue. In a sentence, the idea is to replace W̃ (r) with a slightly
higher-degree (randomly chosen) extension polynomial Z of W . This ensures that if the verifier learns a
couple of evaluations Z(r1), Z(r2) of Z, so long as r1,r2 ̸∈ {0,1}ℓ, these evaluations are simply independent
random field elements and in particular are totally independent of the transcript W .

In more detail, recall further that in argument systems derived from the MIP, the prover uses a polyno-
mial commitment scheme to commit to an extension Z of a correct transcript W . The verifier ignores the
commitment until the very end of the sum-check protocol applied to hx,y,Z , at which time the verifier needs
to evaluate hx,y,Z at a random input r = (r1,r2)∈ FlogS×FlogS. Assuming the verifier can efficiently evaluate
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ĩo, Ĩ, ãdd, and m̃ult on its own, hx,y,Z(r) can be easily computed given Z(r1) and Z(r2). The verifier obtains
these two values using the evaluation phase of the polynomial commitment scheme.

As discussed above, in the MIP of Section 8.2, the prover sets Z to W̃ , but this does not yield a zero-
knowledge argument. Instead, let us modify the protocol as follows to achieve perfect zero-knowledge.
First, we insist that the verifier choose the coordinates of r from F \ {0,1} rather than from F (this has
a negligible effect on soundness). Second, we prescribe that the honest prover chooses Z to be a random
extension polynomial of the correct transcript W where Z has at least two more coefficients than a multilinear
polynomial. For example, we can prescribe that the prover set

Z(X1, . . . ,XlogS) := W̃ (X1, . . . ,XlogS)+ c1X1(1−X1)+ c2X2(1−X2),

where the prover chooses c1 and c2 at random. Since X1(1−X1) and X2(1−X2) vanish on inputs in {0,1}2,
it is clear that Z extends W . Basic linear algebra implies that for any two points r1,r2 ∈ FlogS \ {0,1}logS,
Z(r1) and Z(r2) are uniform random field elements, independent of each other and of W . Third, as in the
zero-knowledge sum-check protocol described earlier in this section, we insist that the polynomial com-
mitment scheme used to commit to Z is zero-knowledge, meaning that the verifier learns nothing from the
commitment or the prover’s messages in the evaluation phase of the protocol other than the requested eval-
uations Z(r1) and Z(r2). Fourth, rather than directly applying the sum-check protocol to hx,y,Z , we apply the
zero-knowledge variant of the sum-check protocol described earlier in this section (with g set to hx,y,Z).

The modified argument system clearly remains complete, and it is sound, as the (zero-knowledge) sum-
check protocol applied to hx,y,Z confirms with high probability that Z is an extension polynomial of a valid
transcript W . It is also perfect zero-knowledge. The simulator is essentially the same as that for the zero-
knowledge sum-check protocol. The primary modification of the simulator is that, for r = (r1,r2), the
simulator’s oracle query to obtain g(r) is replaced with the following procedure. First, the simulator chooses
values Z(r1) and Z(r2) to be random field elements, and then derives g(r) based on these values, according
to the definition of g = hx,y,Z in Equation (8.2). Second, the simulator simulates the evaluation proof from
the polynomial commitment scheme for the evaluations Z(r1), Z(r2) using the zero-knowledge property of
the commitment scheme.

Costs. The argument system above is essentially the same as the nonzero-knowledge argument system
derived from the MIP of Section 8.2, since all we did was replace the multilinear extension W̃ with a slightly
higher-degree extension Z. Committing to the extension Z as above does require minor modification of the
polynomial commitment schemes covered in this survey, as Z is not multilinear (we omit these details for
brevity). However, the modifications add very little cost to the commitment protocol, since Z has only two
more coefficients than W̃ .

13.4 Discussion and Comparison

This chapter provided two quite general techniques for transforming a non-zero-knowledge protocol Q into
zero-knowledge one Z . This allows protocol designers to first design an efficient protocolQ without having
to worry about zero-knowledge, and then apply one of the two transformations to “add” zero-knowledge
(hopefully, with minimal concrete overhead or additional cognitive load).

Here is a recap of the first transformation. Suppose in the non-zero-knowledge protocolQ, all messages
from prover to verifier consist of elements of some field F. Section 13.2 would render the protocol zero-
knowledge via the “commit-and-prove” approach as follows: for every field element sent by the prover in
Q, the prover in Z would instead send a hiding commitment to that field element, and then at the end of
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the protocol the prover in Z would prove in zero-knowledge (via the proof system of Section 13.1) that the
committed values would have caused the Q verifier to accept.

The downsides of this first transformation are two-fold: first, if (as with Pedersen commitments) the
commitment scheme is not binding against quantum adversaries, then Z will not be post-quantum-sound
even ifQ is. Second, as discussed already in Section 13.1.3, verification costs are higher inZ than inQ, first
because commitments to field elements may be larger than the field elements themselves (thereby increasing
proof length) and second because the Z verifier must effectively run the Q verifier “on the committed
values”, without opening the commitments, and this will further increase proof size and verifier time. For
example, each field multiplication that the Q verifier does may turn into an invocation of Protocol 9 from
Section 12.3.2, which requires the prover to send at least 9 extra group elements and the verifier to perform
at least nine group exponentiations and several group multiplications, rather than one field multiplication.

While this may appear to be a massive overhead in verifier time and proof length, many non-zero-
knowledge protocols Q will make use of a polynomial commitment scheme. If the commitment scheme is
hiding, i.e., it reveals no information to the verifier about the committed polynomial, then the messages sent
by the prover of Q within the scheme do not need to be fed through the commit-and-prove transformation
(see the paragraph “Reducing the dependence on witness size below linear” in Section 13.2 for further
discussion). In these settings, the verification overhead introduced by the commit-and-prove transformation
may be a low-order cost relative to that of the polynomial commitment.

Similarly, from the perspective of the prover’s runtime, the transformation from Q to Z does not add
much overhead so long as Q is succinct (i.e., the proof length in Q is much smaller than the size of the
statement being proven). This is because, from the prover’s perspective, all of the cryptographic overhead of
the transformation (namely sending commitments to field elements rather than the field elements themselves,
and proving in zero-knowledge that the committed values would have caused the Q verifier to accept) is
applied only to the verification procedure inQ. If this verification procedure is much simpler than statement
being proven, this computational overhead should be dwarfed by the cost of simply processing the statement
itself, which is a lower bound on the prover’s runtime in Q.

If Q is based on the sum-check protocol (Section 4.2), then the second transformation of this chap-
ter, based on masking-polynomials (Section 13.3) can be applied. This has the dual benefits of plausibly
preserving post-quantum soundness, and typically adding less overhead than the commit-and-prove-based
transformation. With masking polynomials, the main extra cost in the resulting zero-knowledge protocol Z
compared to the non-zero-knowledge protocol Q is that the prover has to commit to one masking polyno-
mial for each invocation of the sum-check protocol in Q, and the verifier has to obtain an evaluation of the
committed masking polynomial. As described in Section 13.3, these masking polynomials can typically be
made very small (of size linear in communication cost of the sum-check protocol, which is typically just
logarithmic in the size of the statement being proven).

On the other hand, the masking-polynomial-based transformation is conceptually more complicated and
ad hoc than the “commit-and-prove” approach, and accordingly is not as general: it applies only to sum-
check-based protocolsQ (though related techniques typically can be used to render other polynomial-based
protocols zero-knowledge, such as those in Section 10.3).
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Chapter 14

Polynomial Commitments from Hardness of
Discrete Logarithm

Polynomial commitments schemes and a trivial solution. Recall that polynomial commitment scheme is
meant to simulate the following idealized process. An untrusted prover P has in its head a polynomial q (for
applications to succinct arguments, we are primarily interested in the cases the q is a univariate polynomial,
or a multilinear polynomial). P sends a complete description of q to the verifier V (say, a list of all of q’s
coefficients over an appropriate basis). V , having learned q, can evaluate q at any point z of its choosing. In
particular, once P sends the polynomial q to V , P cannot go and “change” q based on the point z at which
V wishes to evaluate it. Let us call this procedure, in which P explicitly sends q to V , the trivial polynomial
commitment scheme.

There are three potential issues with the trivial polynomial commitment scheme, two of which involve
efficiency considerations.

• In our applications to SNARKs (Chapters 7-10), q may be very large—often as large as the entire
statement being proved. So having P send all coefficients of q to V will require a huge amount of
communication. Hence, using the trivial polynomial commitment does not yield succinct arguments.

• V has to spend time linear in the number of coefficients to compute q(z) (i.e., the trivial polynomial
commitment would not yield a work-saving argument, meaning one whose verifier is faster than the
trivial one that is sent a witness and checks its correctness).

• V learns the entire polynomial q. This may be incompatible with zero-knowledge (in applications to
SNARKs, q typically “encodes” a witness, and hence sending q to V leaks the entire witness).

Using cryptography, one can hope to address all three issues while achieving the same functionality as
the trivial polynomial commitment scheme. Specifically, P can compute a “compressing” commitment c
to q and send only c to the verifier. Compressing means that c is much smaller than q, addressing the first
issue above regarding succinctness. Because c is smaller than q itself, c does not bind P to q in a statistical
sense. That is, there will exist many different polynomials for which c is a valid commitment, and when the
verifier asks P the evaluation q(z), P will be able to respond with p(z) for any valid “opening” polynomial
p of c. However, it is possible to design polynomial commitment schemes that are computationally binding,
meaning that any efficient prover (e.g., one unable to solve the discrete logarithm problem, or find a collision
in a cryptograph hash function) is unable to respond to any evaluation query z with a quantity other than
q(z). More precisely, along with a claimed value v for q(z), the prover will send an evaluation proof π .
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Computational binding guarantees that any efficient prover will be unable to generate a convincing π unless
indeed v = q(z).

We have already covered some polynomial commitment schemes in earlier chapters (e.g., Sections
10.4.2 and 10.5). As with those earlier schemes, in this chapter we will see polynomial commitment schemes
in which π can be checked far faster than what would be required just to read an explicit description of q.
This addresses the first two issues of the trivial scheme (succinctness and verifier time). We will also see
schemes where π reveals nothing about q, and even schemes where, if desired, the verifier does not actually
learn the requested evaluation q(z) but rather a hiding commitment to q(z). In this manner, the polyno-
mial commitment schemes can support zero-knowledge, leaking no information about q (and the witness it
encodes) to the verifier.

Revealing q(z) itself vs. a commitment to q(z). The polynomial commitment schemes we describe in
Section 14 reveal to the verifier (Pedersen) commitments to the value v = q(z), because this is what is
required for their use in the zero-knowledge arguments of Section 13.2. Other zero-knowledge arguments
(such as those in Section 13.3) call for v to be revealed explicitly to the verifier. Fortunately, it is easy to
modify the commitment schemes of Section 14 to reveal v to the verifier, for example by having the prover
use Protocol 3 to establish in zero-knowledge that it knows how to open the commitment to value v (see the
final paragraph of Section 12.3.1 for details). The pairing-based polynomial commitment scheme in Section
15 is described in the setting where the evaluation v = q(z) is revealed explicitly to the verifier.

Polynomial commitments from earlier chapters and how they compare to this chapter. We have pre-
viously seen that one way to obtain a polynomial commitment scheme is to combine an appropriate PCP or
IOP with Merkle-hashing (Sections 10.4.2 and 10.5). Whereas the Merkle-hashing approach only exploited
“symmetric key” cryptographic primitives (namely collision-resistant hash functions, combined with the
random oracle model to remove interaction), the approaches in this chapter are based on “public key” cryp-
tographic primitives. Such primitives require stronger cryptographic assumptions such as hardness of the
discrete logarithm problem in elliptic curve groups. Discussion of the pros and cons of IOP-based polyno-
mial commitments vs. the commitments of this chapter can be found in Section 16.3.

Overview of this chapter’s schemes. Known polynomial commitment schemes tend to be somewhat
more general: they enable a prover to commit to any vector u∈ Fn, and then later prove statements about the
inner product of u with any vector y ∈ Fn requested by the verifier. In the polynomial commitment scheme,
u will be the coefficients of the polynomial q to be committed over an appropriate basis (e.g., the standard
monomial basis for univariate polynomial, or the Lagrange basis for multilinear polynomials). Evaluating
q(z) is then equivalent to computing the inner product of u with the vector y obtained by evaluating each
basis polynomial at z.

For example, if q is univariate, say, q(X) = ∑
n−1
i=0 uiX i, then for any input z to q q(z) = ⟨u,y⟩ where

y = (1,z,z2, . . . ,zn−1) consists of powers of z, and ⟨u,y⟩ = ∑
n−1
i=0 uiyi denotes the inner product of u and y.

Similarly, if q is multilinear, say q(X) = ∑
2ℓ
i=0 uiχi(X), where χ1, . . . ,χ2ℓ denotes the natural enumeration of

the Lagrange basis polynomials165, then for z ∈ Fℓ
p, q(z) = ⟨u,y⟩ where y = ⟨χ1(z), . . . ,χ2ℓ(z)⟩ is the vector

of all Lagrange basis polynomials evaluated at z.

165See Lemma 3.7 for a definition of the Lagrange basis polynomials. In the natural enumeration, if i has binary representation
i1, . . . , iℓ ∈ {0,1}ℓ, then χi(X1, . . . ,Xℓ) = ∏

ℓ
j=1
(
X ji j +(1−X j)(1− i j)

)
=
(

∏ j : i j=1 X j

)(
∏ j : i j=0(1−X j)

)
.
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Hence, to commit to q, it suffices to commit to the vector u of coefficients of q. Then to later reveal (a
commitment to) q(z), it suffices to reveal (a commitment to) the inner product of u with the vector y.

Tensor structure in the evaluation vector. Exactly as in Section 10.5.1, in both the univariate and multi-
linear cases above, the vector y has a tensor-product structure. Some, but not all, of the polynomial commit-
ment schemes covered in this chapter will exploit this tensor structure (specifically, the schemes in Section
14.3 and 15.4); the others support inner products of a committed vector with an arbitrary vector y.

What we mean by tensor structure is the following. In the univariate case, let n− 1 equal the degree
of q and let us assume n = m2 is a perfect square, and define a,b ∈ Fm as a := (1,z,z2, . . . ,zm−1) and
b := (1,zm,z2m, . . . ,zm(m−1)). If we view y as an m×m matrix with entries indexed as (y1,1, . . . ,ym,m), then
y is simply the outer product b · aT of a and b. That is, yi, j = zi·m+ j = bi · a j. Similarly, if q is an ℓ-variate
multilinear polynomial, suppose that 2ℓ = m2, and let z1,z2 ∈ Fℓ/2 denote the first half and second half of
z ∈ Fℓ. Then let χ ′1, . . . ,χ

′
m denote the natural enumeration of the (ℓ/2)-variate Lagrange basis polynomials,

and define a,b ∈ Fm as a := (χ ′1(z1), . . . ,χ
′
m(z1)) and b := (χ ′1(z2), . . . ,χ

′
m(z2)). Then y = b · aT . That is,

yi, j = χi·m+ j(z) = χ ′i (z1) ·χ ′j(z2) = bi ·a j.
In summary, for both univariate and multilinear polynomials q, once the coefficient vector u of q is

committed, computing q(z) is equivalent to evaluating the inner product of u with a vector y satisfying
yi, j = bi ·a j for some m-dimensional vectors a,b, where m is the square root of the number of coefficients of
q. Equivalently, we can express the inner product of u and y as a vector-matrix-vector product:

⟨u,y⟩= ∑
i, j=1,...,m

ui, jbia j = bT ·u ·a, (14.1)

where on the right hand side we are viewing u as an m×m matrix. See Figures 14.1 and 14.2 for examples
in both the univariate and multilinear cases.

14.1 A Zero-Knowledge Scheme with Linear Size Commitments

We begin by describing a scheme that does not improve over the costs of the trivial polynomial commitment
scheme, but does render it zero-knowledge. That is, is the prover’s commitment to q is as large of q itself,
and given the commitment to q, the verifier on its own can derive a commitment to q(z) for any input z of
the verifier’s choosing.

Recall that in a Pedersen commitment (Section 12.3) over group G of prime order p with generators
g,h, a commitment to a value m ∈ Fp is c← hm · gr for a value r ∈ {0, . . . , p− 1} randomly chosen by the
committer. Pedersen commitments are perfectly hiding and computationally binding.

Commitment Phase. To commit to q, rather than the prover sending each entry of the coefficient vector u
to the verifier “in the clear” as in the trivial scheme, P sends a Pedersen commitment ci to each entry ui of
u. Pedersen commitments are hiding, so this reveals to the receiver nothing at all about u.

Evaluation Phase. Let y be the vector such that q(z) = ⟨u,y⟩ = ∑i uiyi. Since the verifier knows y and
has a commitment to each entry ui of u, using the homomorphism property of Pedersen commitments, the
verifier can on its own derive a commitment c to ∑i uiyi. P can prove in zero-knowledge that it knows how
to open the commitment c via Protocol 7 (Section 12.3.1).
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Figure 14.1: Example of a degree-15 univariate polynomial q expressed via its coefficients over the standard monomial
basis. The second line shows that the evaluation q(z) for any input z can be expressed as a vector-matrix-vector product,
where the matrix is specified by the coefficients of q, and the two vectors by the evaluation point z. The third line shows
q(z) can be equivalently be expressed as an inner product between the coefficient vector of q and an “evaluation vector”
consisting of powers of z.

3 5 7 9

1 2 3 4

2 4 6 8

0 3 6 9

! "#, "%, "&, "' =
3(1 − "#)(1 − "%)(1 − "&)(1 − "') + 5(1 − "#)(1 − "%)(1 − "&)"' + 7(1 − "#)(1 − "%)"&(1 − "') + 9(1 − "#)(1 − "%)"&"'

+(1 − "#)"%(1 − "&)(1 − "') + 2(1 − "#)"%(1 − "&)"' + 3(1 − "#)"%"&(1 − "') + 4(1 − "#)"%"&"'
+2"#(1 − "%)(1 − "&)(1 − "') + 4"#(1 − "%)(1 − "&)"' + 6"#(1 − "%)"&(1 − "') + 8"#(1 − "%)"&"'

+3"#"%(1 − "&)"' + 6"#"%"&(1 − "') + 9"#"%"&"'

(1- !") (1- !#)

(1- !") !#
!"(1- !#)

!" !#

((1 − "#)(1 − "%) (1 − !*)!+ !*(1 − !+) !*!+ (=

Figure 14.2: Example of a 4-variate multilinear polynomial q expressed via its coefficients over the Lagrange basis
(see Lemma 3.7). The evaluation q(r) for any input r = (r1,r2,r3,r4) ∈ F4 can be expressed as a vector-matrix-vector
product, where the matrix is specified by the coefficients of q, and the two vectors by the evaluation point r.
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Extractability. In the above scheme, suppose that the committer, before sending the commitment, knows
what the evaluation query z will be. As we now explain, the committer can arrange to be able to open the
commitment c derived by the verifier in the evaluation phase to a value a ∈ Fp of the committer’s choosing,
without being able to open any of the commitments ci sent during the commit phase. Put another way,
the commitment scheme is not extractable in this setting (see Section 7.4): the prover may not “know” a
polynomial p of the claimed degree that explains its answers to all evaluation queries for which it is capable
of passing the verifier’s checks.

For example, suppose that n= 2, so the polynomial commitment consists of two Pedersen commitments,
c0 and c1, each ostensibly a Pedersen commitment to one of the two coefficients of the polynomial. For
simplicity, assume and the group generator h used as a blinding factor in the Pedersen commitment scheme is
the identity element in G (equivalently, the blinding factor is simply omitted from the Pedersen commitment
scheme).

Then a committer could choose c0 to be a random group element, meaning the committer is unable to

open c0, and also set c1 to
(
ga · c−1

0

)z−1

where z−1 denotes the multiplicative inverse of z modulo p. This
ensures that the commitment c derived by the verifier during the evaluation phase above is c0 ·cz

1 = ga, which
the committer can open to a, despite not knowing how to open the commitments c0 and c1.

One way to address the above issue and thereby achieve extractability is to modify the commitment
phase to require the committer to prove in zero-knowledge, via Protocol 7, that it can open each Pedersen
commitment ci. Of course, this concretely increases the costs of the commitment phase.

In applications of polynomial commitment schemes to succinct arguments, the evaluation point z is
chosen at random by the verifier and not known to the prover at the time the polynomial commitment
is sent. In this setting, the above polynomial commitment scheme is extractable (without modifying the
commitment phase). Specifically, by randomly choosing many different evaluation points, the extraction
procedure can find n evaluation points z(1), . . . ,z(i) for which the committer is able to pass the verifier’s
checks. If y(i) denotes the vector such that q(z(i)) = ⟨u,y(i)⟩, and the committer claims that q(z(i)) = v(i),166

then this yields n linearly independent equations in the n unknown entries of u, with the i’th equation being

⟨u,y(i)⟩= v(i).

The extractor then uses Gaussian elimination to efficiently solve these n equations for the entries of u, i.e.,
for the coefficients of the committed polynomial q.

Similar remarks apply to the polynomial commitment scheme with square-root verification costs given
later, in Section 14.3.

14.2 Constant Size Commitments But Linear Size Evaluation Proofs

In the commitment scheme of Section 14.1, the commitment was as big as the polynomial being committed.
In this section, we give a scheme that reduces the commitment size to constant (one group element). How-
ever, evaluation proofs (and hence also verification time) will become very large—as big as the polynomial
being committed.167

166More precisely, the evaluation v(i) is not explicitly revealed by the committer in the scheme of this section. Rather, the com-
mitter proves knowledge of v(i) using Protocol 7. But v(i) can be efficiently extracted from the committer owing to the knowledge-
soundness of Protocol 7.

167The number of public parameters for the scheme of this section is also very large, consisting of n randomly chosen group
elements g1, . . . ,gn, where n is the length of the coefficient vector u. But in the random oracle model gi can be chosen via a random
oracle by evaluating the random oracle at input i, in which case the public parameter size is constant.
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Commitment Phase. Assume that n generators g1, . . . ,gn for G are chosen at random from G. To commit
to u ∈ Fn

p, committer will pick a random value ru ∈ {0,1, . . . , |G| − 1} and send the value Com(u;ru) :=
hru ·∏n

i=1 gui
i . This quantity is often referred to as a generalized Pedersen commitment, or a Pedersen vector

commitment (a standard Pedersen commitment is equivalent to a generalized Pedersen commitment when
n = 1). Note that Pedersen vector commitments are homomorphic: given two commitments cu,cw to two
vectors u and w in Fn

p, and any two scalars a1,a2 ∈ Fp, one can compute a commitment to the linear combi-
nation a1u+a2w, as ca1

u · ca2
w .

Pedersen vector commitments should contrasted with the scheme of Section 14.1, which committed to
the vector u ∈ Fn

p by sending a different Pedersen commitment for each entry of u (using the same public
group generator g for all n commitments). This was not a compressing commitment. Pedersen vector
commitments compute a different Pedersen commitment gui

i for each entry ui of u (but without a blinding
factor, see Footnote 160), with each commitment using a different group generator gi ∈ G.168 But rather
than sending all n commitments to the verifier, they are all “compressed” into a single commitment using
the group operation of G (and then the result is blinded by the factor hru).

Evaluation Phase. Recall that evaluating a committed polynomial q at input z is equivalent to computing
⟨u,y⟩ for the coefficient vector u and a vector y derived from z. Suppose we are given a commitment
cu = Com(u,ru), a public query vector y, and a commitment cv = Com(v,rv) = gv

1 ·hrv where v = ⟨u,y⟩, and
the committer knows ru and rv but the verifier does not. The committer wishes to prove in zero-knowledge
that it knows an openings u of cu and v of cv such that ⟨u,y⟩= v, as unless the prover can break the binding
property of the commitments, this is equivalent to establishing that q(z) = v.

As with Protocol 7 (see the end of Section 12.3.1), directly opening the commitments to u and v would
enable to verifier to easily check that v = ⟨u,y⟩, but would violate zero-knowledge. So instead the prover
opens derived commitments, with both the prover and verifier contributing randomness to the derived com-
mitments in a manner such that the derived commitments satisfy the same property that the prover claims is
satisfied by the original commitments.

In more detail, first the committer samples a random n-dimensional vector d with entries in {0, . . . , p−1}
and two random values r1,r2 ∈ {0, . . . , p−1}. The committer sends two values c1,c2 ∈G claimed to equal
Com(d,r1) and Com(⟨d,y⟩,r2). The verifier responds with a random challenge e ∈ {0, . . . , p− 1}. The
prover responds with three quantities u′,ru′ ,rv′ ∈ {0, . . . , p−1} claimed to respectively equal the following
(with all arithmetic done modulo p):

e ·u+d ∈ {0, . . . , p−1}n, (14.2)

e · ru + r1 ∈ {0, . . . , p−1}, (14.3)

e · rv + r2 ∈ {0, . . . , p−1}. (14.4)

Finally, the verifier checks that ce
u · c1 = Com(u′,ru′) and ce

v · c2 = Com(⟨u′,y⟩,rv′).

168If the same group generator g were used for all i, the commitment ∏
n
i=1 gui would not bind the committer to the vector u, but

rather only to some permutation of u. For example, if n = 2, then u = (1,2) would produce the same commitment as u = (2,1): in
the first case the commitment would be g2 ·g = g3 and in the second case it would be g ·g2, which also equals g3.
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Protocol 11 Evaluation phase of the polynomial commitment scheme of Section 14.2. If the committed
polynomial is q and the evaluation point is z, u ∈ Fn

p denotes the coefficient vector of q (which is assumed
to be defined over field Fp for prime p) and y ∈ Fn

p is a vector such that q(z) = ⟨u,y⟩= ∑
n
i=1 ui · yi.

1: Let G be a (multiplicative) cyclic group of prime order p over which the Discrete Logarithm relation is
hard, with randomly chosen generators h,g1, . . . ,gn and g.

2: Let cu = Com(u;ru) := hru ·∏n
i=1 gui

i and cv = Com(v,rv) = gvhrv . Prover knows u, ru, v, and rv. Verifier
only knows cu, cv, h, g1, . . . ,gn, and g.

3: Prover picks d ∈ {0, . . . , p− 1}n and r1,r2 ∈ {0, . . . , p− 1} and sends to verifier cd := Com(d,r1) and
c⟨d,y⟩ := Com(⟨d,y⟩,r2).

4: Verifier sends challenge e chosen at random from {0, . . . , |G|−1}.
5: Let u′← u · e+ d and ru′ ← ru · e+ r1, and let cu′ ← Com(u′,r′u). While Verifier does not know u′ and

ru′ , Verifier can derive cu′ unaided from cu and cd using additive homomorphism, as ce
u · cd .

6: Similarly, let v′← v · e+ ⟨d,y⟩ = ⟨u′,y⟩ and rv′ ← rv · e+ r2, and let cv′ ← Com(v′,rv′). While Verifier
does not know v′ and rv′ , Verifier can derive cv′ unaided from cv and c⟨d,y⟩ using additive homomorphism,
as ce

v · c⟨d,y⟩.
7: Prover sends (u′,ru′) and rv′ to Verifier.
8: Verifier checks that (u′,ru′) is valid opening information for cu′ , and that (⟨u′,y⟩,rv′) is valid opening

information for cv′ . Equivalently, Verifier checks that:

hru′ ·
n

∏
i=1

gu′i
i = cu′

and
hrv′ ·g⟨u′,y⟩ = cv′ .
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This protocol can be proved complete, special-sound, and perfect honest-verifier zero knowledge in a
manner very similar to Protocol 7. Before writing out the formal analysis, we explain how each step of the
protocol here is in direct analogy with each step of Protocol 7.

In Protocol 7, the prover’s first message contained a commitment to a random value d ∈ {0, . . . , p−1}.
Here, since we are dealing with vector commitments, the prover’s first message contains a commitment to
a random vector d with entries in {0, . . . , p−1}. Since this protocol is meant to establish not only that the
prover knows how to open the commitment to vector u, but also that the prover knows how to open the
second commitment to ⟨u,y⟩, the protocol here also has the prover send a second commitment, to ⟨d,y⟩.

In Protocol 7, after the verifier sent a random challenge e, the prover responded with an opening of
the commitment to e ·m + r1 that can be derived homomorphically from the commitments to m and d.
Analogously, here the prover responds with opening information for the derived commitments to the vector
e ·u+d (that opening information is specified via Equations (14.2) and (14.3)) and to the value ⟨eu+d,y⟩
(the opening information is (⟨u′,y⟩,rv′), where if the prover is honest, u′ is specified as per Equation (14.2)
and rv′ is specified as per Equation (14.4)). In both protocols, the verifier simply checks that the opening
information for both commitment(s) is valid. Effectively, the verifier confirms that the derived commitments,
to vector u′ = eu+d and to value ⟨u′,y⟩, satisfy the same relationship that the prover claims holds between
the original committed vector u and value v, namely that the latter equals the inner product of the former
with vector y.

Completeness, special soundness, and zero-knowledge. Completeness is clear by inspection of Protocol
11. For special soundness, let (cd ,c⟨d,y⟩) be the first message sent by the prover, and let ((cd ,c⟨d,y⟩),e,(u∗,cu∗ ,r∗))
and ((cd ,c⟨d,y⟩),e′,(û,cû, r̂)) be two accepting transcripts. Owing to the transcripts passing the two tests per-
formed by the verifier in Step 8 of Protocol 11, this means that:

hru∗ ·
n

∏
i=1

gu∗i
i = ce

u · cd , (14.5)

hrû ·
n

∏
i=1

gûi
i = ce′

u · cd , (14.6)

hr∗ ·g⟨u∗,y⟩ = ce
v · c⟨d,y⟩. (14.7)

hr̂ ·g⟨û,y⟩ = ce′
v · c⟨d,y⟩. (14.8)

Let
ū := (u∗− û) · (e− e′)−1 mod |G|,

rū := (ru∗− rû) · (e− e′)−1 mod |G|,
and

rv̄ := (r∗− r̂) · (e− e′)−1 mod |G|
Dividing Equation (14.5) by Equation (14.6) implies that

hv̄ ·
n

∏
i=1

gūi
i = cu,
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and dividing Equation (14.7) by Equation (14.8) implies that:

hr̄ ·g⟨ū,y⟩ = cv.

That is, (ū,rū) is an opening of cu and (⟨ū,y⟩,rv̄) is an opening of cv, and the two openings satisfy the
claimed relationship that the value committed by cv is the inner product of the vector committed by cu with
y.

To establish honest-verifier perfect zero-knowledge, consider the following simulator. To generate an
accepting transcript ((cd ,c⟨d,y⟩),e,(u′,ru′ ,rv′)), the simulator proceeds as follows. First, it selects the veri-
fier’s challenge e at random from {0, . . . , p−1}, and then picks a vector u′ at random from {0,1, . . . , p−1}n

and ru′ ,rv′ at random from {0,1, . . . , p−1}. Finally, it chooses cd and c⟨d,y⟩ to be the unique values that yield

an accepting transcript, i.e., cd is set to c−e
u ·hru′ ·∏n

i=1 gu′i
i and c⟨d,y⟩ is set to c−e

v ·hrv′ ·g⟨u′,y⟩. These choices
of cd and cv are specifically chosen to ensure that the generated transcript is an accepting one. One can show
that the distribution over accepting transcripts generated by this simulator is equal to the distribution gener-
ated by the honest verifier interacting with the honest prover by establishing a one-to-one correspondence
between transcripts that the simulator outputs with transcripts generated by the honest verifier interacting
with the honest prover (details omitted for brevity).

Costs. The commitment consists of a single group element. The computational cost of computing the
commitment is performing n group exponentiations. Naively performing each exponentiation indepen-
dently using repeated squaring requires O(log |G|) group multiplications per exponentiation, which implies
Θ(n log |G|) group multiplications in total. However, Pippenger’s multi-exponentiation algorithm [Pip80]
can reduce this quantity by a factor of (log(n)+ log log |G|).169

In the evaluation phase, the proof consists of n+2 numbers in {0, . . . , p−1} that can be computed with
O(n) field operations in Fp in total. The verification procedure requires the verifier to perform O(n) group
exponentiations, which can be performed using Pippenger’s algorithm in the time bound described in the
previous paragraph.

14.3 Trading Off Commitment Size and Verification Costs

Recall that the polynomial commitment scheme of the previous section had very small commitments (1
group element), but large proofs-of-evaluation (Θ(n) group elements).

In this section, we show how to exploit tensor-structure in the vector y (captured in Equation (14.1)) to
reduce the size of the proof in the evaluation phase of the polynomial commitment scheme of the previous
section, at the cost of increasing the commitment size. For example, we can set both the commitment size
and the evaluation proof size to Θ(

√
n) group elements. This technique was presented in the context of

multilinear polynomials in a system called Hyrax [WTS+18], building directly on a univariate polynomial
commitment scheme given in [BCC+16].

Commitment Phase. Recall that u denotes the coefficient vector of the polynomial q to which the com-
mitter wishes to commit, and as per Equation (14.1), we view u as an m×m matrix. Letting u j ∈ Fm denote
the jth column of u, the committer picks random numbers r1, . . . ,rm ∈ {0, . . . , p− 1} and sends a set of

169A multi-exponentiation in a multiplicative group is a product of powers of elements of the group.
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vector commitments c1 = Com(u1,r1), . . . ,cm = Com(um,rm), one for each column. Here,

Com(u j,r j) = hr j ·
m

∏
k=1

gu j,k
k

for public parameters g1, . . . ,gm ∈ G. Hence, compared to the previous section, we have increased the size
of the commitment for u from 1 group element to m group elements. Rather than applying the vector-
commitment scheme of the previous section to one vector of length m2, we applied it m times, to vectors of
length m.

Evaluation Phase. When the verifier asks the committer to provide a commitment to q(z) for a verifier-
selected input z, the prover sends a commitment c∗ to q(z) = ⟨u,y⟩ = bT · u · a, where the m-dimensional
vectors b and a are as in Equation (14.1) and are known to both the prover and verifier. Using the additive
homomorphism of the commitment scheme, the verifier can on its own compute a commitment to the vector
u ·a, namely ∏

m
j=1Com(u j)

a j . At this point, the prover needs to prove that c∗ is a commitment to bT ·(u ·a) =
⟨b,u · a⟩. Since the verifier has derived a commitment to the vector u · a, this is exactly an instance of the
problem that the protocol of the previous section was designed to solve, using a proof of size m.170

In summary, we have given a (public-coin) commitment scheme for univariate and multilinear polyno-
mials in which the commitment size proof length in the evaluation phase, and total verifier time are equal to
the square root of the number of coefficients of the polynomial.

14.4 Bulletproofs

In this section, we give a scheme in which the commitment size is constant and the proof length in the
evaluation phase is logarithmic in the number of coefficients of the polynomial. However, the verifier’s
runtime to process the proof is linear in the number of coefficients. Compared to the commitment scheme
of Section 14.2, this is a strict improvement because the proof length in the evaluation phase is logarithmic
as opposed to linear in the length of the coefficient vector. Compared to the scheme of Section 14.3, the
verifier’s runtime is worse (linear rather than proportional to the square root of the number of coefficients),
but the communication cost is much better (logarithmic as opposed to square root).

The scheme of this section is a variant of a system called Bulletproofs [BBB+18], which itself directly
builds on a univariate polynomial commitment scheme given in [BCC+16]. Our presentation draws sub-
stantially on a perspective developed in [BDFG21].

14.4.1 Warm-up: Proof of Knowledge for Opening of Vector Commitment

Before presenting the polynomial commitment in full, we start with a warmup that illustrates the key ideas
of the full Bulletproofs polynomial commitment scheme. Specifically, the warmup is a protocol enabling
the prover to establish that it knows how to open a generalized Pedersen commitment to a vector u ∈ Fn

p.

170A subtlety of this polynomial commitment scheme’s security guarantee is that the protocol establishes only that the prover
knows a z-dependent linear combination of the column commitments, where z is the evaluation point. This means that if the
committer can choose z, the committer may be able to pass the evaluation phase without knowing how to open every column
commitment [Lee21]. This weakened guarantee is nonetheless sufficient for the scheme’s use in succinct interactive arguments and
SNARKs derived thereof, where z is chosen at random by the SNARK verifier or via the Fiat-Shamir transformation.
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Notational changes for this section. Recall that a generalized Pedersen commitment to u is Com(u;ru) :=
hru ·∏n

i=1 gui
i where ru is chosen at random by the committer, and the gi’s are public generators in G. To

further simplify the presentation, let us omit the blinding factor hru from the vector commitment, so that
we now define Com(u) := ∏

n
i=1 gui

i (the resulting commitment scheme without the blinding factor is still
computationally binding, but it is not perfectly hiding, see Footnote 160 in Section 12.3).

For the remainder of this section, we write G as an additive rather than multiplicative group. This is
because, by doing so, we can think of Com(u) = ∑

n
i=1 ui · gi as the inner product between u and the vector

g = (g1, . . . ,gn) of public group generators, and hence we denote ∑
n
i=1 ui ·gi as ⟨u,g⟩.171 Under this notation,

the prover is claiming to know a vector u such that

⟨u,g⟩= cu. (14.9)

Overview of the protocol. The protocol is vaguely reminiscent of the IOP-based polynomial commitment
scheme FRI (Section 10.4.4), in the following sense. At the start of the protocol, the prover has sent a
commitment cu to a vector u of length n. The protocol proceeds in log2 n rounds, where in each round i
the verifier sends the prover a random field αi ∈ Fp, and αi is used to “halve the length of the committed
vector”. After log2 n rounds, the prover is left with a claim that it knows a vector u of length 1 satisfy a
certain inner product relationship. In this case, u is so short that the prover can succinctly prove the claim
by simply sending u to the verifier.

In more detail, at the start of each round i = 1,2, . . . , log2 n, the prover has sent a commitment cu(i)

to some vector u(i) of length n · 2−(i−1), and the prover must establish that it knows a vector u(i) such
that ⟨u(i),g(i)⟩ = cu(i) (when i = 1, u(i) = u and g(i) = g). The goal of round i is to reduce the claim that
⟨u(i),g(i)⟩= cu(i) to a claim of the same form, namely that the prover knows a vector ⟨u(i+1),g(i+1)⟩= cu(i+1)

for some vector of group generators g(i+1) that is known to the verifier, but where u(i+1) and g(i+1) each have
half the length of u(i) and g(i). For notational brevity let us fix a round i and accordingly drop the superscript
(i), simply writing u, g, and cu.

A first attempt that does not work. The idea of the protocol is to break u and g into two halves, writing
u = uL ◦uR and g = gL ◦gR, where ◦ denotes concatenation. Then

⟨u,g⟩= ⟨uL,gL⟩+ ⟨uR,gR⟩. (14.10)

Suppose the verifier chooses a random α ∈ Fp and define

u′ = αuL +α
−1uR (14.11)

and

g′ = α
−1gL +αgR. (14.12)

Note that the verifier V can compute g′ on its own since it knows gL and gR (but just as V does not know
u, V also does not know u′). One might hope that for any choice of α ∈ Fp,

⟨u′,g′⟩= ⟨u,g⟩, (14.13)

171Strictly speaking, referring to ∑
n
i=1 uigi as an inner product is a misnomer because the ui’s are integers in {0,1, . . . , p− 1}

while the gi’s are elements of the group G of size p, but we ignore this and write Com(u) = ⟨u,g⟩ for the remainder of this section.
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and moreover that the only way an efficient party can compute a u′ satisfying Equation (14.13) is to know a u
satisfying Equation (14.9) and then set u′ = αuL+α−1uR as per Equation (14.11). If this were the case, then
the prover’s original claim, to know a u such that ⟨u,g⟩ = cu, would be equivalent to the claim of knowing
a u′ such that ⟨u′,g′⟩= cu. This would mean that the verifier would have (with no help whatsoever from the
prover) successfully reduced the prover’s original claim about knowing u to an equivalent claim of the same
form, but about vectors of half the length.

The Actual Equality. Unfortunately, Equation (14.13) does not hold. But the following modification
does, for any α ∈ Fp:

⟨u′,g′⟩= ⟨αuL +α
−1uR,α

−1gL +αgR⟩
= ⟨αuL,α

−1gL⟩+ ⟨α−1uR,αgR⟩+ ⟨αuL,αgR⟩+ ⟨α−1uR,α
−1gL⟩

= (⟨uL,gL⟩+ ⟨uR,gR⟩)+α
2⟨uL,gR⟩+α

−2⟨uR,gL⟩
= ⟨u,g⟩+α

2⟨uL,gR⟩+α
−2⟨uR,gL⟩. (14.14)

Here, the first equality uses the definitions of u′ and g′ (Equations (14.11) and (14.12)) and the final
equality uses Equation (14.10). Relative to the hoped-for Equation (14.13) (which does not actually hold),
Expression (14.14) involves “cross terms” α2⟨uL,gR⟩+α−2⟨uR,gL⟩. The verifier V does not know these
cross-terms, since they depend on the vectors uL and uR that are unknown to V . In the actual protocol, P
will simply send values vL and vR to V claimed to equal ⟨uL,gR⟩ and ⟨uR,gL⟩ before learning the random
value α chosen by the verifier. If vL and vR are as claimed, then this allows V to compute the right hand side
of Equation (14.14) (let’s call it cu′), and the prover can, in the next round, turn to proving knowledge of a
u′ such that ⟨u′,g′⟩ equals cu′ .

Self-contained protocol description. Recall that at the start of the round, the prover has already sent a
value cu claimed to equal ⟨u,g⟩. If u and g both have length 1, then establishing that the prover knows a u
such that ⟨u,g⟩ = cu is equivalent to establishing knowledge of a discrete logarithm of cu to base g, which
the prover can achieve by simply sending u to V .172 Otherwise, the protocol proceeds of follows: The
prover starts by sending values vL,vR claimed to equal the cross terms ⟨uL,gR⟩ and ⟨uR,gL⟩. At that point
the verifier chooses α ∈ Fp at random and sends it to the prover.

Let cu′ = cu +α2vL +α−2vR. This value is specifically defined so that if vL and vR are as claimed, then
⟨u′,g′⟩= cu′ . Furthermore, the verifier can compute g′ and cu′ given cu, α , vL, and vR. Accordingly, the next
round of the protocol is then meant to establish that the prover indeed knows a vector u′ such that

⟨u′,g′⟩= cu′ . (14.15)

This is exactly the type of claim that the protocol was meant to establish, but on vectors of length n/2 rather
than n, so the protocol verifies this claim recursively. See Protocol 12 for pseudocode.

172For simplicity, we do not concern ourselves during this warmup with designing a zero-knowledge protocol; if we did want
to achieve zero-knowledge, we would use Schnorr’s protocol (Section 12.2.2) for the prover to establish knowledge of the discrete
logarithm of cu. See Section 14.4.2 for details.
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Protocol 12 A public-coin zero-knowledge argument of knowledge of an opening for a generalized Pedersen
commitment cu to a vector u of length n. The protocol consists of log2 n rounds and 2 group elements
communicated from prover to verifier per round, and satisfies knowledge-soundness assuming hardness of
the discrete logarithm problem. For simplicity, we omit the blinding factor from the Pedersen commitment
to u and treat the group G over which the commitments are defined as an additive group.

1: Let G be an additive cyclic group of prime order p over which the Discrete Logarithm relation is hard,
with vector of generators g = (g1, . . . ,gn).

2: Input is cu = Com(u) := ∑
n
i=1 uigi. Prover knows u, Verifier only knows cu, g1, . . . ,gn.

3: If n = 1, Prover sends u to the verifier and the verifier checks that ug1 = cu.
4: Otherwise, write u = uL ◦uR and g = gL ◦gR. Prover sends vL,vR claimed to equal ⟨uL,gR⟩ and ⟨uR,gL⟩.
5: Verifier responds with a randomly chosen α ∈ Fp.
6: Recurse on commitment cu′ := cu +α2vL +α−2vR to vector u′ = αuL +α−1uR of length n/2, using the

vector of group generators g′ := α−1gL +αgR.

Costs. It is easy to see that u′ and g′ have half the length of u and g, and hence the protocol terminates
after log2 n rounds, with only two group elements sent by the prover to the verifier in each round. Both
the prover and verifier’s runtimes are dominated by the time required to update the generator vector in
each round. Specifically, to compute g′ from g in each round, the verifier performs a number of group
exponentiations proportional to the length of g, which means the total number of group exponentiations is
O(n+n/2+n/4+ · · ·+1) = O(n).173 Hence’s the prover and verifier’s runtime over the entire protocol is
proportional to the time required to perform O(n) group exponentiations.174

Completeness and intuition for knowledge-soundness. The protocol is clearly complete, i.e., if the
prover is honest (meaning that cu indeed equals ⟨u,g⟩ and vL and vR are as claimed), then indeed Equa-
tion (14.15) holds.

To explain the intuition for why knowledge-soundness holds, let us assume for the moment that the
prover does know a vector u such that cu = ⟨u,g⟩, but the prover sends values vL and vR that are not equal to
⟨uL,gR⟩ and ⟨uR,gL⟩. Then, as we explain in the following paragraph, with high probability over the choice
of α , Equation (14.15) will fail to hold. In this event, it is not clear how the prover will find a vector whose
inner product with g′ equals cu′ .

That Equation (14.15) fails to hold with high probability over the choice of α follows by the following
reasoning. Let Q be the degree-4 polynomial

Q(α) = α
2cu′ = α

2cu +α
4vL + vR

and
P(α) = α

2 · ⟨u′,g′⟩= α
2cu +α

4⟨uL,gR⟩+ ⟨uR,gL⟩.
If vL and vR are not equal to ⟨uL,gR⟩ and ⟨uR,gL⟩, then Q and P are not the same polynomial. Since they

173The terminology “group exponentiation” here, while standard, may be confusing because in this section we are referring to G
as an additive group, while the terminology refers to a multiplicative group. In the additive group notation of this section, we are
referring to taking a group element and multiplying it by α or α−1. The same operation in multiplicative group notation would be
denoted by raising the group element to the power α or α−1, hence our use of the term group exponentiation.

174Actually, it is possible to optimize the verifier’s computation in Bulletproofs to perform one multi-exponentiation of length
O(n) rather than O(n) independent group exponentiations, enabling a speedup due to Pippenger’s algorithm (Section 14.2) of
roughly a factor of O(logn) group operations.
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both have degree at most 4, with probability at least 1−4/p over the random choice of α , Q(α) ̸= P(α). In
this event, cu′ ̸= ⟨u′,g′⟩, and hence the prover is left to prove a false claim in the next round.

The above line of reasoning suggests that a prover who knows an opening u of cu should not be able to
convince the verifier to accept with non-negligible probability if the prover does not behave as prescribed
in each round (i.e., if sending commitments to values vL and vR not equal to ⟨uL,gR⟩ and ⟨uR,gL⟩). And
if the prover does not know a u such that ⟨u,g⟩, then, intuitively, the prover should be even worse off than
knowing such a u but attempting to deviate from the prescribed protocol.

However, to formally establish knowledge-soundness, we must show that given any prover P that con-
vinces the verifier to accept with non-negligible probability, there is an efficient algorithm to extract an
opening u of cu from P . This requires a more involved analysis.

Proof of knowledge-soundness. Recall that in Section 12.2.3, we established the knowledge-soundness
of any Σ-protocol via a two-step analysis. First, we showed that from any convincing prover for the Σ-
protocol, one can efficiently extract a pair of accepting transcripts (a,e,z) and (a,e′,z′) that share the same
first message a, but for which the verifier’s challenges e and e′ differ. Second, by special soundness of any
Σ-protocol, there is an efficient procedure to extract a witness from any such pair of transcripts.

The first step of this analysis is called a forking lemma. This name comes from the procedure to obtain
the pair of transcripts: one runs the prover once to (hopefully) produce an accepting transcript (a,e,z), then
rewinds the prover to immediately after it sent its first message a, and “restarts it” with a different verifier
challenge e′. This (hopefully) yields a second accepting transcript (a,e′,z′). One thinks of this as “forking”
the protocol into two different executions after the prover’s first message a is sent.

The analysis establishing knowledge-soundness of Protocol 12 follows a similar two-step paradigm. In
the first step, a generalized forking lemma is proved for multi-round protocols such as Protocol 12. The
lemma shows that given any convincing prover for the protocol, one can extract a collection of accepting
transcripts whose messages overlap in a manner analogous to how (a,e,z) and (a,e′,z′) above share the
same first message, a. In the second step, an efficient procedure is given to extract a witness from any such
tree of transcripts.

Step 1: A forking lemma for multi-round protocols. First, we argue that there is a polynomial-time
extraction algorithm E that, given any prover P for Protocol 12 that convinces the verifier to accept with
non-negligible probability, constructs a 3-transcript-tree T for the protocol with non-negligible probability.
Here, a 3-transcript tree is a collection of |T | = 3log2 n ≤ n1.585 accepting transcripts for the protocol, with
the following relationship between the prover messages and verifier challenges in each transcript.

The transcripts correspond to the leaves of a complete tree where each non-leaf node has 3 children. The
depth of the tree equals the number of verifier challenges sent in Protocol 12, which is log2 n. Each edge
of the tree is labeled by a verifier challenge, and each non-leaf node is associated with a prover message
(vL,vR). That is, if an edge of the tree connects a node at distance i from the root to a node at distance i+1,
then the edge is labelled by a value for the ith message that the verifier sends to the prover in Protocol 12.
It is required that (a) no two edges of the tree are assigned the same label and (b) for each transcript at a
leaf of the tree, the verifier’s challenges in that transcript are given by the labels assigned to the edges of the
root-to-leaf path for that leaf, and the prover’s messages in the transcript are given by the prover responses
associated with the nodes along the path.175

175For comparison, recall that special soundness of Σ-protocols refers to a pair of accepting transcript (a,e,z) and (a,e′,z′) with
e ̸= e′. Such a pair of transcripts forms a “2-transcript tree” for a protocol consisting of a single verifier challenge.
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The idea is to generate the first leaf of the tree by running the prover and verifier once to (hopefully)
generate an accepting transcript. Then generate that leaf’s sibling by rewinding the prover until just before
the verifier sends its last challenge, and restart the protocol with a fresh random value for the verifier’s final
challenge. Then to generate the next leaf, rewind the prover again until just before the verifier sends its
second to last challenge, and restart the protocol from that point with a fresh random value for the verifier’s
second to last challenge. And so on. Some complications arise to account for the possibility that the prover
sometimes fails to convince the verifier to accept, and the (unlikely) possibility that this process leads to two
edges labeled with the same value.

We provide a formal statement and proof of this result below; our presentation follows [BCC+16,
Lemma 1].

Theorem 14.1. There is a probabilistic extractor algorithm E satisfying the following property. Given the
ability to repeatedly run and rewind a prover P for Protocol 12 that causes the verifier to accept with
probability at least ε for some non-negligible quantity ε , E runs in expected time at most poly(n), and E
outputs a 3-transcript tree T for Protocol 12 with probability at least ε/2.

Proof. E is a recursive procedure that constructs T in depth-first fashion. Specifically, E takes as input the
identity of a node j in T , as well as the verifier challenges associated with the edges along the path in T
connecting j to the root, and the prover messages associated with the nodes along that path. E then (attempts
to) produce the subtree of T rooted at j. (In the very first call to E , j is the root node of T , so in this case
there are no edges or nodes along the path of the j to the root, i.e., itself).

If j is a leaf node, the input to E specifies a complete transcript for Protocol 12, so E simply outputs the
transcript if it is an accepting transcript, and otherwise it outputs “fail”.

If j is not a leaf node of T , then the input to E specifies a partial transcript for Protocol 12 (if j has
distance ℓ from the root, then the partial transcript specifies the prover messages and verifier challenges
from the first ℓ rounds of Protocol 12). The first thing E does is associate a prover message with j by
“running” P on the partial transcript to see how P would respond to the most recent verifier challenge in
this partial transcript.

Second, E attempts to construct the subtree rooted at the left-most subchild of j, which we denote by
j′. Specifically, E chooses a random verifier challenge to assign the edge ( j, j′) of T , and then calls itself
recursively on j′. If E’s recursive call on j′ returns “fail” (i.e., it fails to generate the subtree of T rooted
at j′), then E halts and outputs “fail”. Otherwise, E proceeds to generate the subtrees of the remaining two
children j′′ and j′′′ of j by assigning fresh random verifier challenges to the edges connecting j to those
nodes and calling itself recursively on j′′ and j′′′ until it successfully generates these two subtrees (this may
require many repetitions of the recursive calls, as E will simply keep calling itself on j′′ and j′′′ until it
finally succeeds in generating these two subtrees).

Expected running time of E . Recall that when E is called on a non-leaf node j, it recursively calls itself
once on the first child j′ of j in an attempt to construct the subtree rooted at j′, and then continues to
construct the subtrees rooted at its other two children only if the recursive call on j′ succeeds. Let ε ′ denote
this probability. Then the expected number of recursive calls is 1+ ε ′ · 2/ε ′ = 3. Here, the first term, 1,
comes from the first recursive call, on j′. The first factor of ε ′ in the second term denotes the probability
that E does not halt after the first recursive call. Finally, the factor 2/ε ′ captures the expected number of
times E must be called on j′′ and j′′′ before it succeeds in constructing the subtree rooted at these nodes (as
1/ε ′ is the expected value of a geometric random variable with success probability ε ′). Meanwhile, when E
is called on a leaf node, it simply checks whether or not the associated transcript is an accepting transcript,
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which requires poly(n) time. We conclude that the total runtime of E is proportional to the number of leaves
(which is 3log2 n ≤ O(n1.585)), times the runtime of the verifier in Protocol 12, which is clearly poly(n).

Success probability of E . The initial call to E on the root of T returns “fail” if and only if the very first
recursive call made by every invocation of E in the call stack returns “fail”. That is, E succeeds in outputting
a tree of accepting transcripts when called on the root whenever its recursive call on the first child j of the
root succeeds, which itself succeeds whenever its recursive call on the first child of j succeeds, and so forth.
This probability is exactly the probability P succeeds in convincing the verifier to accept, namely ε .

We still need to argue that the probability that conditioned on E successfully outputting a tree, the
probability that E assigns any two edges in the graph the same challenge by E is negligible. To argue this,
let us assume that E never runs for more than T time steps, for T = p1/3. Here, p denotes the order of G,
and hence the size of the verifier’s challenge space. We can ensure this by having E halt and output “fail”
if it surpasses T time steps—by Markov’s inequality, since E runs in expected time poly(n), the probability
E exceeds T timesteps is at most poly(n)/T , which is negligible assuming p is superpolynomially large in
n. Hence, after ensuring this assumption holds, the probability E succeeds in outputting a tree of accepting
transcripts is still at most ε minus a negligible quantity. If E never runs for more than T timesteps, then it
only can only generate at most T random challenges of the verifier over the course of its execution. The
probability of a collision amongst these at most T challenges is bounded above by T 2/p ≤ 1/p1/3, which
is negligible. We conclude as desired that the probability E output a 3-transcript tree is at least ε minus a
negligible quantity, which is at least ε/2 if ε is non-negligible.

Step 2: Extracting a witness from any 3-transcript tree. Second, we must give a polynomial time
algorithm that takes as input a 3-transcript tree for Protocol 12 and outputs a vector u such that cu =∑

n
i=1 uigi.

The idea for how this is done is to iteratively compute a label u for each node in the tree, starting with the
leaves and working layer-by-layer towards the root. For each node in the tree, the procedure will essentially
reconstruct the vector u that the prover must have “had in its head” at that stage of the protocol’s execution.
That is, each node in the tree is associated with a vector of generators g′ and a commitment c, and the
extractor will identify a vector u′ such that ⟨u′,g′⟩= c.

Associating a generator vector and commitment with each node in the tree. For any node in the tree,
we may associate with that node a generator vector and commitment in the natural way. That is, Protocol
12 is recursive, and each node in the tree at distance i from the root corresponds to a call to Protocol 12
at depth i of the call stack. As per Line 2, the verifier in each recursive call to Protocol 12 is aware of a
generator vector and a commitment c (supposedly a commitment to some vector known to the prover, using
the generator vector).

For example, the root of the tree is associated with g = gL ◦ gR and commitment c = cu that is input
to the original call to Protocol 12. If the root is associated with prover message (vL,vR), then a child
connected to the root by an edge of label α is associated with vector g′ = α−1gL +αgR and commitment
c′ = cu +α2vL +α−2vR, where vL and vR denote the prover messages associated with the edge. And so on
down the tree.

Assigning a label to each node of the tree, starting with the leaves and working toward the root. Given
a 3-transcript tree, begin by labelling each leaf with the prover’s final message in the protocol. Because every
leaf transcript is accepting, if a leaf is assigned label u, generator g, and commitment c, then we know that
gu = c.
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Now assume by way of induction that, for each node at distance at most ℓ ≥ 0 from the leaves, if the
node is associated with generator vector g and commitment c, the label-assigning procedure has successfully
assigned a label vector u to the node such that ⟨u,g⟩= c. We explain how to extend the procedure to assign
such labels to nodes at distance ℓ+1 from the leaves.

To this end, consider such a node j and let the associated generator vector be g = gL ◦gR and associated
commitment be c. For i = 1,2,3, let gi and ci denote the generator vector and commitment associated with
j’s ith child, ui denote the label that has already been assigned to the ith child, and αi denote the verifier
challenge associated with the edge connecting j to its ith child. By construction of the generators and
commitment associated with each node in the tree, for each i, the following two equations hold, relating the
generators and commitment for node j to those of its children:

gi = α
−1
i gL +αigR (14.16)

and

ci = c+α
2
i vL +α

−2
i vR. (14.17)

Moreover, by the inductive hypothesis, the label-assigning algorithm has ensured that

⟨ui,gi⟩= ci. (14.18)

At an intuitive level, Equation (14.18) identifies a vector ui “explaining” the commitment ci of child i in
terms of the generator vector gi, while Equations (14.16) and (14.17) relate ci and gi to c and g. We would
like to put all of this information together to identify a vector u “explaining” c in terms of g.

To this end, combining Equations (14.16)-(14.18), we conclude that

⟨ui,α
−1
i gL +αigR⟩= c+α

2
i vL +α

−2
i vR,

and by applying the distributive law to the left hand side, we finally conclude that:

⟨α−1
i ui,gL⟩+ ⟨αiui,gR⟩= c+α

2
i vL +α

−2
i vR. (14.19)

Equation (14.19) “almost” achieves our goal of identify a vector u such that ⟨u,g⟩ = c, in the sense
that if the “cross terms” α2

i vL +α
−2
i vR did not appear in Equation (14.19) for, say, i = 1, then the vector

u = α
−1
1 u1 ◦α1u1 would satisfy ⟨u,g⟩ = c. The point of deriving Equation (14.19) not only for i = 1, but

also for i = 2 and i = 3 is that we can use the latter two equations to “cancel out the cross terms” from the
right hand side of the equation for i = 1. Specifically, there exists some coefficients β1,β2,β3 ∈ Fp such that

3

∑
i=1

βi ·
(
c+α

2
i vL +α

−2
i vR

)
= c. (14.20)

This follows from the fact that the following matrix is full rank, and hence has the vector (1,0,0) in its
row-span:

A =




1 α2
1 α

−2
1

1 α2
2 α

−2
2

1 α2
3 α

−2
3


 . (14.21)
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One way to see that A is invertible is to directly compute the determinant as− (α2
1−α2

2 )(α
2
1−α2

3 )(α
2
2−α2

3 )

α2
1 α2

2 α2
3

, which is

clearly nonzero so long as α1, α2, and α3 are all distinct. Moreover, (β1,β2,β3) can be computed efficiently–
in fact, it equals the first row of A−1.

Equation (14.20) combined with Equation (14.19) implies that

u =
3

∑
i=1

(βi ·α−1
i ·ui)◦ (βi ·αi ·ui) (14.22)

satisfies ⟨u,g⟩= c, where ◦ denotes concatenation.
In this manner, labels can be assigned to each node in the tree, starting with the leaves and proceeding

layer-by-layer towards the root. The label u assigned to the root satisfies ⟨u,g⟩= cu as desired.
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Example of the knowledge extractor. Although in Protocol 12, g ∈ Gn will be a vector of elements
of the elliptic curve group G, and ⟨u,g⟩ will also be a group element, for illustration we give an example
of the extraction procedure with group elements replaced by integers.

Suppose that n= 2, and the committed vector u= (u1,u2) is (1,6) while the commitment key g= (g1,g2)
is (12,1). Then the commitment c to u is ⟨u,g⟩= 1 ·12+6 ·1= 18. The prescribed prover begins Protocol
12 by sending the cross terms vL = 1 ·1 = 1 and vR = 6 ·12 = 72.

The knowledge extraction procedure is not given the vector u that the prover “had in its head” when
producing the commitment c or the cross-terms vL and vR. Nonetheless, it needs to identify a vector u
such that ⟨u,g⟩ = 18. To do so, it first generates a (depth-1) 3-transcript tree for Protocol 12. Suppose
the three produced accepting transcripts respectively have verifier challenge α1 = 1, α2 = 2, and α3 = 3.
Then the three transcripts (one per leaf of the tree) are respectively associated with the following values:

• For leaf i = 1, the verifier computes:

– g′ = α
−1
1 ·g1 +α1 ·g2 = 1−1 ·12+1 ·1 = 13.

– c′ = c+α2
1 vL +α

−2
1 vR = 18+1 ·1+1−1 ·72 = 91.

Since the leaf captures an accepting transcript, the prover in the final round of the protocol must
provide a value u′ such that ⟨u′,g′⟩= 91, and hence u′ = 91/13 = 7.

• For leaf i = 2, the verifier computes:

– g′ = α
−1
2 ·g1 +α2 ·g2 = 2−1 ·12+2 ·1 = 8.

– c′ = c+α2
2 vL +α

−2
2 vR = 18+4 ·1+4−1 ·72 = 40.

The prover in the final round of the protocol must provide a value u′ such that ⟨u′,g′⟩ = 40, and
hence u′ = 40/8 = 5.

• For leaf i = 3, the verifier computes:

– g′ = α
−1
3 ·g1 +α3 ·g2 = 3−1 ·12+3 ·1 = 7.

– c′ = c+α2
3 vL +α

−2
3 vR = 18+9 ·1+9−1 ·72 = 35.

The prover in the final round of the protocol must provide a value u′ such that ⟨u′,g′⟩ = 35, and
hence u′ = 35/7 = 5.

For the matrix A defined as per Equation (14.21), the first row of A−1 is (β1,β2,β3) where β1 = −13
24 ,

β2 =
8
3 , and β3 = −9

8 . Then given the three values of u′ constructed above, the reconstructed vector u
from Equation (14.22) has first entry equal to

−13
24
·1−1 ·7+ 8

3
·2−1 ·5− 9

8
·3−1 ·5 = 1

and second entry equal to

−13
24
·1 ·7+ 8

3
·2 ·5− 9

8
·3 ·5 = 6.

Hence, in this example, the extractor successfully reconstructed the vector u = (1,6) such that ⟨u,g⟩= c.
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14.4.2 The Polynomial Commitment Scheme

The preceding section describes a (non-zero-knowledge) argument of knowledge of an opening u ∈ Fn
p of a

generalized Pedersen commitment cu, i.e., a u such that ∑
n
i=1 ui ·gi = cu. To obtain a (non-zero-knowledge)

polynomial commitment scheme, we need to modify this argument of knowledge to establish not only that

n

∑
i=1

ui ·gi = cu, (14.23)

but also that

n

∑
i=1

ui · yi = v (14.24)

for some public vector y ∈ Fn
p and v ∈ Fp (recall from Section 14.2 that u will be the coefficient vector of the

committed polynomial, y will be a vector derived from the point at which the verifier requests to evaluate
the committed polynomial, and v will be the claimed evaluation of the polynomial).

The idea is that Equations (14.23) and (14.24) are of exactly the same form, namely they both involve
computing the inner product of u with another vector (though each gi is a group element in G, while each
yi is a field element in Fp). So one can simply run two parallel invocations of Protocol 12, using the same
verifier challenges in both, but with the second instance replacing the vector of group generators g with the
vector y, and the group element cu with the field element v. See Figure 13 for a complete description of the
protocol.

Protocol 13 Extending Protocol 12 to an evaluation-proof for a polynomial commitment scheme, where u
is the coefficient vector of the committed polynomial q, and cu is the commitment to the polynomial. If the
verifier requests the evaluation q(z), then v denotes the claimed evaluation and y denotes the vector such
that q(z) = ⟨u,y⟩. Note that in applications of polynomial commitment schemes to succinct arguments, the
evaluation point z, and hence y and v, are typically not chosen by the verifier until after the prover sends the
commitment cu.

1: Let G be an additive cyclic group of prime order p over which the Discrete Logarithm relation is hard,
with vector of generators g = (g1, . . . ,gn). Let y ∈ Fn

p be a public vector and public value v ∈ Fp.
2: Input is cu = Com(u) := ∑

n
i=1 uigi. Prover knows u, Verifier only knows cu, g, y, and v.

3: If n = 1, the prover sends u to the verifier and the verifier checks that ug1 = cu and that uy1 = v.
4: Otherwise, write u = uL ◦uR, g = gL ◦gR, and y = yL ◦ yR. Prover sends vL,vR claimed to equal ⟨uL,gR⟩

and ⟨uR,gL⟩, as well as v′L,v
′
R claimed to equal ⟨uL,yR⟩ and ⟨uR,yL⟩.

5: Verifier responds with a randomly chosen α ∈ Fp.
6: Recurse on commitment cu′ := cu +α2vL +α−2vR to vector u′ = αuL +α−1uR of length n/2, using the

vector of group generators g′ := α−1gL +αgR, and using public vector y′ := α−1yL +αyR and public
value v′ = v+α2v′L +α−2v′R.

Sketch of how to achieve zero-knowledge. To render Protocol 13 zero-knowledge, one can apply commit-
and-prove style techniques. This means that in every round, the prover does not send v′L and v′R to the verifier
in the clear, but rather sends Pedersen commitments to these quantities (if one wants perfect rather than
computational zero-knowledge, then a blinding factor hz for randomly chosen z should be included in the
Pedersen commitments as per Protocol 5; likewise, the group elements vL and vR sent in each round should
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be blinded as well). At the very end of the protocol, the prover proves in zero-knowledge that the committed
values sent over the course of the log2 n rounds of the protocol would have passed the check performed by
the verifier in the final round of Protocol 13 (Line 3).176

Non-interactive protocol via Fiat-Shamir. Protocols 12 and 13 are public coin, and hence can be ren-
dered non-interactive using the Fiat-Shamir transformation. Despite Bulletproofs being a super-constant
round protocol, recent work has placed tight bounds on the concrete knowledge-soundness of the resulting
non-interactive protocol in the random oracle model [AFK21, Wik21] (these analyses apply more generally
to any protocol satisfying a generalization of special-soundness (Section 12.2.1) to multi-round settings,
namely that a valid witness can be extracted from an appropriate transcript tree). This yields an extractable
polynomial commitment scheme in which evaluation proofs are non-interactive.

Dory: Reducing Verifier Time To Logarithmic. Recall that the Bulletproofs polynomial commitment
scheme achieves constant commitment size, and evaluation proofs consisting of O(logn) group elements,
but both the prover and verifier had to perform Θ(n) exponentiations in the group G. Lee [Lee21] showed
how to reduce the verifier’s runtime to O(logn) group exponentiations, following a one-time setup phase
costing O(n) group exponentiations. Lee naming the resulting commit scheme Dory.

More precisely, the setup phase in Dory produces a logarithmic-sized “verification key” derived from the
length-n public vector of group generators g such that any party with the verification key can implement the
verifier’s checks in only O(logn) rather than O(n) group exponentiations. One can think of the verification
key as a small “summary” of the public vector g that suffices to implement the verifier’s check in O(logn)
time, in the sense that once the verifier knows the verification key, it can forget the actual generators that the
key summarizes.

Note that, unlike the KZG polynomial commitments that we cover in Section 15.2, this pre-processing
phase is not what is called a trusted setup, which refers to a pre-processing phase that produces “toxic
waste” (also called a trapdoor) such that any party with the trapdoor can break binding of the polynomial
commitment scheme. That is, while the setup phase in Dory produces a structured verification key (meaning
the key does not consist of randomly chosen group elements), there is no trapdoor, and anyone willing to
invest the computational effort can derive the key. Protocols such as Dory that do not require a trusted
setup are often called transparent. We defer detailed coverage of Dory to Section 15.4 because it uses
pairing-based cryptography, a topic we introduce in Chapter 15.

Combining techniques. The protocol of Section 14.3 that leveraged the polynomial commitment scheme
of Section 14.2 as a subroutine can replace the subroutine with any extractable additively-homomorphic
vector-commitment scheme supporting inner product queries, including Bulletproofs or Dory. If combined
with Bulletproofs, the resulting scheme reduces the public parameter size of Bulletproofs from n to Θ(

√
n),

maintains an evaluation-proof size of O(logn) group elements, and reduces the number of group exponen-
tiations the verifier has to perform at the end of the protocol from n to Θ(

√
n). The downside relative to

vanilla Bulletproofs is that the size of the commitment increases from one group element to Θ(
√

n) group
elements.

If combined with Dory, the resulting scheme does not asymptotically reduce any costs relative to Dory
alone, but does reduce constant factors in the prover’s runtime and the runtime of the pre-processing phase

176Bulletproofs [BBB+18] contains an optimization that reduces the number of commitments sent by the prover in each round
from 4 to 2, by effectively compressing the two commitments vL and v′L into a single commitment, and similarly for vR and v′R.
This is the primary optimization in Bulletproofs [BBB+18] over earlier work [BCC+16].
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[Lee21, SL20]. It is actually possible to combine the idea of Section 14.3 with techniques from Dory in
a way that keeps the commitment size one group element instead of O(

√
N) group elements, see Section

15.4.5—this combination is what we refer to as Dory in Table 16.1, which summarizes the costs of the
transparent polynomial commitments that we have covered.

In Section 16.4, we briefly describe additional polynomial commitment schemes inspired by similar
techniques, but based on cryptographic assumptions other than hardness of the discrete logarithm problem.
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Chapter 15

Polynomial Commitments from Pairings

This chapter explains how to use a cryptographic primitive called pairings (also referred to as bilinear maps)
to give polynomial commitment schemes with different cost profiles that those of the previous chapter. The
two major pairing-based schemes that we cover are called KZG commitments and Dory.

KZG commitments are named after Kate, Zaverucha, and Goldberg [KZG10], the authors of the work
in which they were introduced. A major benefit of them is that commitments and openings consist of only
a constant number of group elements. A downside is that it requires a structured reference string (SRS)
that is as long as the number of coefficients in the polynomial being committed to. This string must be
generated in a specified manner and made available to any party that wishes to commit to a polynomial.
The generation procedure produces “toxic waste” (also called a trapdoor) that must be discarded. That is,
whatever party generates the reference string knows a piece of information that would let the party break the
binding property of the polynomial commitment scheme, and thereby destroy soundness of any argument
system that uses the commitment scheme. The generation of such an SRS is also called a trusted setup.

As discussed in Section 14.4.2, Dory is transparent. This means that, although there is a pre-processing
phase that takes time linear in the number of coefficients of the polynomial to be committed, there is no
toxic waste produced. However, Dory’s proof size and verification time are logarithmic in the number of
coefficients, rather than constant.

15.1 Cryptographic Background

The following background material on pairings builds on Section 12.1, which introduced cryptographic
groups and the discrete logarithm problem.

The Decisional Diffie-Helman Assumption. The Decisional Diffie-Helman (DDH) assumption in a cyclic
group G with generator g states that, given ga and gb for a,b chosen uniformly and independently from |G|,
the value gab is computationally indistinguishable from a random group element. Formally, the assumption
is that the following two distributions cannot be distinguished, except for negligible advantage over random
guessing, by any efficient algorithm:

• (g,ga,gb,gab) where a and b are chosen uniformly at random from {0, . . . , |G|−1} and g from G.

• (g,ga,gb,gc) where a, b, and c are chosen uniformly at random from {0, . . . , |G|−1} and g from G.

If one could compute discrete logarithms efficiently in G, then one could break the DDH assumption in
that group: given as input a triple of group elements (g,g1,g2,g3), one could compute the discrete logarithms
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a,b,c of g1, g2, g3 in base g, and check whether c= a ·b, outputting “yes” if so. This algorithm would always
output yes under draws from the first distribution above, and output yes with probability just 1/|G| under
draws from the second distribution.

Hence, the DDH assumption is a stronger assumption than hardness of the Discrete Logarithm prob-
lem. In fact, there are groups in which the DDH assumption is false, yet the discrete logarithm problem is
nonetheless believed to be hard.

A close relative of DDH is the computational Diffie-Helman (CDH) assumption, which states that given
g, ga, and gb, no efficient algorithm can compute gab. CDH is a weaker assumption than DDH in the sense
that if one can compute gab given g, ga and gb, then one can also solve the DDH problem of distinguishing
(g,ga,gb,gab) from (g,ga,gb,gc) for random a,b,c ∈ Fp. Given a tuple (g,ga,gb,gc), one simply computes
gab and outputs 1 if and only if gc = gab.

As we will see, there are groups in which CDH is believed to hold but DDH does not.

Pairing-friendly Groups and Bilinear Maps. Let G and Gt be two cyclic groups of the same order. A
map e : G×G→Gt is said to be bilinear if for all u,v∈G and a,b∈{0, . . . , |G|−1}, e(ua,vb)= e(u,v)ab.177

If a bilinear map e is also non-degenerate (meaning, it does not map all pairs in G×G to the identity element
1Gt ) and e is efficiently computable, then e is called a pairing. This terminology refers to the fact that e
associates each pair of elements in G to an element of Gt .

Note that any two cyclic groups G and Gt of the same order are in fact isomorphic, meaning there is a
bijective mapping π : G 7→Gt that preserves group operations, i.e., π(a ·b) = π(a) ·π(b) for all a,b∈G. But
just because G and Gt are isomorphic does not mean they are equivalent from a computational perspective;
elements of G and Gt and the respective group operations can be represented and computed in very different
ways.

Not all cyclic groups G for which the discrete logarithm problem is believed to be hard are “pairing-
friendly”, i.e., come with a bilinear map e mapping G×G to Gt . For example, as elaborated upon shortly,
the popular Curve25519, which is believed to yield an elliptic curve group in which the discrete logarithm
problem is hard, is not pairing-friendly. As a result, group operations of pairing-friendly elliptic curves tend
to be concretely slower than preferred groups that need not be pairing-friendly.

In more detail, in practice, if G is an elliptic curve group defined over field Fp, then Gt is typically a
multiplicative subgroup of an extension field Fpk for some positive integer k (recall from Section 2.1.5 that
Fpk denotes the finite field of size pk). That is, Gt consists of (a subgroup of) the nonzero elements of Fpk ,
with the group operation being field multiplication. As the multiplicative subgroup of Fpk has size pk− 1,
and the order |H| of any subgroup H of a group G′ divides |G′|, k is chosen to be the smallest integer such
that |G| divides pk−1; this value of k is called the embedding degree of G. To efficiently implement pairings
in this manner, G must have low embedding degree. This is because elements of Fpk are k times bigger than
elements of the field Fp over which G is defined, and multiplication within Fpk is at least k times slower
than within Fp. So if k is large, Gt elements will be much more expensive to write down and operate on
than elements of G.178 There are often ways of reducing this naive representation size of Gt elements by a

177In general, the domain of a bilinear map typically consists of pairs of elements from two different cyclic groups G1, G2 of the
same order as Gt , rather than pairs of elements from the same cyclic group G. In the general case that G1 ̸=G2, the pairing is said
to be asymmetric, while the case that G1 =G2 is called symmetric. Asymmetric pairings are much more efficient in practice than
symmetric pairings. But for simplicity in this manuscript we will primarily consider the symmetric case in which G1 =G2.

178Since Gt is a subgroup of Fpk of size only p, information-theoretically speaking each element of Gt can be uniquely rep-
resented with only log2 p bits. But there will likely not be an efficient algorithm for performing Gt operations if using such a
space-optimal representation of the Gt elements.
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constant factor such as 3, with corresponding speed improvements when multiplying two Gt elements (see,
e.g., [NBS08]), but this will not help much if the embedding degree k is enormous.

Unfortunately, popular groups in which the Discrete Logarithm problem is believed intractable, such as
Curve25519, have enormous embedding degree. This is why arithmetic in pairing-friendly groups tends to
be concretely slower then in non-pairing-friendly groups. At the time a writing, a popular pairing-friendly
curve for use in SNARKs is called BLS12-381, which has embedding degree 12 and targets roughly 120
bits of security.179

Note that in any group G equipped with a symmetric pairing, the Decisional Diffie-Hellman assumption
does not hold. This is because one can distinguish triples (g,g1,g2,g3) of the form (g,g1 = ga,g2 = gb,g3 =
gab) from (g,g1 = ga,g2 = gb,g3 = gc) for randomly chosen c ∈ {0, . . . , |G| − 1} by checking whether
e(g,g3) = e(g1,g2). In the case where g3 = gab, this check will always pass by bilinearity of e, while if e
is non-degenerate, this check will fail with overwhelming probability if g3 is a random group element in G.
Nonetheless, even in groups equipped with a symmetric pairing, it is often assumed that the computational
Diffie-Hellman assumption holds.

Intuition for Why Bilinear Maps are Useful. Recall that an additively homomorphic commitment scheme
such as Pedersen commitments allows any party to perform addition “underneath commitments”. That is,
despite the fact that the commitments perfectly hide the value that is committed, it is possible for anyone
to take two commitments c1,c2 to values m1,m2, and compute a commitment c3 to m1 +m2, despite not
actually knowing anything about m1 or m2. However, Pedersen commitments are not multiplicatively ho-
momorphic: while we gave an efficient interactive protocol (Protocol 9) for a prover (that knows how to
open c1 and c2) to prove that c3 commits to m1 ·m2, it is not possible for a party that does not know m1 or
m2 to compute a commitment to m1 ·m2 on its own.

Bilinear maps effectively convey the power of multiplicative-homomorphism, but only for one multi-
plication operation. To be more concrete, let us think of a group element gmi ∈ G as a commitment to mi

(if mi is chosen at random, the commitment is computationally hiding if the discrete logarithm problem is
hard in G, meaning it is hard to determine mi from gmi). Then bilinear maps allow any party, given commit-
ments c1,c2,c3 to check whether the values m1,m2,m3 inside the commitments satisfy m3 = m1 ·m2. This is
because by bilinearity of the map e : G×G→Gt , e(gm1 ,gm2) = e(gm3 ,g) if and only if m3 = m1 ·m2.

It turns out that the power to perform a single “multiplication check” of committed values is enough
to obtain a polynomial commitment scheme. This is because Lemma 9.3 implies that for any degree-D
univariate polynomial p, the assertion “p(z) = v” is equivalent to the assertion that there exists a polynomial
w of degree at most D−1 such that

p(X)− v = w(X) · (X− z). (15.1)

Equation (15.1) can be probabilistically verified by evaluating the two polynomials on the left hand side and
right hand side at a randomly chosen point τ . This intuitively means that the committer can commit to p by
sending a commitment c3 to m3 := p(τ), and then convince a verifier that Equation (15.1) holds by sending
a commitment c2 to m2 := w(τ). If the verifier can compute a commitment c1 to m1 := τ − z on its own,
then the verifier can use the bilinear map to check that indeed m3− v = m1 ·m2 (i.e., Equation (15.1) holds

179See https://electriccoin.co/blog/new-snark-curve/ and https://hackmd.io/@benjaminion/bls12-381 for discussion of BLS12-
381. As a general ballpark, operations in this pairing-friendly group may be about 4x slower than in Curve25519—of course, a
precise comparison will depend on implementation details and the hardware on which a comparison is performed. BLS12-381 was
designed to work over a field that supports efficient FFT algorithms, so that its use is compatible with SNARKs in which the prover
must perform an FFT (see Section 19.3.1 for further dicussion).
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at input τ). This entire approach assumes that the committer does not know τ , since if it did, it could choose
the polynomial w so that Equation (15.1) does not hold as an equality of polynomials, but does hold at τ .180

The following section makes the above high-level outline formal.

15.2 KZG: Univariate Polynomial Commitments from Pairings and a Trusted
Setup

A binding scheme. Let e be a bilinear map pairing groups G,Gt of prime order p, and g ∈G be a gener-
ator, and D be an upper bound on the degree of the polynomials we would like to support commitments to.
The structured reference string consists of encodings in G of all powers of a random nonzero field element
τ ∈Fp. That is, τ is an integer chosen at random from {1, . . . , p−1}, and the SRS equals (g,gτ ,gτ2

, . . . ,gτD
).

The value τ is toxic waste that must be discarded because it can be used to destroy binding.
To commit to a polynomial q over Fp, the committer sends a value c claimed to equal gq(τ). Note

that while the committer does not know τ , it is still able to compute gq(τ) using the SRS and additive
homomorphism: if q(Z) = ∑

D
i=0 ciZi, then gq(τ) = ∏

D
i=0

(
gτ i
)ci

, which can be computed given the values gτi

for all i = 0, . . . ,D even without knowing τ .181

To open the commitment at input z ∈ {0, . . . , p− 1} to some value v, i.e., to prove that q(z) = v, the
committer computes a “witness polynomial”

w(X) := (q(X)− v)/(X− z),

and sends a value y claimed to equal gw(τ) to the verifier. Again, since w has degree at most D, gw(τ) can be
computed from the SRS despite the fact that the prover does not know τ . The verifier checks that

e(c ·g−v,g) = e(y,gτ ·g−z). (15.2)

Note that this requires the verifier to know c, v, y, z, and gτ . The first three values are provided by the prover,
the opening query z is determined by the verifier itself, and gτ is an entry of the SRS. Note that gτ and g are
the only entries of the SRS needed for verification. For this reason, some works refer to the entire SRS as the
proving key and (g,gτ) as the verification key, and think of the verifier as only downloading the verification
key, not the entire proving key.

Analysis of correctness and binding. Correctness is easy to establish: if c = gq(τ) and y = gw(τ) then

e(c ·g−v,g) = e(gq(τ)−v,g) = e(gw(τ)·(τ−z),g) = e(gw(τ),gτ−z) = e(y,gτ ·g−z).

Here, the first inequality holds because c = gq(τ), the second holds by definition of w as (q(X)−v)/(X− z),
the third holds by bilinearity of e, and the fourth holds because y = gw(τ).

180One may wonder if one can instead use a non-pairing-friendly group, and use Protocol 9 rather than the bilinear map to check
that m3 = m1 ·m2. This would work, but the proofs would be considerably longer, though still a constant number of group elements.
Also, to render the argument system non-interactive, one would need to apply the Fiat-Shamir transformation, forcing the verifier
to perform hashing operations. All told, this yields more expensive verification than KZG commitments. The raison d’être of KZG
commitments is the remarkable efficiency of evaluation-proof verification.

181As in Section 14.4, one can think of gτ i
as a Pedersen commitment to τ i (Protocol 5), but without the blinding factor hz. This

yields a commitment that is perfectly binding but at best computationally hiding: gτ i
information-theoretically specifies τ i, but

deriving τ i from gτ i
requires computing the discrete logarithm of gτ i

to base g. The ability of the committer to compute gq(τ) from
the SRS without knowing τ follows from the fact that this modified Pedersen commitment is additively homomorphic.
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The intuition for why binding holds is as follows. If q(z) ̸= v, then passing the verifier’s check (Equation
(15.2)) requires computing gw(τ), where w(X) = (q(X)− v)/(X − z) is not a polynomial in X . Rather, it is
a polynomial in X , multiplied by the rational function 1/(X − z). The SRS, by containing g raised to all
positive powers of τ , provides enough information for the prover to evaluate “in the exponent of g” any
desired degree-D polynomial at τ , despite not knowing τ . But, intuitively, this information should not be
enough to allow the prover to then “divide in the exponent” by τ− z, as appears to be required to compute
gw(τ) = g(q(τ)−v)/(τ−z).

To make this intuition precise, we show that binding follows from a cryptographic assumption, called
the D-strong Diffie-Hellman (SDH) assumption, that essentially just asserts that “dividing in the exponent”
by τ− z is intractable, even for an adversary given the SRS used by the KZG commitment scheme. That is,
SDH assumes that, given the SRS that consists of the generator g raised to all powers of τ up to power-D,
there is no efficient algorithmA that outputs a pair (z,g1/(τ−z)) except with negligible probability. The SDH
assumption was introduced by Boneh and Boyen [BB04]. It is closely related to an earlier assumption called
the Strong RSA assumption [BP97], the main difference being that SDH refers to (pairing-friendly) cyclic
groups while the Strong RSA assumption refers to the (non-cyclic) groups arising in the RSA cryptosystem.

Note that the SDH assumption in G implies that the Discrete Logarithm problem is hard in G, because
if discrete logarithms are easy to compute, then τ can be efficiently computed from gτ , and given τ and z it
is easy to compute g1/(τ−z). Indeed, this can be done by computing the multiplicative inverse ℓ modulo p of
τ − z using the Extended Euclidean algorithm. Since G has order p, and hence gip = 1G for all integers i,
gℓ = g1/(τ−z).182

Formally, to establish binding of KZG commitments assuming SDH, one must show that if one can open
a commitment c at point z ̸= τ to two different values v,v′, then one can efficiently compute g1/(τ−z), thereby
violating the SDH assumption.

Some more intuition. Recall that, if c = gq(τ) and y = gw(τ), then the verifier’s check in Equation (15.2)
confirms “in the exponent of g” that q(τ)− v = w(τ) · (τ− z). So opening c = gq(τ) to two different values
v,v′ intuitively requires identifying two different exponents w(τ) and w′(τ) such that

q(τ)− v = w(τ) · (τ− z)

and
q(τ)− v′ = w′(τ) · (τ− z).

Subtracting these two equations from each other implies that

v′− v = (w(τ)−w′(τ))(τ− z).

Since v− v′ ̸= 0, and assuming τ ̸= z, one can divide both sides by (v− v′) · (τ− z) to conclude that

1/(τ− z) = (w(τ)−w′(τ))/(v− v′).

Thus, one has solved for 1/(τ−z) “in the exponent” of g, contradicting the SDH assumption. The following
analysis makes this formal.

182There are known algorithms that use the group elements gτ i
for i > 1 given in the SRS to speed up the computation of τ ,

relative to the fastest known algorithms that solve for τ given only g and gτ . However, the speedups are modest, i.e., solving for τ

given g,gτ ,gτ2
, . . . ,gτD

is believed to require super-polynomial time for appropriately chosen cryptographic groups. See [CHM+20,
Appendix A.5] for details.
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Formal binding analysis. To open c to values v and v′ the committer must identify values y,y′ ∈ G such
that:

e(c ·g−v,g) = e(y,gτ−z)

and
e(c ·g−v′ ,g) = e(y′,gτ−z).

For simplicity, let us write c = gr1 , y = gr2 , and y′ = gr3 (although the committer may not know r1, r2,
or r3). By bilinearity of e, these two equations imply that

gr1 ·g−v = gr2·(τ−z)

and
gr1 ·g−v′ = gr3·(τ−z).

Together, these two equations imply that:

gv−v′ = g(r3−r2)(τ−z).

In other words,

(
(y′ · y−1)1/(v−v′)

)(τ−z)
= g. (15.3)

Here, (y′ ·y−1)1/(v−v′) denotes the value obtained raising the group element y′ ·y−1 ∈G to the power x, where
x is the multiplicative inverse of v− v′ modulo p; note that x can be computed efficiently (in time Õ(log p))
via the Extended Euclidean algorithm. Equation (15.3) states that

(
(y′ · y−1)1/(v−v′)

)
equals g1/(τ−z). Since

this value can be computed efficiently given v,v′,y,y′ provided by the committer, the committer must have
broken the SDH assumption.

An extractable scheme. Recall (Section 7.4) that an extractable polynomial commitment scheme guar-
antees that for every “efficient committer adversary A” that takes as input the public parameters of the
commitment scheme and a degree bound D and outputs a polynomial commitment c, there is an efficient
algorithm E (which depends on A) that produces a degree-D polynomial p explaining all of A’s answers to
evaluation queries. That is, ifA is able to successfully answer evaluation query z with value v, then p(z) = v.
Since E is efficient, it cannot know anything more than A does (since A can afford to run E), and E clearly
knows p by virtue of outputting it. This captures the intuition that A must “know” a polynomial p that A is
using to answer evaluation queries.

The binding analysis above shows that, once the prover sends a KZG commitment, it is bound to some
function. This means that for each possible evaluation query z, there is at most one value v that the committer
can successfully answer the query with. But it doesn’t establish that the function the prover is bound to is a
degree-D polynomial. To make this polynomial commitment scheme extractable rather than simply binding,
it must be modified and/or additional cryptographic assumptions are required (see for example the discussion
of the Generic Group Model later in this section).

Here is one method of achieving extractability that does require modifying the scheme, as well as an
additional cryptographic assumption. Recall that G is a cyclic group of order p with public generator g.
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In the modified scheme, the SRS doubles in size. Specifically, for τ and α chosen at random from Fp, the
modified SRS consists of the pairs

{(g,gα),(gτ ,gατ),(gτ2
,gατ2

), . . . ,(gτD
,gατD

)}.

That is, the SRS consists not only of powers of τ in the exponent of g, but also the same quantities raised
to the power α . Note that neither τ nor α are included in the SRS—they are “toxic waste” that must be
discarded after the SRS is generated, as any party that knows these quantities can break extractability or
binding of the polynomial commitment scheme.

The Power Knowledge of Exponent (PKoE) assumption [Gro10a] posits, roughly, that for any polyno-
mial time algorithm A given access to the SRS, whenever the algorithm outputs any two group elements
g1,g2 ∈G such that g2 = gα

1 , the algorithm must “know” coefficients c1, . . . ,cD that “explain” g1 and g2, in
the sense that g1 = ∏

D
i=0 gci·τ i

and g2 = ∏
D
i=0 gci·α·τ i

.
The idea is that, given access to the SRS, it is easy to compute a pair (g1,g2) with g2 = gα

1 in the
following manner: let g1 equal any product of quantities in the first half of the SRS raised to constant
powers, e.g.,

g1 :=
D

∏
i=0

gciτ
i
,

and let g2 be the result of applying the same operations to the second half of the SRS, i.e., g2 := ∏
D
i=0 gciατ i

.
The PKoE essentially assumes that this is the only way that an efficient party is capable of computing two
group elements with this relationship to each other. It formalizes this by assuming that, for any efficient
adversary A that takes as input the SRS and produces such pairs of group elements, there is an efficient
procedure E (which can depend on A) that actually produces such ci values. Since E is efficient, it cannot
“know” anymore than A does, and E obviously knows the ci values.

Whereas in the original commitment scheme, which was binding but not necessarily extractable, the
commitment to polynomial q was gq(τ), in the modified scheme the commitment is the pair (gq(τ),gαq(τ)).
The committer can compute this pair using the modified SRS. To open a commitment c = (U,V ) at z ∈ Fp

to value y, the committer computes the degree-(D−1) polynomial w(X) := (q(X)− v)/(X− z) and sends a
value y claimed to equal w(τ) exactly as in the original scheme. The verifier checks not only that

e(U ·g−v,g) = e(y,gτ ·g−z),

but also that e(U,gα) = e(V,g).
Completeness for the first check holds exactly as in the unmodified scheme. Completeness for the

verifier’s second check holds because if U and V are provided honestly then V = Uα (despite the fact that
neither the prover nor the verifier know α), and hence by bilinearity of e, e(U,gα) = e(V,g).

To prove that the modified scheme is extractable, we use the extractor E whose existence is asserted by
the PKoE assumption to construct an extractor E for the polynomial commitment scheme. Specifically, the
second check made by the verifier during opening ensures that V =Uα , despite the fact that the verifier does
not know α . The PKoE assumption therefore asserts the existence of an efficient extraction procedure E that
outputs quantities c1, . . . ,cD such that U = ∏

D
i=1 gci·τ i

. We define the extractor E to run E to produce these
c1, . . . ,cD values, and then output the polynomial s(X) = ∑

D
i=1 ciX i.

Clearly, gs(τ) =U , so (U,V ) is indeed a commitment to the polynomial s. In particular, U is a commit-
ment to s under the original unmodified commitment scheme. Since we showed that the original scheme is
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binding under the SDH assumption, this means that the committer is bound to s in the modified scheme.183

In more detail, suppose that the committer in the modified scheme is able to open c = (U,V ) to value v
at point z, and v ̸= s(z). Then the committer in the unmodified scheme can in fact open U to both v and s(z).
For example, to open U to s(z), the committer can let w′(X) = (s(X)− s(z))/(X− z), which is a polynomial
of degree at most D−1, and send gw′(τ) during the opening procedure. This quantity will pass the verifier’s
first check by the completeness analysis of the unmodified commitment scheme.

Discussion of the PKoE Assumption. The PKoE assumption is qualitatively different from all other cryp-
tographic assumptions that we have discussed thus far in this manuscript, including the DDH and CDH
assumptions, the discrete logarithm assumption, and the existence of collision-resistant families of hash
functions. Specifically, all of these other assumptions satisfy a property called falsifiability. Falsifiability is
a technical notion formalized by Naor [Nao03]: a cryptographic assumption is said to be falsifiable if it can
be captured by defining an interactive game between a polynomial-time challenger and an adversary, at the
conclusion of which the challenger can decide in polynomial-time whether the adversary won the game. A
falsifiable assumption must be of the form “every efficient adversary has a negligible probability of winning
the game”.

For example, the assumption that a hash family is collision-resistant can be modeled by having the
challenger send the adversary a hash function h chosen at random from the family, and challenging the
adversary to find a collision, i.e., two distinct strings x,y such that h(x) = h(y). Clearly, the challenger
can efficiently check whether the adversary won the game, by evaluating h at x and y and confirming that
indeed h(x) = h(y). In contrast, a knowledge-of-exponent assumption such as PKoE is not falsifiable: if the
adversary computes a pair (g1,gα

1 ), it is not clear how the challenger could determine whether the adversary
broke the assumption. That is, since the challenger does not have access to the internal workings of the
adversary, it is not clear how the challenger could determine whether or not the adversary computed (g1,gα

1 )

without the adversary “knowing in its own head” coefficients c1, . . . ,cD such that g1 = ∏
D
i=1 gci·τ i

. The issue
is that in claiming to have broken the assumption, the adversary is claiming to not know certain information,
namely, the coefficients c1, . . . ,cD of the previous sentence. This entire manuscript is devoted to efficiently
proving knowledge to an untrusting party, but there is no way to prove lack of knowledge.

Theoretical cryptographers generally prefer falsfiable assumptions because they seem easier to reason
about and are arguably more concrete, as there is an efficient process to check whether an adversarial strategy
falsifies the assumption. That said, not all falsifiable assumptions are “superior” to all non-falsifiable ones:
indeed, some falsifiable assumptions proposed in the research literature have turned out to be false! And
cryptographers certainly do believe that the PKoE assumption holds in many groups.

We have presented some succinct interactive arguments for circuit satisfiability in this manuscript that
are based on falsifiable assumptions (e.g., the 4-message argument argument obtained by combining PCPs
with Merkle trees from Section 9.2). But none of the non-interactive succinct arguments of knowledge
(SNARKs) for circuit satisfiability that we present are based on falsifiable assumptions; they are either based
on knowledge-of-exponent assumptions such as PKoE, or they are sound in the random oracle model.184

This is because it is not known how to base a SNARK for circuit satisfiability on a falsifiable assumption,

183The SRS of the modified commitment scheme contains additional group elements gατ ,gατ2
, . . . ,gατD

for a random α ∈ F.
Any adversary A for the SDH assumption that is given access to the original SRS can efficiently simulate these extra group elements
itself by picking α at random and raising every element of the unmodified SRS to the power α . Hence, these extra group elements
do not give the SDH adversary any extra power.

184We did explain a succinct non-interactive argument for circuit evaluation based on falsifiable assumptions in Section 5.2, by
instantiating the Fiat-Shamir transformation of the GKR protocol with a correlation-intractable hash family in place of the random
oracle.
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and indeed barriers to achieving this are known [GW11].
In summary, while assumptions like PKoE are slightly controversial in the theoretical cryptography

community, many researchers and practitioners are nonetheless confident in their veracity. It is perhaps
reasonable to expect that any given deployed SNARK is more likely to be broken for mundane reasons such
as unnoticed flaws in the security proofs or bugs in the implementation, than because the PKoE assumption
turns out to be false in the group used by the SNARK.

Generic Group Model and Algebraic Group Model. The unmodified polynomial commitment scheme
covered in this section is also known to be extractable in the so-called Generic Group model (GGM), as
well as in a variant model called the Algebraic Group model (AGM) [FKL18]. The Generic Group model
is similar in spirit to the random oracle model (see Section 5.1). Recall that the random oracle model
models cryptographic hash functions as truly random functions. In contrast, “real-world” implementations
of protocols in the random oracle model must instantiate the random oracle with concrete hash functions,
and real-world attackers trying to “break” the protocol can try to exploit properties of the concrete hash
function. Accordingly, the random oracle model only captures “attacks” that do not exploit any structure
in the concrete hash functions. The rationale for why this is reasonable is that real-world cryptographic
hash functions are designed to (hopefully) “look random to efficient adversaries”; hence we generally do
not know real-world attacks that exploit structure in concrete hash functions, though contrived protocols are
known for which no real-world instantiation of the protocol with a concrete hash function is secure.

Similarly, the GGM considers adversaries that are only given access to cryptographic groups G,Gt

via an oracle that computes the group multiplication operation. The pairing operation e : G×G→ Gt is
modeled as an additional oracle. In the real-world, attackers are actually given explicit representations of
group elements, as well as efficient computer code that, given the representation of two group elements,
computes the representation of the product of those two elements. But we generally do not know of attacks
on real-world protocols that exploit these explicit representations.

The AGM is a model that lies in between the GGM and the real world. The AGM has a similar flavor to
knowledge-of-exponent assumptions like PKoE, in that it assumes whenever an efficient algorithmA outputs
a “new” group element g ∈ G, it also outputs an “explanation” of g as a combination of “known” group
elements L=(L1, . . . ,Lt) that were previously given toA, i.e., numbers c1, . . . ,ct such that g=∏

t
i=1 Lci

i . Any
attacker operating in the GGM can also be implemented in the AGM [PV05], so the known extractability of
the KZG polynomial commitment in the AGM [CHM+20] is a strictly stronger result than security in the
GGM.185

15.3 Extension of KZG to Multilinear Polynomials

The previous section gave a polynomial commitment scheme based on pairings, for univariate polynomials
over the field Fp where p is the order of the groups involved in the pairing. In this section, we wish to give
a similar commitment scheme for multilinear polynomials q over Fp, proposed by Papamanthou, Shi, and
Tamassia [PST13]. Let ℓ denote the number of variables of q, so q : Fℓ

p→ Fp. In applications of multilinear
polynomial commitment schemes (namely, to transforming IPs and MIPs to succinct arguments for circuit
satisfiability), it is convenient to work with polynomials specified over the Lagrange basis (see Lemma 3.8
for a definition of the Lagrange basis polynomials), so we present the commitment scheme in this setting,
though the scheme works just as well over any basis of multilinear polynomials.

185To be precise, there are a couple of variants of the GGM considered in the literature [Mau05, Sho97]. See [KZZ22] for a
discussion of subtleties regarding the relationship between these different versions of the GGM and the AGM.
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The structured reference string (SRS) now consists of encodings in G of all powers of all Lagrange basis
polynomials evaluated at a randomly chosen input r ∈ Fℓ. That is, if χ1, . . . ,χ2ℓ denotes an enumeration
of the 2ℓ Lagrange basis polynomials, the SRS equals (gχ1(r), . . . ,gχ2ℓ (r)). Once again, the toxic waste that
must be discarded because it can be used to destroy binding is the value r.

As in the univariate commitment scheme, to commit to a multilinear polynomial q over Fp, the committer
sends a value c claimed to equal gq(r). Note that while the committer does not know r, it is still able to
compute gq(r) using the SRS: if q(X) = ∑

2ℓ
i=0 ciχi(X), then gq(r) = ∏

2ℓ
i=0
(
gχi(r)

)ci , which can be computed
given the values gχi(r) for all i = 0, . . . ,2ℓ even without knowing r.

To open the commitment at input z ∈ Fℓ
p to some value v, i.e., to prove that q(z) = v, the committer

computes a series of ℓ “witness polynomials” w1, . . . ,wℓ, defined in the following fact.

Fact 15.1 (Papamanthou, Shi, and Tamassia [PST13]). For any fixed z = (z1, . . . ,zℓ) ∈ Fℓ
p and any multilin-

ear polynomial q, q(z) = v if and only if there is a unique set of ℓ multilinear polynomials w1, . . . ,wℓ such
that

q(X)− v =
ℓ

∑
i=1

(Xi− zi)wi(X). (15.4)

Proof. If q(X)− v can be expressed as the right hand side of Equation (15.4), then clearly q(z)− v = 0, and
hence q(z) = v.

On the other hand, suppose that q(z) = v. Then by dividing the polynomial q(X)− v by the polynomial
(X1− z1), we can identify multilinear polynomials w1 and s1 such that

q(X)− v = (X1− z1) ·w1(X1,X2, . . . ,Xℓ)+ s1(X2,X3, . . . ,Xℓ),

where s1(X2,X3, . . . ,Xℓ) is the remainder term, and does not depend on variable X1. Iterating this process,
we can divide s1 by the polynomial (X2−Z2) to write

q(X)− v = (X1− z1) ·w1(X1,X2, . . . ,Xℓ)+(X2− z2) ·w2(X2, . . . ,Xℓ)+ s2(X3,X4, . . . ,Xℓ)

and so forth until we have written

q(X)− v =
ℓ

∑
i=1

(Xi− zi) ·wi(X1,X2, . . . ,Xℓ)+ sℓ,

where sℓ depends on no variables, i.e., sℓ is simply an element in Fp. Since q(z)− v = 0, it must hold that
sℓ = 0, completing the proof.

To open the commitment at input z ∈ Fℓ
p to value v, the prover computes w1, . . . ,wℓ as per Fact 15.1

and sends to the verifier values y1, . . . ,yℓ claimed to equal gwi(r) for i = 1, . . . , ℓ. Again, since each wi is
multilinear, gwi(r) can be computed from the SRS despite the fact that the prover does not know r. The
verifier checks that

e(c ·g−v,g) =
ℓ

∏
i=1

e(yi,gri ·g−zi).

Note that the verifier is able to perform this check so long as the verification key includes gri for each i
(the verification key is a subset of the SRS, as each dictator function (X1, . . . ,Xℓ) 7→ Xi is a Lagrange basis
polynomial).
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Correctness is clear: if c = gq(r) and yi = gw(ri) for i = 1, . . . , ℓ, then

e(c ·g−v,g) = e(gq(r)−v,g) = e(g∑
ℓ
i=1 wi(r)·(ri−zi),g) =

ℓ

∏
i=1

e(gwi(r),gri−zi) =
ℓ

∏
i=1

e(yi,gri ·g−zi).

Here, the first inequality holds because c = gq(r), the second holds by Equation (15.4), the third holds by
bilinearity of e, and the fourth holds because yi = gwi(r).

The proof of binding and techniques to achieve extractability are similar to the previous section and we
omit them for brevity.

Costs. Like the univariate pairing-based polynomial commitment scheme of the previous section (Section
15.2), the ℓ-variate multilinear polynomial commitment consists of a constant number of group elements.
However, whereas evaluation proofs for the univariate protocol also consisted of a constant number of group
elements, evaluation proofs for the multilinear polynomial protocol are ℓ group elements rather than O(1),
with a corresponding increase in verification time from O(1) group operations and bilinear map evaluations,
to O(ℓ).

In terms of committer runtime, Zhang et al. [ZGK+18, Appendix G] show that the committer in the
protocol for multilinear polynomials can compute the polynomials w1, . . . ,wℓ with just O(2ℓ) field operations
in total. And once these polynomials are computed, the prover can compute all ℓ necessary values gwi(r) with
O(2ℓ) many group exponentiations in total.

15.4 Dory: Transparent Scheme with Logarithmic Verification Costs

This section describes a polynomial commitment scheme called Dory with similar (logarithmic) verification
costs to the polynomial commitment scheme of the previous section, but that does not rely on a trusted
setup. It does require a pre-processing phase that requires time square root in the size of the polynomial
to be committed, but this pre-processing phase does not produce any “toxic waste” that must be discarded
to guarantee no one can break the scheme’s binding property. Asymptotically, its verifier costs compare
favorably to Bulletproofs (Section 14.4): like Bulletproofs, it is transparent with logarithmic-sized proofs,
but unlike Bulletproofs it has logarithmic rather than linear verifier time. However, concretely its proofs are
larger than Bulletproofs by a significant constant factor.

Dory builds on beautiful ideas and building blocks developed over a variety of works [AFG+10,BGH19,
BMM+21], especially so-called AFGHO commitments [AFG+10]. While Dory itself is arguably somewhat
complicated, the building blocks that comprise it are simpler and useful in their own right.

15.4.1 Commitments to Vectors of Group Elements via Inner Pairing Products

Let Fp be the field of prime order p and G be a multiplicative cyclic group of order p. Let h = (h1, . . . ,hn)
be a public vector of (randomly chosen) generators of G. Recall that an (unblinded) Pedersen vector com-
mitment is a compressing commitment to a vector of field elements v∈ Fn

p, given by Com(v) = ∏
n
i=1 hvi

i (see
Section 14.2). In other words, this commitment takes (unblinded) Pedersen commitments to each entry of
v, and multiplies them together to get a single commitment to the whole vector. The commitment is a single
element of the group G.

Now let G1,G2,Gt be a pairing-friendly triple of groups of order p. In the previous paragraph, we
expressed G as a multiplicative group, but for the remainder of this section, we will express G1,G2,Gt as
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additive groups. As in Section 14.4 where we described Bulletproofs, this allows us to express commitments
as an inner product between the vector to be committed and the commitment key.

Using pairings, one can define an analog of Pedersen vector commitments that allows one to commit to
vectors of group elements, i.e., vectors in Gn

1, rather than vectors of field elements. Specifically, for w ∈Gn
1,

and for a fixed vector g = (g1, . . . ,gn) ∈Gn
2 of public, randomly chosen group elements, define

IPPCom(w) =
n

∑
i=1

e(wi,gi). (15.5)

Note that IPPCom(w) is a single element of the target group Gt . We use the notation IPPCom as short-hand
for the term inner-pairing-product commitment. This refers to the fact that IPPCom(w) can be thought of
as the inner product ⟨w,g⟩ = ∑

n
i=1 wi · gi, where the “multiplication” of wi and gi is defined via the pairing

e(wi,gi). From now on, for w ∈Gn
1,g ∈Gn

2, we use ⟨w,g⟩ to denote the inner-pairing-product ∑
n
i=1 e(wi,gi).

Intuitively, e(wi,gi) acts as a Pedersen commitment to wi despite the fact that wi is a group element in
G1 rather than a field element in Fp. The sum ∑

n
i=1 e(wi,gi) of all such entry-wise Pedersen commitments

is the natural compressing commitment to the vector w.
The above commitment scheme for vectors of group elements originated in work of Abe et al. [AFG+10,

Gro09] and are often called AFGHO-commitments. We use the terms AFGHO-commitments and inner-
pairing-product commitments interchangeably.

Rendering the commitment perfectly hiding. Recall that a Pedersen vector commitment in group G1
can be made perfectly hiding by having an extra randomly chosen public parameter g ∈ G1, and having
the committer pick a random r ∈ Fp and include a blinding factor gr in the commitment. Analogously,
IPPCom(w) can be made perfectly hiding by having the committer pick a random r ∈ G1 and including a
blinding term e(r,g) in the commitment, i.e., defining

IPPCom(w) = e(r,g)+
n

∑
i=1

e(wi,gi).

For simplicity, we omit this blinding factor from the remainder of our treatment.

Computational Binding. Recall from Section 15.1 that the Decisional Diffie-Hellman (DDH) assumption
for an additive group G1 states that no efficient algorithm can meaningfully distinguish between a random
tuple of the form

(g,a ·g,b ·g,c ·g)
with a,b,c chosen at random from Fp versus one of the form

(g,a ·g,b ·g,(ab) ·g).

We show that assuming DDH holds in G1, IPPCom(w) is a computationally binding commitment to w∈Gn
1.

For expository clarity, our presentation assumes that n = 2.
Given a DDH challenge (g,a ·g,b ·g,c ·g) in G1, we must explain how to use an efficient prover P that

breaks binding of the commitment scheme to give an efficient algorithmA that breaks the DDH assumption.
A sets g = (g,a · g) ∈ G1×G1; note that by definition of the DDH challenge distributions, both entries of
g are uniform random group elements. A then runs P to identify a nonzero commitment c∗ ∈ Gt and two
openings u = (u1,u2),w = (w1,w2) of c∗, meaning that

c∗ = e(u1,g)+ e(u2,a ·g) = e(w1,g)+ e(w2,a ·g).
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Let v = u−w, and write v = (v1,v2) ∈ G1×G1. Since c∗ ̸= 0, it follows that v is not the zero-vector.
Moreover, by bilinearity of e,

e(v1,g)+ e(v2,a ·g) = 0. (15.6)

The DDH adversary A then outputs 1 if and only if

e(v1,b ·g)+ e(v2,c ·g) = 0. (15.7)

That A breaks the DDH assumption in G1 can be seen as follows. First, if c = a · b, then the left hand
side of Equation (15.7) equals:

e(v1,b ·g)+ e(v2,(a ·b) ·g) = e(v1,b ·g)+ e(v2,b · (a ·g)) = b · (e(v1,g)+ e(v2,a ·g)) .

This last expression equals 0 by Equation (15.6). Hence, in this caseA outputs 1. Meanwhile, if c is chosen
at random from Fp, then since v is not the zero-vector, Equation (15.7) holds with probability just 1/p.

Hence, A succeeds in distinguishing tuples of the form (g,a ·g,b ·g,c ·g), with a,b,c chosen at random
from Fp, from those of the form (g,a ·g,b ·g,(ab) ·g).

15.4.2 Committing to field elements using pairings

One can also use inner-pairing-product commitments in place of Pedersen-vector commitments to commit
to vectors of field elements. Let h be any element of G1 and g = (g1, . . . ,gn) ∈Gn

2 be a random vector of G2
elements. For a vector v ∈ Fn

p, consider the vector w(v) of entry-wise (unblinded) Pedersen commitments to
v in G1 with commitment key h, i.e., w(v)i = vi ·h, and define IPPCom(v) as

IPPCom(v) = IPPCom(w(v)) = ⟨w(v),g⟩=
n

∑
i=1

e(vi ·h,gi). (15.8)

Since IPPCom(w(v)) is a binding commitment to w(v), and the map v 7→ w(v) is bijective, IPPCom(v) is a
binding commitment to v∈ Fn

p. It will be important both for concrete efficiency of computing commitments,
and for the polynomial commitment scheme that we develop (Sections 15.4.4 and 15.4.5), that the same
group element h is used to compute every entry of w(v).

Efficiency comparison. There are two natural ways to compute IPPCom(v). One is by computing the
right hand side of Expression (15.8) directly, which requires n evaluations of the bilinear map e and n group
operations in the target group Gt . The other (faster) way is by computing a Pedersen-vector commitment
c = ∑

n
i=1 vigi in G2, and then applying the bilinear map just once to compute e(h,c). By bilinearity of e,

e(h,c) = e(h,
n

∑
i=1

vi ·gi) =
n

∑
i=1

e(h,vi ·gi) =
n

∑
i=1

e(vi ·h,gi) = IPPCom(v).

Both methods of computing IPPCom(v) are concretely slower than computing a Pedersen vector com-
mitment to v in G1. This is because group operations in G2 and Gt are typically slower than group op-
erations in G1, and computing an evaluation of the bilinear map e is slower still. For example, according
to microbenchmarks in [Lee21], if using the popular pairing-friendly curve BLS12-381, a Gt operation is
about 4 times slower than one in G1 while a G2 operation is about 2 times slower than one in G1. Moreover,
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operations in a pairing-friendly group G1 such as BLS12-381 are perhaps 2-3 times slower than operations
in the fastest non-pairing-friendly groups.

On top of this slow commitment computation, the commitment size IPPCom(v) is concretely larger—
for BLS12-381, representations of elements of the target group Gt are four times bigger than those of
elements of G1. In summary, while the asymptotic costs of computing and sending IPPCom(w) are similar
to Pedersen vector commitments, the concrete costs are worse.

A simplification in the remainder of the presentation. As discussed in Section 15.1, the DDH assump-
tion cannot hold in G1 if G1 = G2, i.e., if the pairing is a symmetric pairing. This is because, given tuple
(g,ag,bg,cg), one can check whether c = a ·b by checking whether e(g,c ·g) = e(a ·g,b ·g).

However, the DDH assumption can hold in G1 and G2 if the two groups are not equal, i.e., if there is no
efficiently computable mapping φ group G1 to G2 or vice versa that preserves group structure in the sense
that φ(a+b) = φ(a)+φ(b). This is (believed to be) the case for pairings used in practice, such as BLS12-
381. The assumption that DDH holds in both G1 and G2 is called the symmetric external Diffie-Hellman
assumption, abbreviated SXDH.

Despite the fact that IPPCom(w) is not necessarily a binding commitment to w if G1 = G2, we will
nonetheless assume for the remainder of our presentation of Dory that G1 = G2, denoting both groups by
G.186 This simplifies the presentation of the Dory protocol. The changes required to the protocol in the case
where G1 ̸=G2 are straightforward, but they introduce a notational burden that we prefer to avoid.

Outline for the remainder of the presentation. In order to highlight in a modular fashion the main
ideas that go into the Dory polynomial commitment scheme, we describe progressively more sophisticated
protocols. First, in Section 15.4.3, we explain how a prover P can convince a verifier that P knows how to
open some inner-pairing-product commitment cu = IPPCom(u) to some vector u ∈Gn. The proof size and
verification cost of this protocol are O(log2 n), after a transparent linear-time pre-processing phase. Second,
in Section 15.4.4 we explain how to extend this protocol to give a transparent polynomial commitment
scheme in which the verifier’s runtime is O(log2 n). Third, in Section 15.4.5, we explain a modification
of the protocol of Section 15.4.3 that reduces the runtime of the pre-processing phase from linear in n to
O(n1/2). Finally, in Section 15.4.6, we present a more complicated variant of the protocol of Section 15.4.3
that reduces verification costs from O(log2 n) to O(logn).

15.4.3 Proving Knowledge of Opening with O(log2 n) Verification Cost

Let u ∈ Gn, and assume for simplicity that n is a power of 2. Given public input cu = IPPCom(u), the
following protocol is transparent and allows the prover to prove knowledge of an opening u of cu. The
verifier runs in O(log2 n) time, after a transparent pre-processing phase that is independent of u.

Recap of Bulletproofs. Let us briefly recall the Bulletproofs (Section 14.4) protocol for establishing
knowledge of an opening u(0) ∈ Fn

p of a Pedersen vector commitment

cu(0) = ⟨u(0),g(0)⟩=
n

∑
i=1

ui ·gi.

186See [Gro09] for a modification of the commitment scheme that is binding under a plausible assumption for symmetric pairings.
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Conceptually, g(0) is broken into two halves g(0)L and g(0)R , and likewise u(0) is written as (u(0)L ,u(0)R ). The
prover sends two commitments vL and vR claimed to equal ⟨u(0)L ,g(0)R ⟩ and ⟨u(0)R ,g(0)L ⟩. The verifier picks a
random α1 ∈ Fp and sends it to P , and uses vL and vR to homomorphically update the commitment cu(0) to

cu(1) := cu(0) +α
2
1 vL +α

−2
1 vR.

If the prover is honest, cu(1) is a commitment to the to length-(n/2) vector

u(1) = α1u(0)L +α
−1
1 u(0)R .

using the commitment key

g(1) := α
−1
1 g(0)L +α1g(0)R . (15.9)

P and V then proceed to the next round, in which P recursively establishes knowledge of an opening u(1)

to cu(1) . This continues for logn rounds, at which point the recursion bottoms out: u(logn) and g(logn) have
length 1, and hence (if zero-knowledge is not a consideration) P can afford to prove knowledge of u(logn)

by sending it explicitly to V , who can check that u(logn) ·g(logn) = cu(logn) .
Why is the verifier runtime in the above protocol linear rather than logarithmic? The answer is: in each

round, the verifier needs to update the commitment key from g(i−1) to g(i) = α
−1
i g(i−1)

L +αg(i−1)
R . This takes

time at least O(n/2i).

The pre-processing procedure. Now let u(0) be a vector in Gn, and let cu(0) = IPPCom(u(0)). To avoid
linear verifier time in our protocol for establishing knowledge of an opening u(0) ∈ Gn for cu(0) , we rely on
a pre-processing phase that is independent of u(0), depending only on the public commitment key g. For
exposition, we describe the preprocessing as occurring over logn iterations, with two inner-pairing-product
commitments (i.e., elements of Gt) produced per iteration. We refer to the party doing the pre-processing as
the verifier—in fact, any entity willing to invest the effort can perform the pre-processing and distribute the
resulting (logarithmically-many) commitments to the world. Any entity willing to invest the effort can also
validate the distributed commitments, raising an alarm if a discrepancy is found.

• (First iteration of pre-processing): Let g(0) = (g(0)L ,g(0)R ) ∈ Gn/2×Gn/2 be the commitment key used
to compute the initial commitment cu(0) = ⟨u(0),g(0)⟩. The first pre-processing iteration outputs inner-
pairing-product commitments ∆

(1)
L and ∆

(1)
R to g(0)L and to g(0)R respectively, using public, randomly

chosen commitment key Γ(1) ∈Gn/2.187 That is, ∆
(1)
L = ⟨g(0)L ,Γ(1)⟩ and ∆

(1)
R = ⟨g(0)R ,Γ(1)⟩.

• (Second iteration): Write Γ(1) itself as (Γ(1)
L ,Γ

(1)
R )∈Gn/4×Gn/4. The second iteration computes com-

mitments ∆
(2)
L and ∆

(2)
R to Γ

(1)
L and to Γ

(1)
R respectively, using public, randomly chosen commitment

key Γ(2) ∈Gn/4.188

• In general, in iteration i > 1: compute commitments ∆
(i)
L and ∆

(i)
R to the left and right halves of the

commitment key Γ(i−1) that was used to compute the previous iteration’s commitments ∆
(i−1)
L and

∆
(i−1)
R .

187Γ(1) need not be independent of g(0), e.g., it is fine for Γ(0) to equal g(0)L .
188As in Footnote 187, Γ(2) need not be independent of Γ(1), e.g., it is fine for Γ(2) to equal Γ

(1)
L .
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The pre-processing ends after iteration i = log(n). At that point, Γ(i) has length 1, so the pre-processing
just outputs Γ(i) explicitly. Note that after the pre-processing is done, a logarithmic-time verifier does have
time to read and store the two commitments ∆

(i)
L and ∆

(i)
R output by each iteration of pre-processing, but

does not have the time to read or store the corresponding commitment key Γ(i) used to produce ∆
(i)
L and ∆

(i)
R .

This is because Γ(i) has size n/2i and hence is super-logarithmic for all i≤ log(n)− log log(n). As we will
see, this means the verifier in the knowledge-of-opening protocol described below will have to somehow
“check” that the prover knows how to open many different commitments ∆

(i)
L and ∆

(i)
R without the verifier

even knowing the keys used to produce those commitments.

The knowledge of opening protocol. Let u(0) be a vector in Gn. The verifier begins the protocol knowing
a commitment cu(0) . If the prover is honest,

cu(0) = ⟨u(0),g(0)⟩, (15.10)

and the prover needs to prove that it knows a vector u(0) satisfying Equation (15.10). Recall that a core
difficulty here is that the verifier doesn’t know g(0) as in Bulletproofs, but rather only some “pre-processed”
information about g(0), namely commitments to g(0)L and g(0)R under some different commitment key Γ(1).

The key idea is that, in each round i, rather than explicitly computing g(i) from g(i−1) as per Equation
(15.9), V instead uses homomorphism of the commitments output by the pre-processing procedure to com-
pute in constant time a commitment to g(i) under a suitable commitment key. Roughly speaking, the verifier
can use this commitment to force the prover to do the hard work of computing g(i) explicitly. The prover will
only ever explicitly reveal to the verifier the final “fully collapsed” commitment key g(logn), which consists
of a single group element. Protocol details follow.

Round 1 procedure: As in Bulletproofs, the prover begins by sending two commitments vL and vR claimed
to equal ⟨u(0)L ,g(0)R ⟩ and ⟨u(0)R ,g(0)L ⟩. The verifier picks a random α1 ∈ Fp and sends it to P . The verifier uses
vL and vR to homomorphically update the commitment cu(0) to

cu(1) := cu(0) +α
2
1 vL +α

−2
1 vR.

Recall that unlike in Bulletproofs, our V does not know g(0), but does know pre-processing commitments
∆
(1)
L = ⟨g(0)L ,Γ(1)⟩ and ∆

(1)
R = ⟨g(0)R ,Γ(1)⟩. Via homomorphism, V can compute a commitment

cg(1) = α
−1
1 ∆

(1)
L +α1∆

(1)
R

to g(1) = α
−1
1 g(0)L +α1g(0)R under commitment key Γ(1).

The above Round 1 leaves the prover and verifier in the following situation. Unlike in Bulletproofs, at
the start of Round 2, our verifier does not know g(1). All that our verifier knows is a commitment cg(1) to g(1)

under commitment key Γ(1) = (Γ
(1)
L ,Γ

(1)
R ) ∈Gn/4×Gn/4.

Because the information known to V is so limited, at the start of Round 2, P needs to prove that it knows
vectors u(1) and g(1) in Gn/2 such that

cu(1) = ⟨u(1),g(1)⟩ (15.11)

and

cg(1) = ⟨g(1),Γ(1)⟩. (15.12)
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In summary, the first round of our protocol started with a claim about one inner product equation in-
volving two vectors u(0) and g(0) of length n (Equation (15.10)), in which V only knew “pre-computed
commitments” ∆

(1)
L ,∆

(1)
R to g(0). And it reduced it to a claim about two inner product equations involving

three vectors of length n/2, namely u(1), g(1), and Γ(1), in which V only knows pre-computed commitments
∆
(2)
L ,∆

(2)
R to Γ

(1)
L and Γ

(1)
R .

Round 2 procedure.

• A trivial case: If n = 2, so the pre-processing phase output Γ(1) explicitly, then a trivial way for the
prover to establish both of these claims is to explicitly reveal u(1) and g(1) to V , who can then check
Equations (15.11) and (15.12) explicitly. But this does not work if n≥ 4.

• What to do if n ≥ 4. Fortunately, Equations (15.11) and (15.12) are both of a form that Bulletproofs
was designed to handle. Namely, P is claiming to know some vector satisfying an inner-product
relation with some other vector (u(1) with g(1) in Equation (15.11) and g(1) with Γ(1) in Equation
(15.12)). So P and V can apply the Bulletproofs scheme in parallel to both claims, using the same
random verifier-chosen α2 ∈ Fp for both, to reduce each claim to an equivalent one involving vectors
of half the length.

That is, P sends commitments vL,vR,wL,wR ∈Gt claimed to equal ⟨u(1)L ,g(1)R ⟩, ⟨u
(1)
R ,g(1)L ⟩, ⟨g

(1)
L ,Γ

(1)
R ⟩

and ⟨g(1)R ,Γ
(1)
L ⟩ . V then sends α2 ∈ F to P . V sets

cu(2) := cu(1) +α
2
2 vL +α

−2
2 vR.

If P is honest, then
cu(2) = ⟨u(2),g(2)⟩,

where
u(2) = α2u(1)L +α

−1
2 u(1)R ,

and
g(2) := α

−1
2 g(1)L +α2g(1)R .

Likewise, V sets
cg(2) := cg(1) +α

−2
2 wL +α

2
2 wR.

If P is honest, then cg(2) is a commitment to g(2) under commitment key Γ′ = α2Γ
(1)
L +α

−1
2 Γ

(1)
R , i.e.,

cg(2) = ⟨α−1
2 g(1)L +α2g(1)R ,α2Γ

(1)
L +α

−1
2 Γ

(1)
R ⟩.

Finally, V computes a commitment cΓ′ to Γ′ under commitment key Γ(2) homomorphically given the
pre-processing commitments ∆

(2)
L and ∆

(2)
R , via cΓ′ = α2∆

(2)
L +α

−1
2 ∆

(2)
R .

The above Round 2 procedure reduces the task of proving knowledge of u(1),g(1) ∈ Gn/2 satisfying
Equations (15.11) and (15.12) to proving knowledge of u(2),g(2),Γ′ ∈Gn/4 satisfying:

cu(2) = ⟨u(2),g(2)⟩, (15.13)
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cg(2) = ⟨g(2),Γ′⟩, (15.14)

cΓ′ = ⟨Γ′,Γ(2)⟩. (15.15)

That is, as discussed in the “sketch of the knowledge extractor” several paragraphs hence, P’s knowl-
edge of u(2),g(2),Γ′ ∈ Gn/4 satisfying Equations (15.13)-(15.15) (for at least 3 values of α2 ∈ Fp) implies
knowledge of u(1) and g(1) satisfying Equations (15.11) and (15.12).

In summary, Round 2 started with a claim about two inner product equations involving three vectors
of length n/2, namely u(1),g(1),Γ(1), in which V only knows pre-computed commitments ∆

(2)
L ,∆

(2)
R to Γ(1).

And it reduced it to a claim about three inner product equations involving four vectors of length n/4, in
which V only knows pre-computed commitments to the fourth vector Γ(2).

Round i > 2. The above Round-2 procedure can be iterated, to ensure that at the start of Round i, the
prover has to establish knowledge of i+1 vectors, each of length n/2i, satisfying i inner product equations.
In more detail, denote the i + 1 vectors P claims to know at the start of round i by v1, . . . ,vi+1. Then
v1 = u(i−1), v2 = g(i−1), and vi+1 = Γ(i−1). And the j’th equation at the start of Round i is of the form
⟨v j,v j+1⟩= c j for some commitment c j.

The prover operates analogously to Round 2, sending commitments to two cross-terms per equation,
with the verifier then picking a random αi ∈ Fn

p and sending it to P . For each odd j ∈ {1, . . . i+ 1}, the
verifier uses homomorphism to derive a commitment to αi · v j,L +α

−1
i · v j,R. Likewise, for each even j,

V derives a commitment to α
−1
i · v j,L +αi · v j,R. For vi+1 = Γ(i−1), the appropriate commitment is derived

homomorphically from the pre-processing commitments ∆
(i)
L and ∆

(i)
R . Round i+1 is then devoted to proving

that the prover indeed knows how to open each of the i+1 derived commitments, which entails i+1 inner-
product equations involving i+2 vectors.

The iterations stop after round log(n); at that point, the vectors involved in each of the log(n) + 1
equations have length just 1. If zero-knowledge is not a consideration, the prover can establish that it knows
such vectors by simply sending them explicitly to V , and V can directly check that the received values indeed
satisfy all the equations claimed.

Verification costs. The total number of commitments sent by the prover in Round i is O(i), leading to a
communication cost O(∑

log(n)
i=1 i) = O(log2 n). The verifier’s total runtime is also O(log2 n) scalar multipli-

cations in Gt .

Sketch of the knowledge extractor. The knowledge extractor for the above protocol proceeds similarly to
that for Bulletproofs (Section 14.4). After first generating a 3-transcript tree via the forking lemma (Theorem
14.1), the extractor proceeds from the leaves toward the root, and at each vertex i layers below the root it
constructs the i+1 vectors satisfying the i inner-product equations that the prover claims to know at the point
in the protocol corresponding to that vertex. For example, when the extractor comes to the root itself, the
extractor has already constructed, for each child of the root, vectors u(1) and g(1) such that Equations (15.11)
and (15.12) hold, i.e., ⟨u(1),g(1)⟩= cu(1) and ⟨g(1),Γ(1)⟩= cg(1) . Note the extractor knows Γ(1), because Γ(1)

is public and, unlike the verifier, the extractor need only run in polynomial time, not logarithmic time.
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The Bulletproofs extractor (Section 14.4) gives a procedure to take the g(1) vectors for all three children
of the root and reconstruct a g(0) that “explains” all three children’s g(1) vectors, in the sense that for each
child of the root, g(1) = α

−1
1 g(0)L +α1g(0)R , where α1 is label of the edge connecting the root to the child under

consideration. Once g(0) is identified, the same Bulletproofs extraction procedure identifies a vector u(0) that
explains all three children’s u(1) vectors, i.e., such that at each child of the root, u(1) = α1u(0)L +α

−1
1 u(0)R , and

moreover cu(0) = ⟨u(0),g(0)⟩.

15.4.4 Extending to a polynomial commitment

Extending the knowledge-of-opening protocol of Section 15.4.3 to a polynomial commitment scheme fol-
lows the outline provided at the start of the chapter: let a ∈ Fn

p be the coefficient vector of the polyno-
mial q(X) = ∑

n−1
i=0 aiX i to be committed, of degree n− 1. Then the commitment to q is just an AFGHO-

commitment to a (Section 15.4.2).189

Recall this means the following. If g = (g1, . . . ,gn) ∈ Gn and h ∈ G are public commitment keys,
and w(a) ∈ Gn = (a1 · h, . . . ,an · h) is the vector of Pedersen commitments to a with key h ∈ G, then the
commitment to the polynomial is cq := IPPCom(w(a)) = ∏

n
i=1 e(ai ·h,gi).

Suppose the verifier then requests to evaluate the committed polynomial at input r ∈ Fp, and the prover
claims that q(r) = v. Then the prover has to establish that it knows a vector a such that two equalities hold:
(1) cq = IPPCom(w(a)), and (2) q(r) = v. Recall that the latter claim is equivalent to ⟨a,y⟩ = v where
y = (1,r,r2, . . . ,rn−1).

Claim (1) is established by applying the protocol of Section 15.4.3 establish that P knows u := w(a)
opening cq. Claim (2) is established in parallel with this protocol, in close analogy to the Bulletproofs
polynomial commitment scheme (Protocol 13). In slightly more detail, there are two differences from
Protocol 13, aside from using the protocol of Section 15.4.3 in place of Protocol 12 to establish that P
knows an opening of cq:

• In Protocol 13, the verifier explicitly computes the vector y(i) in each round. This requires time
O(n/2i) in round i, which is far too large for the polylogarithmic time verifier we set out to achieve
in this section. To address this, the key observation is that V does not actually need to know y(i) for
i < logn. The only information the verifier actually needs to perform its checks in the protocol is the
final-round value y(logn). Moreover, not only does y = (1,r, . . . ,rn−1) have “tensor structure”, but so
do the round-by-round updates to y. This enables V to compute y(logn) in logarithmic time.

Specifically, for (a,b) ∈ F2
p and a vector v ∈ Fn

p, define the vector v⊗ (a,b) to be (a · v,b · v) ∈ F2n
p .

Then it can be checked that y =⊗log(n)−1
i=0 (1,r2i

). For example,

(1,r)⊗ (1,r2) = (1,r,r2,r3)

and
(1,r)⊗ (1,r2)⊗ (1,r4) = (1,r,r2, . . . ,r7).

For i ∈ {1, . . . , logn}, let ī = log(n)− i. It can be checked that the above tensor structure in the vector
y leads to the following equality:

y(logn) =
logn

∏
i=1

(αi +α
−1
i r2ī

). (15.16)

189Recall that the same approach applies to multilinear polynomials; we restrict our attention to univariate polynomials in this
section for brevity.
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Clearly, the right hand side of Equation (15.16) can be computed in O(logn) time.

For example, if n = 4, then
y(1) = (1,r,r2,r3),

y(2) = (α1 ·1+α
−1
1 · r2,α1r+α

−1
1 r3),

and

y(3)=α2y(2)L +α
−1
2 y(2)R =α2 ·α1 ·1+α

−1
2 ·α1 ·r+α2 ·α−1

1 r2+α
−1
2 α

−1
1 r3 =

(
α1 +α

−1
1 r2)(

α2 +α
−1
2 r
)
.

• In the final round, round logn, of the protocol of Section 15.4.3, the prover should reveal not only the
group element u(logn) such that e(u(logn),g(logn)) = cu(logn) , but also the discrete logarithm a∗ ∈ Fp to
base h, i.e., the field element to which u(logn) is a Pedersen commitment. This enables the verifier to
confirm that indeed ⟨a∗,y(logn)⟩= a∗ · y(logn) = v(logn), where y(i) and v(i) denote the round-i values of
the vectors y and v from Protocol 13.

15.4.5 Reducing Pre-Processing Time to O(
√

n) via Matrix Commitments

Analogy to Hyrax polynomial commitment. Recall that Section 14.2 used Pedersen vector commitments
to give a constant-size polynomial commitment, but with linear-size evaluation proofs and verification time.
Section 14.3 reduced the evaluation proof size and verification time to square root, but at the cost of in-
creasing commitment size from constant to square root. It worked by expressing any polynomial evaluation
query q(z) as a vector-matrix-vector product bT · u · a and having the prover commit to each column of the
matrix u separately. The verifier could then use homomorphism of the column commitments to compute a
commitment to u ·a, and the prover could then invoke the evaluation procedure of the commitment scheme
to reveal bT · (u ·a).

Unlike the commitment scheme of Section 14.2, the schemes of this section already have (poly)logarithmic
verification costs, following a linear-time pre-processing phase. It is nonetheless possible to combine this
section’s commitment schemes with the vector-matrix-vector multiplication structure in evaluation queries,
to improve other costs. Specifically, the pre-processing time can be reduced from linear to square root in
the degree of the committed polynomial. And unlike in Section 14.3, this improvement does not come at
the cost of increasing the size of the commitment. This technique has the added benefit that polynomial
evaluation queries can be answered with O(n1/2) rather than O(n) group operations by the prover (on top of
the O(n) Fp operations required to simply evaluate the polynomial at the requested point).

Commitment phase of the improved protocol. Let u ∈ Fm×m
p be the matrix such that for any z ∈ Fp,

q(z) = bT · u · a for some vectors b,a ∈ Fm
p . The prover “in its own head” computes a Pedersen-vector

commitment ci in G to each column i of u, using random generator vector h = (h1, . . . ,hm) ∈ Gm as the
commitment key. Rather than sending (c1, . . . ,cm) ∈ Gm explicitly to the verifier, the prover instead just
sends an inner-pairing-product commitment c∗ to (c1, . . . ,cm) using g = (g1, . . . ,gm) as the commitment
key. In other words, the commitment is

c∗ :=
m

∑
j=1

e

(
m

∑
i=1

ui, j ·hi,g j

)
=

m

∑
j=1

m

∑
i=1

e(ui, j ·hi,g j) .

This is just a single element of Gt .
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Evaluation phase of the improved protocol. If the verifier requests the evaluation q(z), let w,x ∈ Fm
p be

vectors such that q(z) = wT ·u · x, and let v denote the claimed value of q(z).
Both vectors w and x themselves have the same tensor structure exploited to maintain polylogarithmic

verifier time in Section 15.4.4. Recall that that protocol allowed a prover to establish knowledge of an
opening t ∈ Gm of a given inner-pairing-product commitment such that ⟨t,y⟩ = v, where y ∈ Fm is any
public vector that can be written as a (logm)-dimensional tensor product of length-2 vectors.

Denote u · x ∈ Fm
p by d. The prover first sends the verifier a Pedersen-vector commitment c′ ∈G, whose

prescribed value is ⟨d,h⟩. It suffices for the prover to establish three things.

• The prover knows an opening t = (t1, . . . , tm) ∈Gm of the inner-pairing-product commitment c∗.

• ⟨t,x⟩ = c′. Combined with the first bullet above, this means that, if u is the matrix with column
commitments given by the entries of t, then c′ is a Pedersen-vector commitment to u · x using key h,
i.e., c′ = ∑

m
i=1(u · x)i ·hi.

• The prover knows an opening d = (d1, . . . ,dm) ∈ Fm
p of c′ such that ⟨w,d⟩ = v. Combined with the

bullet above, this means that wT ·u · x = v as claimed by P .

The first two items together can be established directly by the protocol of Section 15.4.4.
Since w also has tensor structure, it is tempting to also apply the protocol of Section 15.4.4 to establish

that the third bullet point holds. This does not work directly because c′ is not an AFGHO-commitment to
d but rather a Pedersen-vector commitment to d. To address this, the verifier simply transforms c′ into an
AFGHO-commitment as follows: for a public, randomly chosen g ∈G, the verifier lets c′′ = e(c′,g). Then
c′′ ∈Gt is an AFGHO-commitment to d with commitment keys h ∈Gn and g ∈G. Indeed, by bilinearity of
e:

c′′ = e(
m

∑
i=1

dihi,g) =
n

∑
i=1

e(di ·hi,g) =
n

∑
i=1

e(hi,di ·g).

Hence, the prover can invoke the protocol of Section 15.4.4 to prove it knows an opening d of c′′ such that
⟨w,d⟩= v.

15.4.6 Achieving O(logn) communication and verification time

Recall that in Round 1 of the protocol of Section 15.4.3, the verifier is able to use the pre-processing outputs
∆
(1)
L and ∆

(1)
R to compute a commitment cg(1) to the newly-updated vector g(1) = α

−1
1 g(0)L +α1g(0)R under key

Γ(1). However, the verifier is not able to derive a commitment to u(1) = α1u(0)L +α
−1
1 u(0)R under key Γ(1).

Rectifying this turns out to lead to improved verification costs, of O(logn) instead of O(log2 n).
The protocol below conceptually proceeds in logn rounds in close analogy with Bulletproofs and the

protocol of Section 15.4.3, with each round halving the lengths of the vectors under consideration. But each
round in the protocol below actually consists of 4 messages. So the number of actual rounds of communi-
cation in the final protocol is 2 logn rather than logn.

The setup. Suppose at the start of Round i, the prover has claimed to know two vectors u(i−1),g(i−1) ∈
Gn·2−(i−1)

satisfying the following three equations:

⟨u(i−1),g(i−1)⟩= c1, (15.17)
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⟨u(i−1),Γ(i−1)⟩= c2 (15.18)

⟨g(i−1),Γ(i−1)⟩= c3. (15.19)

In Round 1, the following choices ensure that the three equations above capture P’s claim that the
protocol as a whole is meant to verify, namely that P knows u(0) satisfying

⟨u(0),g(0)⟩= cu(0) . (15.20)

Set Γ(0) = g(0), and set c1 = c2 = cu(0) . Finally, set c3 = ⟨g(0),g(0)⟩, which is a quantity that can be included
in the output of pre-processing, as it is independent of u(0).190 Under the above settings of Γ(0), c1, c2, and
c3, the validity of Equations (15.17)-(15.19) for i = 1 is equivalent to the validity of Equation (15.20).

Description of Round i. The purpose of Round i is to reduce the three equations above to three equations
of the same form, but over vectors u(i) and g(i) that are shorter than u(i−1),g(i−1) by a factor of 2. This is done
as follows (below, we intermingle the description of each step of the protocol with intuitive justification for
the step. A standalone protocol description is in Protocol 14).

• The prover begins by sending four quantities D1L,D1R,D2L,D2L ∈Gt claimed to be AFGHO-commitments
to the left and right halves of u(i−1) and g(i−1) under key Γ(i). Conceptually, the point of sending these
four commitments is to enable the verifier to homomorphically compute commitments under Γ(i) to
u(i) and g(i) (defined later in the protocol).

• The verifier chooses a random β ∈ Fp and sends it to P . Conceptually, β is used to “take a ran-
dom linear combination” of the three equations, yielding a single “equivalent” equation. Specifically,
observe that if Equations (15.17)-(15.19) hold, then so does the following equation:

⟨u(i−1)+βΓ
(i−1),g(i−1)+β

−1
Γ
(i−1)⟩= c1 +β

−1c2 +βc3 + ⟨Γ(i−1),Γ(i−1)⟩. (15.21)

Meanwhile, it turns out that if the prover can establish that it knows u(i−1) and g(i−1) such that Equation
(15.21) holds even for just three values of β , then in fact u(i−1) and g(i−1) satisfy Equations (15.17)-
(15.19). This is because, if any one of Equations (15.17)-(15.19) fail to hold, then Equation (15.21)
can only hold for at most 2 values of β ∈ Fp, as the left hand and right hand sides of Equation (15.21)
are distinct Laurent polynomials in β , and hence can agree on at most 2 points.

So, conceptually speaking, the remainder of Round i will be devoted to proving that Equation (15.21)
holds for the verifier’s random choice of β . As we detail below, the remainder of the round accom-
plishes this essentially by applying the standard Bulletproofs iteration to Equation (15.21), i.e., of
randomly choosing an α ∈ Fp and using it to “randomly combine” the left and right halves of u(i−1)

and g(i−1) respectively to obtain new vectors u(i) and g(i)of half the length.

To this end, let

w1 = u(i−1)+βΓ
(i−1) (15.22)

190More generally, Round i of the protocol will require that the pre-processing also output the quantity ⟨Γ(i−1),Γ(i−1)⟩.
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and

w2 = g(i−1)+β
−1

Γ
(i−1), (15.23)

and let w1L and w1R denote the left and right halves of w1 and similarly for w2L and w2R.

• The prover sends cross-terms vL and vR claimed to equal ⟨w1L,w2R⟩ and ⟨w1R,w2L⟩.

• The verifier chooses a random α ∈ Fp and sends it to the prover.

• The prover defines:

u(i) = α ·w1L +α
−1w1R (15.24)

g(i) = α
−1 ·w2L +αw2R. (15.25)

• The verifier does not know u(i) or g(i) but can homomorphically compute the following three quanti-
ties:

– ⟨u(i),g(i)⟩. Indeed, if Equations (15.17)-(15.19) hold and vL,vW are prescribed, then a straight-
forward consequence of Equation (15.21) is that

⟨u(i),g(i)⟩= c1 +β
−1c2 +βc3 + ⟨Γ(i−1),Γ(i−1)⟩+α

2vL +α
−2vR. (15.26)

Note that the verifier has access to all terms on the right hand side of Equation (15.26) (as
mentioned in Footnote 190, ⟨Γ(i−1),Γ(i−1)⟩ can be computed in pre-processing.)

– ⟨u(i),Γ(i)⟩. Indeed, if D1L and D1R are as prescribed, then Equations (15.22) and (15.24) imply
that:

⟨u(i),Γ(i)⟩= αD1L +α
−1D1R +αβ∆

(i)
L +α

−1
β∆

(i)
R . (15.27)

Recall that, here, ∆
(i)
L = ⟨Γ(i−1)

L ,Γ(i)⟩ and ∆
(i)
R = ⟨Γ(i−1)

R ,Γ(i)⟩ are commitments to the left and
right halves of Γ(i−1) computed during pre-processing.

– ⟨g(i),Γ(i)⟩. If D2L and D2R are as prescribed, then Equations (15.23) and (15.25) imply that

⟨g(i),Γ(i)⟩= α
−1D2L +αD2R +α

−1
β
−1

∆
(i)
L +αβ

−1
∆
(i)
R . (15.28)

• Let c′1, c′2, and c′3 denote the above three quantities that the verifier homomorphically computes.
Round i+1 is then devoted to showing that indeed the prover knows u(i),g(i) such that the following
three equations indeed hold:

⟨u(i),g(i)⟩= c′1

⟨u(i),Γ(i)⟩= c′2,

⟨g(i),Γ(i)⟩= c′3.

The above protocol is summarized in Protocol 14.
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Sketch of the extraction analysis. The knowledge extractor proceeds similarly to the one for the protocol
of Section 15.4.3. First, it constructs a 3-transcript tree for the protocol, of depth 2logn (the 2 comes in be-
cause each of the logn “conceptual rounds” in the protocol description actually consists of 2 communication
rounds). For the remainder of this sketch, we use the phrase “round” to refer to a conceptual round.

As usual, the extractor proceeds from the leaves toward the root. At each node of distance 2i from the
root (capturing the start of round i+ 1 of the protocol), it constructs vectors u(i) and g(i) that “explain” the
prover’s messages in all transcripts of the sub-tree rooted at that node.

Suppose by way of induction that the extractor has already succeeded in reconstructing such vectors
for all vertices in the tree corresponding to rounds i+ 1 and later. Consider a tree vertex corresponding to
round i+1 of the protocol, and let α,β denote the random group elements selected by the verifier in round
i. Because AFGHO commitments are computationally binding and the extractor is efficient, one can argue
that for the vector u(i+1) reconstructed by the extractor for that vertex, there is an (efficiently computable)
vector z = (zL,zR) such that

u(i+1) = αzL +α
−1zR +αβΓ

(i−1)
L +α

−1
βΓ

(i−1)
R .

This is because Equation (15.27) ensures that the commitment to u(i+1) is a commitment to a vector of
this form. Similarly, one can argue that there is an (efficiently computable) vector t = (tL, tR) such that the
reconstructed vector g(i+1) is of the form

α
−1tL +αtR +α

−1
β
−1

Γ
(i−1)
L +αβΓ

(i−1)
R .

Now consider any node of the transcript tree capturing the second message of round i of the protocol.
Because the second message of Round i applies the Bulletproofs update procedure to commitments to w1
and w2 under commitment key Γ(i), the Bulletproofs extractor is able to reconstruct vectors w1 and w2
such that Equations (15.24) and (15.25) hold, i.e., w1 and w2 “explain” the reconstructed vectors u(i+1) and
g(i+1) for all child vertices of the node. Moreover, the previous paragraph implies that there are efficiently
computable vectors u(i−1) and g(i−1) such that Equations (15.22) and (15.23) hold, i.e., w1 = u(i−1)+βΓ(i−1)

and w2 = g(i−1)+β−1Γ(i−1).
All that is left is to argue that u(i−1) and g(i−1) satisfy Equations (15.17)-(15.19). That u(i−1) and g(i−1)

satisfy Equation (15.21) for the three values of β appearing in the 3-transcript tree follows from the following
three facts. First, the verifier’s commitment computation in Equation (15.26) applies the Bulletproofs update
procedure to confirm that the prover knows vectors w1 = u(i−1)+βΓ(i−1) and w2 = g(i−1)+β−1Γ(i−1) such
that Equation (15.21) holds. Second, as argued above, w1 and w2 “explain” the reconstructed vectors u(i+1)

and g(i+1) and hence they are exactly the vectors that the Bulletproofs knowledge extractor would compute if
the Bulletproofs update procedure were applied to Equation (15.21). This means that the vectors computed
by the extractor satisfy Equation (15.21). Finally, as explained in the protocol description itself, if u(i−1)

and g(i−1) satisfy Equation (15.21) for three or more values of β , then they also satisfy Equations (15.17)-
(15.19).
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Protocol 14 A transparent argument of knowledge of vectors u,g ∈ Gn such that ⟨u,g⟩ = c1, ⟨u,Γ⟩ = c2,
and ⟨g,Γ⟩= c3, where Γ∈Gn is a public vector summarized via a linear-time pre-processing phase (Section
15.4.3). Here, G is an additive group and ⟨u,g⟩ = ∑

n
i=1 e(ui,gi) denotes the inner-pairing-product between

u and g. The protocol consists of 2 log2 n communication rounds, with 6 Gt elements communicated from
prover to verifier per round. Total verifier time is dominated by O(logn) scalar multiplications in Gt . For
simplicity, we present the protocol for a symmetric pairing, though inner-pairing-product commitments are
only binding for asymmetric pairings (in particular, under the SXDH assumption, which only holds for
asymmetric pairings).

1: Let G be an additive cyclic group of prime order p with with bilinear map e : G×G→Gt .
2: Input is c1 = ⟨u,g⟩, c2 = ⟨u,Γ⟩, and c3 = ⟨g,Γ⟩, where u,g,Γ ∈ Gn. Verifier only knows c1,c2,c3

and the following quantities computed during pre-processing: ⟨Γ,Γ⟩, as well as AFGHO commitments
∆L = ⟨ΓL,Γ

′⟩ and ∆R = ⟨ΓR,Γ
′⟩ to the left and right halves of Γ under public commitment key Γ′ ∈Gn/2.

3: If n = 1, Prover sends u, g, and Γ, to the verifier and the verifier checks that c1 = ⟨u,g⟩, c2 = ⟨u,Γ⟩,
c3 = ⟨g,Γ⟩, ∆L = ⟨ΓL,Γ

′⟩ and ∆R = ⟨ΓR,Γ
′⟩.

4: Otherwise, P sends D1L,D1R,D2L,D2L ∈ Gt claimed to be AFGHO-commitments to the left and right
halves of u and g under key Γ′.

5: V chooses a random β ∈ Fp and sends it to P .
6: P sets w1 = u+βΓ and w2 = g+β−1Γ. Let w1L and w1R denote the left and right halves of w1 and

similarly for w2L and w2R.
7: P sends vL,vR ∈Gt claimed to equal ⟨w1L,w2R⟩ and ⟨w1R,w2L⟩.
8: V chooses a random α ∈ Fp and sends it to P
9: P sets u′ = α ·w1L +α−1 ·w1R and g′ = α−1 ·w2L +α ·w2R.

10: V sets:

c′1 = c1 +β
−1c2 +βc3 + ⟨Γ,Γ⟩+α

2vL +α
−2vR.

c′2 = αD1L +α
−1D1R +αβ∆L +α

−1
β∆R.

c′3 = α
−1D2L +αD2R +α

−1
β
−1

∆L +αβ
−1

∆R.

11: V andP apply the protocol recursively to prove thatP knows vectors u′,g′ ∈Gn/2 such that ⟨u′,g′⟩= c′1,
⟨u′,Γ′⟩= c′2, and ⟨g′,Γ′⟩= c′3.
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Chapter 16

Wrap-Up of Polynomial Commitments

16.1 Batch Evaluation of Homomorphically Committed Polynomials

In some applications of polynomial commitment schemes to SNARKs, the verifier will wish to open many
committed polynomials at the same point—see for example Section 10.3.2. We now explain that, if the
polynomial commitment scheme is homomorphic (as all polynomial commitment schemes in this chapter
are), all openings can be verified with essentially the same prover and verifier costs as a single opening.

Suppose for concreteness that the prover claims that p(r) = y1 and q(r) = y2 where p and q are commit-
ted polynomials over field F, with commitments c1 and c2 respectively. Rather than verifying both claims
independently, the verifier can instead verify a random linear combination of the claims, i.e., check that

a · p(r)+q(r) = a · y1 + ·y2 (16.1)

for randomly chosen a ∈ F. Clearly Equation (16.1) is true if both original claims are true. Meanwhile,
because the left hand side and right hand side of Equation (16.1) are both linear functions of a, so if either
one of the original claims is false, Equation (16.1) will be false except with probability at most 1/|F| over
the random choice of a.

So up to soundness error 1/|F|, verifying both claims is equivalent to verifying Equation (16.1), which
is an evaluation claim about a single polynomial ap+q, of the same degree as p and q are individually. Via
homomorphism, the verifier can compute a commitment c3 to the polynomial a · p+q unaided. Hence, the
prover and verifier can apply the polynomial commitment’s evaluation procedure directly to this polynomial
to check Equation (16.1).

This means the evaluation procedure has to be applied only once to check both original claims. The
only extra work the prover does to reduce the two original claims to the one derived claim is to compute
the polynomial a · p+ q, and the only extra work the verifier does is to compute the derived commitment
c3 from c1 and c2, and a · y1 + y2 from y1 and y2. Both of these extra computations are typically low-order
costs, i.e., far cheaper than computing and verifying an evaluation proof respectively.

More general batching techniques are also known, which can handle evaluating multiple different homomorphically-
committed polynomials at distinct points [BDFG21].

16.2 Commitment Scheme for Sparse Polynomials

Let us call a degree-D univariate polynomial dense if the number of nonzero coefficients is Ω(D), i.e., at
least a constant fraction of the coefficients are nonzero. Similarly, call an ℓ-variate multilinear polynomial
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dense if the number of coefficients over the Lagrange basis is Ω(2ℓ). If a polynomial is not dense, we call it
sparse.

An example of sparse polynomials that we have seen in this survey are ãddi and m̃ulti, the multilinear
extensions of the functions addi and multi that arose in our coverage of the GKR protocol (Section 4.6) and
the related functions ãdd and m̃ult appearing in the MIP of Section 8.2. Indeed, ãdd and m̃ult are defined over
ℓ= 3log |C| variables, and the number of Lagrange basis polynomials over this many variables is 2ℓ = |C|3.
However, the number of nonzero coefficients of ãdd and m̃ult in the Lagrange basis is just |C|.

As discussed in Section 4.6.6, when ãdd and m̃ult cannot be evaluated in time sublinear in |C|, one
technique to save the verifier time is for a trusted party to commit to these polynomials in a pre-processing
phase with a polynomial commitment scheme (this can be done transparently, so that any party willing
to put in the effort can confirm that the commitment was computer correctly). Then whenever the GKR
protocol or MIP of Sections 4.6 and 8.2 (or SNARKs derived thereof) is applied to C on a new input,
the verifier need not evaluate ãdd and m̃ult on its own to perform the necessary checks of the prover’s
messages. Rather, the verifier can ask the prover to reveal the evaluations, using the evaluation phase of the
polynomial commitment scheme. This reduces the verifier’s runtime after the pre-processing phase from
Θ(|C|) to whatever is the verification time of the evaluation phase of the polynomial commitment scheme.
Note that in this application of the polynomial commitment scheme, there is no need for the protocol to
be zero-knowledge or extractable; it only needs to be binding to save the verifier work in the resulting
zero-knowledge arguments for circuit satisfiability.

We have now seen several polynomial commitment schemes in which the committer’s runtime is dom-
inated by doing a number of group exponentiations that is linear in the number of coefficients for dense
univariate and multilinear polynomials (e.g., Section 14.3). However, these schemes do not offer any addi-
tional runtime savings for the committer if the polynomials are sparse. For example, applying these schemes
directly to ãdd and m̃ult requires Ω(|C|3) time, which is totally impractical.191

In this section, we sketch a commitment scheme proposed by Setty [Set20] for any polynomial q such
that the runtime of the committer is proportional to the nonzero coefficients M of q. The commitment scheme
uses any polynomial commitment scheme for dense, multilinear polynomials as a subroutine. This result is
analogous to the holography achieved in Section 10.3.2, which gave a way to commit to any sparse bivariate
polynomial given a commitment scheme for dense univariate polynomials. The schemes of this section and
Section 10.3.2 share conceptual similarities, but also key differences.

For presentation purposes, we first describe a protocol that achieves the above goals up to a logarithmic
factor. That is, the committer will have to apply a dense multilinear polynomial commitment scheme to a
multilinear polynomial defined over ℓ′ = log2 M + log2 ℓ variables. Assuming M is 2Ω(ℓ) (as is the case for
ãdd and m̃ult), O(Mℓ)≤O(M logM), so the dense polynomial to be committed is an O(logM) factor larger
than can be hoped for.

At the end of this section we sketch a technique to remove even this extra ℓ = Θ(logM) factor from
the committer’s runtime by exploiting additional structure in ãdd and m̃ult. For brevity, our sketch is very
high-level, and deviates in certain details from Setty’s scheme–the interested reader is directed to [GLS+21,
Section 6] for a self-contained exposition of Setty’s full scheme.

Simple scheme with logarithmic factor overhead. The idea is to identify a layered arithmetic circuit C′
of fan-in two that takes as input a description of a sparse ℓ-variate multilinear polynomial q (we specify the
input description shortly) and a second input z ∈ Fℓ, and such that C′ outputs q(z). We will ensure that the

191Directly applying the KZG-based scheme for multilinear polynomials of Section 15.3 would allow the commitment to be
computed in O(|C|) time, but the SRS would have length |C|3, and the evaluation phase may take time Ω(|C|3) for the committer.
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input to C′ consists of O(Mℓ) field elements, and C′ has size O(Mℓ) and depth O(logM). Also, C′ will have
wiring predicates ãddi and m̃ulti that can be evaluated any point in O(log(Mℓ)) time.

If s denotes the input to C′ specifying q, the commitment to q in our sparse polynomial commitment
scheme will simply be a commitment to the multilinear extension s̃ of s using any commitment scheme for
dense multilinear polynomials. The reveal phase of our sparse polynomial commitment scheme works as
follows. When the verifier requests the committer reveal q(z) for a desired z ∈ Fℓ, the committer sends
the claimed value v of q(z), and then the committer and verifier apply the GKR protocol to the claim that
C′(s,z) = v.192 At the end of the GKR protocol, the verifier needs to evaluate the multilinear extension of
the input (s,z) at a random point. Since the verifier knows z but not s, using an observation analogous to
Equation (7.1), the multilinear extension of (s,z) can be efficiently evaluated at any desired point so long as
the verifier learns an evaluation of s̃ at a related point. The verifier can obtain this evaluation from the prover
using the reveal phase of the dense polynomial commitment scheme.

Since C′ has size O(Mℓ), the GKR protocol prover applied to C′ can be implemented in O(Mℓ) total
time, and committing to s̃ using an appropriate dense polynomial commitment scheme requires a multi-
exponentiation of size O(Mℓ). Since ãddi and m̃ulti for C′ can be evaluated in O(log(Mℓ)) time, the verifier’s
runtime in the protocol is dominated by the cost of the evaluation phase of the dense polynomial commitment
scheme.

Here is how the input to C′ will specify the polynomial q. Let T1, . . . ,TM ∈ {0,1}ℓ denote the Lagrange
basis polynomials χT1 , . . . ,χTM that have nonzero coefficients c1, . . . ,cM in q. That is, let

q(X) =
M

∑
i=1

ci ·
ℓ

∏
j=1

(Ti, jX j +(1−Ti, j)(1−X j)) . (16.2)

The description s of q will consists of two lists L[1], . . . ,L[M] and B[1], . . . ,B[M], where L[i] = ci ∈ Fp and
B[i] = Ti ∈ {0,1}ℓ. The circuit C′ will simply evaluate Equation (16.2) at input z. It is not hard to verify
that Equation (16.2) can be evaluated by an arithmetic circuit with O(Mℓ) gates, such that the multilinear
extensions of the wiring predicates addi and multi for each layer of C′ can be evaluated in O(log(Mℓ)) time.

Saving a logarithmic factor (sketch). The idea to shave a factor of ℓ from the size of C′ and the length of
its input when committing to q = ãdd or q = m̃ult is as follows. First, modify the description of q, so as
to reduce the description length from O(M · ℓ) field elements down to O(M) field elements. Then identify
a Random Access Machine M that takes as input this modified description of q and an input z ∈ Fℓ and
outputs q(z). We make sure thatM runs in time O(M), and thatM can be transformed into a circuit of size
that is just a constant factor larger than its runtime.

Here is how to modify the description of q = ãdd. Rather than having the identities of the nonzero
Lagrange coefficients of ãdd be specified via a list of bit-strings T1, . . . ,TM ∈ {0,1}3log |C|, we instead specify
their identities with triples of integers (u1,u2,u3) ∈ {1, . . . , |C|}3, and interpret a triple as indicating that the
u1’st gate of C is an addition gate with in-neighbors assigned integer labels u2 and u3.

The Random Access Machine M works as follows. It is given as input the modified description of

q = ãdd and a point z = (r1,r2,r3) ∈
(
Flog |C|

p

)3
, runs in O(M) time and outputs q(z). Recall from Section

8.2 that add(a,b,c) : {0,1}3logS→ {0,1} interprets its input as three gate labels a,b,c and outputs 1 if and
only if b and c are the in-neighbors of gate a, and a is an addition gate. This means that

ãdd(X ,Y,Z) = ∑
a∈{0,1}log |C| : a an add gate

χa(X) ·χin1(a)(Y ) ·χin2(a)(Z), (16.3)

192They could also apply the MIP of Section 8.2 to verify this claim, replacing the second prover with a polynomial commitment
scheme for dense multilinear polynomials.
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where in1(a) and in2(a) respectively denote the labels in {0,1}log |C| of the first and second in-neighbors
of gate a in C. Recall in addition from Lemma 3.8 that evaluating all (log |C|)-variate Lagrange basis
polynomials at a specified input r ∈ Flog |C| can be done in O(|C|) time. So to evaluate ãdd at an input
(r1,r2,r3) ∈

(
Flog |C|)3

in O(|C|) time, it suffices for M to operate in two phases. In the first phase, M
evaluates all (log |C|)-variate Lagrange basis polynomials at the three inputs r1,r2,r3 ∈ Flog |C| in O(|C|)
time (this can be done without even examining the list of triples (u1,u2,u3)), and stores the 3 · |C| results in
memory. In the second phase,M evaluates ãdd at (r1,r2,r3) via Equation (16.3) in O(|C|) additional time,
given random access to the memory contents. Note that the the memory accesses made byM depend only
on the committed polynomial q and are independent of the evaluation point z.

Using the computer-programs-to-circuit-satisfiability transformation of Chapter 6, specifically using the
fingerprinting-based memory-checking procedure described in Section 6.6.2,M can be transformed into a
circuit-satisfiability instance for a circuit C′. As described in Sections 6.6.2 and 6.6.3, the transformation
procedure from M to the circuit-satisfiability instance is itself interactive, but the transformation can be
rendered non-interactive in the random oracle model using the Fiat-Shamir transformation.

16.3 Polynomial Commitment Schemes: Pros and Cons

We have seen three approaches to the construction of practical polynomial commitment schemes. The first
is based on IOPs, specifically FRI (Section 10.4.2), and Ligero- and Brakedown-commitments (Section
10.5). The second (Section 14) builds in sophisticated ways on homomorphic commitment schemes such as
Pedersen commitments [Ped91], and Schnorr-style [Sch89] techniques for proving inner product relations
between a committed vector and a public vector; this approach based binding on the assumed hardness of
the discrete logarithm problem. The third (Section 15) is derived from work of KZG [KZG10] and is based
on bilinear maps and requires a trusted setup. Roughly, the practical pros and cons of the three approaches
to polynomial commitment schemes are the following.

Pros and cons of the IOP-based polynomial commitments. The IOP approach is the only one of the
three approaches that is plausibly quantum-secure (it can lead to security in the quantum random oracle
model [CMS19]). The other two approaches assume hardness of the discrete logarithm problem, which is
a problem that quantum computers can solve in polynomial time. Another advantage of the IOP approach
is that it uses very small public parameters (these simply specify one or more cryptographic hash functions)
that moreover can be generated at random, i.e., they simply specify a randomly chosen hash function from
a collision-resistant hash family. That is, unlike the third approach, the first (and also the second) approach
is transparent, meaning it does not require a structured reference string (SRS) generated by a trusted party
who will have the power to forge proofs of evaluations if they fail to discard toxic waste.

The downsides of the IOP-based schemes include the following. FRI’s evaluation proofs, while polylog-
arithmic in size and the smallest amongst known IOP-based schemes, are concretely rather large, especially
relative to commitment schemes from other approaches with logarithmic or constant size proofs, e.g., Bul-
letproofs (Section 14.4), Dory (Section 15.4), and KZG commitments (Section 15).

FRI also has relatively high concrete costs for the prover. To be more precise, FRI exhibits a strong
tension between prover costs and verification costs, with the tradeoff between the two determined by the
rate of the Reed-Solomon code used in the protocol (see Section 10.4.4 for details). Under current security
analyses, if FRI is configured to have a slower prover than other polynomial commitment schemes (e.g.,
using Reed-Solomon code rate 1/16), the size of evaluation proofs at 100 bits of security is substantially
over 100 KBs. See, for example, [Hab22] for details. When configured to have a faster prover, the proof
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sizes are considerably larger. For example, when using rate rate 1/2 rather than rate 1/16, the proofs are
roughly 4× larger though the prover is roughly 8× faster.

Ligero- and Brakedown-commitments are faster for the prover than FRI, but have significantly bigger
proofs. Some approaches toward mitigating their proof sizes via SNARK composition [XZS22, CBBZ22]
are discussed in Chapter 19.

Another major disadvantage of the IOP approach is that the other two approaches yield homomorphic
commitments (i.e., given two commitments cp, cq to two polynomials p and q, a commitment c to the sum
of p+q can be derived). This homomorphism property leads to excellent batch-opening properties (Section
16.1) and is essential in some applications of polynomial commitment schemes (see for example Section
18.5 later in this survey). FRI and Ligero also require the prover to perform FFTs, which can place some
restrictions on the field used and for large instances can be a bottleneck in prover time and space.

Pros and cons of discrete-logarithm based polynomial commitments. The second approach is also
transparent because the public parameters are simply random group elements— though depending on the
commitment scheme, there can be a lot of them, and generating many random elements of elliptic-curve
groups can be expensive in practice. This approach does not require FFTs, and the committer performs
O(n) many group exponentiations in any group for which the discrete logarithm problem is hard (with
a Pippenger-style multi-exponentiation speedup possible, with the exception of Bulletproof’s evaluation
proofs). Hence, this approach currently has very good concrete efficiency for the committer, roughly com-
parable to Ligero- and Brakedown-commitments for large enough polynomials. Until the advent of Dory
(Section 15.4), this approach did require larger verifier runtime than the other two approaches. For example,
in Hyrax’s commitment scheme (Section 14.3), the verifier computes a multi-exponentiation of size O(

√
n),

while in Bulletproofs (Section 14.4) the multi-exponentiation done by the verifier has linear size, Θ(n).
Dory reduces the verifier time to O(logn) group exponentiations, at the cost of constant-factor increase in
the time to compute commitments, mostly due to Dory’s need to operate in a pairing-friendly group, which
can lead concretely slower group operations.

Pros and cons of KZG-based polynomial commitments. The primary benefit of the third approach is its
superior verification costs when applied to univariate polynomials. Specifically, both the commitment and
proofs of evaluation consist of a constant number of group elements, and can be verified with a constant
number of group operations and two bilinear map evaluations. For multilinear polynomials (Section 15.3)
these costs are logarithmic in the number of coefficients instead of constant.

A significant downside of the third approach is that it requires an SRS, with toxic waste that must be
discarded to avoid forgeability of evaluation proofs. There has been significant work to mitigate the trust
assumptions required, and it is now known how to make the SRS “updatable”. This means that the SRS
can be updated at any point by any party, such that if even a single party is honest—meaning a single party
discards their toxic waste—then no one can forge proofs of evaluation [MBKM19]. The rough idea for why
this is possible is that the SRS consists of powers of a random nonzero field element τ ∈ {1, . . . , p− 1} in
the exponent of a group generator g, so any party can “rerandomize the choice of τ” by picking a random
s ∈ {1, . . . , p−1} and updating the ith element of the SRS from gτ i

to (gτ i
)si

= g(τs)i
. That is, by raising the

ith entry of the SRS to the power si, τ is effectively updated to τ · s mod p, which is a random element of
{1, . . . , p−1}.

KZG commitments can also be more computation-intensive for the committer than alternatives. For
example, it requires a similar number of public-key cryptographic operations (i.e., group exponentiations)
as the second approach, but as with Dory these operations must be in pairing-friendly groups, for which
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Scheme Commit Size Evaluation Proof Size V time Commit time P time
FRI one hash O(log2(N) ·λ ) O(log2(N) ·λ ) O(N logN) O(N logN)

(Sections 10.4.4 and 10.4.2) value hash values hash evaluations field ops field ops
Ligero-commit one hash O(

√
N ·λ ) O(

√
N ·λ ) O(N logN) O(N)

(Section 10.5) value field elements field ops field ops field ops
Hyrax-commit O(

√
N) group O(

√
N) group multi-exp

√
N multi-exps O(N)

(Section 14.3) elements elements of size
√

N of size
√

N field ops
Bulletproofs one group O(logN) group multi-exp multi-exp O(N) group

(Section 14.4) element elements of size O(N) of size O(N) exps
Hyrax-commit + O(

√
N) group O(logN) groups multi-exp

√
N multi-exps O(N)

Bulletproofs (Section 14.4.2) elements elements of size
√

N of size
√

N field ops
Dory one group O(logN) group multi-exp

√
N multi-exps O(N)

(Section 15.4) element elements of size O(logN) of size
√

N field ops

Table 16.1: Costs of transparent polynomial commitment schemes covered in this survey. For simplicity, this table
restricts its focus to univariate polynomials of degree N with coefficients over the standard monomial basis. λ denotes
the security parameter. Commit time and P time columns respectively list a dominant operation to produce the
commitment and an evaluation proof. V time lists a dominant operation to verify any evaluation proof. FRI and Ligero-
commit are plausibly post-quantum, but not homomorphic; the others are homomorphic, but not post-quantum. Dory
requires operations over a pairing-friendly group and a pre-processing phase costing O(

√
N) group exponentiations.

The public parameters for FRI and Ligero simply specify a cryptographic hash function. For Bulletproofs, they are
O(N) random group elements, while for all other rows they are O(

√
N) random group elements. The term exp is short

for group exponentiation, and the term field ops is short for field operations.

group operations may be concretely more expensive.

16.4 Additional Approaches

Recent polynomial commitment schemes that we do not discuss in this survey include [BFS20, BHR+21,
AGL+22], which are based on a cryptographic notion called groups of unknown order. Specifically, so-
called DARKs [BFS20] claimed a polynomial commitment scheme with similar asymptotic verifier com-
plexity to Dory (logarithmic size evaluation proofs and verifier time), but contained a flaw in the security
analysis. This was rectified in [BHR+21] and a later version of [BFS20], and [AGL+22] improved the size
of the evaluation proof from a logarithmic number of group elements to constant (verification time remains
logarithmic, and prover costs increase substantially). Current constructions of groups of unknown order re-
quire a trusted setup or appear to be impractical. One construction is based on so-called class groups, which
are currently impractical in this context [DGS20] (see [Lee21, Table 2] for microbenchmarks), and the other
is based on so-called RSA groups modulo {−1,1}, which require a trusted setup.

Another example is recent work [BBC+18, BLNS20] that operates in a manner similar to Bulletproofs
(Section 14.4), but modifies it in order to base security on lattice assumptions that are believed to be post-
quantum secure. This approach currently appears to yield significantly larger proofs than the discrete-
logarithm based protocols that it is inspired by.
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Chapter 17

Linear PCPs and Succinct Arguments

17.1 Overview: Interactive Arguments From “Long”, Structured PCPs

“Short” PCPs for circuit satisfiability were covered in Chapter 9—by short, we mean the PCP proof has
length quasilinear in the circuit size. Recall (Section 9.2) that Kilian [Kil92] showed that short PCPs can be
transformed into succinct arguments by first having the prover cryptographically commit to the PCP string π

via Merkle-hashing. Then the argument-system verifier can simulate the PCP verifier, who queries a small
number of symbols of π . The argument system prover can reveal these symbols of the committed PCP
proof π , along with succinct authentication information to establish that the revealed symbols are indeed
consistent with the committed string.

Unfortunately, short PCPs are quite complicated and remain impractical.193 This chapter covers succinct
arguments obtained via a similar methodology, but without resorting to complicated and impractical short
PCPs.

Arguments without short PCPs. Why is the prover inefficient if one instantiates Kilian’s argument sys-
tem [Kil92] with a PCP of superpolynomial length L = nω(1)? The problem is that P has to materialize
the full proof π in order to compute its Merkle-hash and thereby commit to π . Materializing a proof of
superpolynomial length clearly takes superpolynomial time.

But Ishai, Kushilevitz, and Ostrovsky [IKO07] (IKO) showed that if π is highly structured in a manner
made precise below, then there is a way for P to cryptographically commit to π without materializing
all of it. This enables IKO to use structured PCPs of exponential length to obtain succinct interactive
arguments. Such “long” PCPs turn out to be much simpler than short PCPs. The commitment protocol
of [IKO07] is based on any semantically secure, additively-homomorphic cryptosystem, such as ElGamal
encryption [ElG85]. Here, an additively-homomorphic encryption scheme is analogous to the notion of
an additively-homomorphic commitment scheme (Section 12.3) which we exploited at length in Chapters
13 and 14. It is an encryption scheme for which one can compute addition over encrypted data without
decrypting the data.

Linear PCPs. The type of structure in the PCP proof that IKO [IKO07] exploit is linearity. Specifically, in
a linear PCP, the proof is interpreted as a function mapping Fv→ F for some integer v > 0. A linear PCP
is one in which the “honest” proof is (the evaluation table of) a linear function π . That is, π should satisfy
that for any two queries q1,q2 ∈ Fv and constants d1,d2 ∈ F, π(d1q1 +d2q2) = d1π(q1)+d2π(q2). This is

193Though interactive analogs of PCPs called IOPs can achieve reasonable concrete performance (Chapter 10).
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the same as requiring that π be a v-variate polynomial of total degree 1, with constant term equal to 0. Note
that in a linear PCP, soundness should hold even against “cheating” proofs that are non-linear. So the only
difference between a linear PCP and a PCP is that in a linear PCP, the honest proof is guaranteed to have
special structure.

Putting it all together. Summarizing the above, the arguments of IKO [IKO07] conceptually proceed in the
same two steps as Kilian’s argument based on short PCPs. In the first step, the prover commits to the proof
π , but unlike in Kilian’s approach, here the prover can leverage the linearity of π to commit to it without ever
materializing π in full. In the second step, the argument system verifier simulates the linear PCP verifier,
asking the prover to reveal certain evaluations of π , which the prover does using the reveal phase of the
commitment protocol.

Hence, in order to give an efficient argument system based on linear PCPs, IKO [IKO07] had to do two
things. First, give a linear PCP for arithmetic circuit satisfiability. Second, give a commit/reveal protocol
for linear functions.

In the results of IKO’s seminal paper, there are downsides to both of the steps above. First, when applied
to circuits of size S, IKO’s linear PCP has length |F|O(S2), i.e., exponential in the square of the circuit size.
To achieve practicality, this needs to be reduced to exponential in S itself rather than its square. Second,
IKO’s commit/reveal protocol for linear functions is interactive. This means that the arguments obtained
thereof are also interactive. Moreover, the arguments cannot be rendered non-interactive via the Fiat-Shamir
transformation because they are not public-coin. Interactivity, and associated lack of public verifiability,
renders the arguments unusable in many practical scenarios.

Subsequent work addressed both of the downsides above. First, Gennaro, Gentry, Parno, and Raykova
(GGPR) [GGPR13] give a linear PCP194 of length |F|O(S). Second, alternate transformations were given
to turn linear PCPs into succinct non-interactive arguments [GGPR13, BCI+13]. These transformations
use pairing-based cryptography in a manner reminiscent of KZG commitments (Section 15.2). Applying
these transformations to GGPR’s linear PCP yields SNARKs, variants of which are widely used in practice
today.195

Characteristics of the resulting arguments. A downside of long PCPs is that if the proof π has length
L, then even writing down one of the verifier’s queries to π requires logL field elements. If L is exponential
in the circuit size S = |C|, then even log(L) is linear in the circuit size. This means that even specifying the
linear PCP verifier’s queries takes time Ω(S). Compare this to the MIPs, PCPs, and IOPs from Chapters
8-10, where the verifier’s total runtime was O(n+polylog(S)), where n is the size of the public input to C.
In the zk-SNARKs we obtain in this chapter, these long messages from the PCP verifier to specify its queries
to π will translate into a long structured reference string, of length Ω(S), the generation of which produces
“toxic waste” that could be used to forge “proofs” of false statements if it is not discarded.

This is analogous to how many SNARKs for circuit-satisfiability that use KZG-polynomial commit-
ments (Section 15.2) require an SRS of size Ω(S). An important difference is that the SRS in KZG-based
SNARKs depends only on the size S of the circuit under consideration, while the SRS arising in the SNARKs
of this chapter is circuit-specific. If one tweaks the circuit under consideration even slightly, a new trusted
setup must be run.

However, the communication in the reverse direction of the linear PCP, from prover to verifier, is very
small (a constant number of field elements) and the verifier’s online verification phase is especially fast as a
consequence. This will ultimately lead to SNARKs with state-of-the-art proof length and verification costs.

194The observation that GGPR’s protocol is actually a linear PCP as defined by IKO was made in later work [BCI+13,SBV+13].
195A variant of the SNARK due to Groth [Gro16] is especially popular. See Section 17.5.6.
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Outline for the chapter. Section 17.2 covers IKO’s commit/reveal protocol for linear functions. Section
17.3 describes IKO’s linear PCP of length |F|O(S2). Section 17.4 covers GGPR’s linear PCP of length |F|O(S).
Section 17.5 covers transformations from linear PCPs to SNARKs via pairing-based cryptography.

17.2 Committing to a Linear PCP without Materializing It

Let π be a linear function Fv → F. This section sketches the technique of IKO [IKO07] for allowing the
prover to first commit to π in a “commit phase” and then answer a series of k queries q(1), . . . ,q(k) ∈ Fv in
a “reveal phase”. Roughly speaking, the security guarantee is that at the end of the commit phase, there is
some function π ′ (which may not be linear) such that, if the verifier’s checks in the protocol all pass and
P cannot break the cryptosystem used in the protocol, then the prover’s answers in the reveal phase are all
consistent with π ′.196

In more detail, the protocol uses a semantically secure homomorphic cryptosystem. Roughly speaking,
semantic security guarantees that, given a ciphertext c = Enc(m) of a plaintext m, any probabilistic polyno-
mial time algorithm cannot “learn anything” about m. Semantic security is an analog of the hiding property
of commitment schemes such as Pedersen commitments (Section 12.3). A cryptosystem is (additively) ho-
momorphic if, for any pair of plain texts (m1,m2) and fixed constants d1,d2 ∈ F, it is possible to efficiently
compute the encryption of d1m1+d2m2 from the encryptions of m1 and m2 individually. Here, in the context
of linear PCPs, m1 and m2 will be elements of the field F, so the expression d1m1 +d2m2 refers to addition
and scalar multiplication over F.

Many additively homomorphic encryption schemes are known, such as the popular ElGamal encyption
scheme, whose security is based on the Decisional Diffie-Hellman assumption introduced in Section 15.1.

Commit Phase. In the commit phase, the verifier chooses a vector r =(r1, . . . ,rv)∈Fv at random, encrypts
each entry of r and sends all v encryptions to the prover. Since π is linear, there is some vector d =
(d1, . . . ,dv) ∈ Fv such that π(q) = ∑

v
i=1 di · qi = ⟨d,q⟩ for all queries q = (q1, . . . ,qv). Hence, using the

homomorphism property of the encryption scheme, the prover can efficiently compute the encryption of
π(r) from the encryptions of the individual entries of r. Specifically, Enc(π(r)) = Enc(∑v

i=1 diri), and by the
homomorphism property of Enc, this last expression can be efficiently computed from Enc(r1), . . . ,Enc(rv).
The prover sends this encryption to the verifier, who decrypts it to obtain (what is claimed to be) s = π(r).

Remark 17.1. At the end of the commit phase, using the homomorphism property of Enc and the linearity
of π , the honest prover has managed to send to the verifier an encryption of π(r), even though the prover has
no idea what r is (this is what semantic security of Enc guarantees). Moreover, the prover has accomplished
this in O(v) time. This is far less than the Ω(|F|v) time required to evaluate π at all points, which would be
required if the prover were to build a Merkle tree with the evaluations of π as the leaves.

One may wonder whether the use of an additively homomorphic encryption scheme Enc can be replaced
with an additively homomorphic commitment scheme such as Pedersen commitments. Indeed, given a
Pedersen commitment to each entry of r, the prover could compute a Pedersen commitment c∗ to π(r)
using additive homomorphism, despite not knowing r, just as the prover in this section is able to compute
Enc(π(r)) given Enc(r1), . . . ,Enc(rv). The problem with this approach is that the verifier, who does not

196This section actually sketches a refinement of IKO’s commitment/reveal protocol, due to Setty et al. [SMBW12]. The original
protocol of IKO guaranteed that for each query i, there is a separate function πi to which P was committed. Setty et al. [SMBW12]
tweaked the protocol of IKO in a way that both reduced costs and guaranteed that P was committed to answering all k queries using
a single function π ′ (which is possibly non-linear).
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know π , would not be able to open c∗ to π(r). In contrast, by using an encryption scheme, the verifier can
decrypt Enc(π(r)) to π(r) despite not knowing π .

Reveal Phase. In the reveal phase, the verifier picks k field elements α1, . . . ,αk ∈ F at random, and
keeps them secret. The verifier then sends the prover the queries q(1), . . . ,q(k) in the clear, as well as
q∗ = r + ∑

k
i=1 αi · q(i). The prover returns claimed answers a(1), . . . ,a(k),a∗ ∈ F, which are supposed to

equal π(q(1)), . . . ,π(q(k)),π(q∗). The verifier checks that a∗ = s+∑
k
i=1 αi · a(i), accepting the answers as

valid if so, and rejecting otherwise.
Clearly the verifier’s check will pass if the prover is honest. The proof of binding roughly argues that the

only way for P to pass the verifier’s checks, if P does not answer all queries using a single function, is to
know the αi’s, in the sense that one can efficiently compute the αi’s given access to such a prover. But if the
prover knows the αi’s, then the prover must be able to solve for r, since V reveals q∗ = r+∑

k
i=1 αi ·q(i) to the

prover. But this would contradict the semantic security of the underlying cryptosystem, which guarantees
that the prover learned nothing about r from the encryptions of r’s entries.

17.2.1 Detailed Presentation of Binding Property When k = 1

We present the main idea of the proof of binding, in the case that only one query is made in the reveal phase,
i.e., k = 1. What does it mean for the prover not to be bound to a fixed function after the commitment phase
of the protocol? It means that there are at least two runs of the reveal protocol, where in the first run, the
verifier sends queries q1 and q∗ = r+α · q1, and the prover responds with answers a1 and a∗, while in the
second run the verifier sends queries q1 and q̂ = r+α ′ · q1, and the prover responds with answers a′1 ̸= a1
and â. That is, in two different runs of the reveal protocol, the prover responded to the same query q1 with
two different answers, and managed to pass the verifier’s checks.

As indicated above, we will argue that in this case, the prover must know α and α ′. But, as we now
explain, this breaks the semantic security of the encryption scheme.

Why the prover knowing α and α ′ means semantic security is broken. Roughly speaking, this is because
if the prover really learned nothing about r from Enc(r1), . . . ,Enc(rv), as promised by semantic security of
Enc, then it should be impossible for the prover to determine α with probability noticeably better than
random guessing, even given q1, q∗ = r+α ·q1, and q̂ = r+α ′ ·q1. This is because, without knowing r, all
that the equations

q∗ = r+α ·q1 (17.1)

and

q̂ = r+α
′ ·q1 (17.2)

tell the prover about α and α ′ is that they are two field elements satisfying q∗− q̂ = (α −α ′)q1. This
is because, for every pair α,α ′ ∈ F satisfying Equations (17.1) and (17.2) for r, and any c ∈ F, the pair
α + c,α ′+ c also satisfy both equations when r is replaced by r− cq1. So without knowing anything about
r, Equations (17.1) and (17.2) reveal no information whatsoever about α itself. Equivalently stated, if the
prover knows α , then the prover must have learned something about r, in violation of semantic security of
Enc.

Showing that the prover must know α and α ′. Recall that s is the decryption of the value sent by the
prover in the commit phase, which is claimed to be Enc(π(r)). Since the prover cannot decrypt, the prover
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does not know s. Even so, if the verifier’s checks in the two runs of the reveal phase pass, then the prover
does know that:

a∗ = s+αa1, (17.3)

and

â = s+α
′a1. (17.4)

Subtracting these two equations means that the prover knows that

(a∗− â) = αa1−α
′a′1, (17.5)

Similarly, even though the prover doesn’t know r, the prover does know that Equations (17.1) and (17.2)
hold. Subtracting those two equations implies that q∗− q̂ = (α−α ′)q1.

We may assume that none of the queries are the all-zeros vector, since any linear function π evaluates to
0 on the all-zeros vector. Hence, if we let j denote any nonzero coordinate of q1, then:

q∗j − q̂ j = (α−α
′)q1, j. (17.6)

Since a1 ̸= a′1, Equations (17.5) and (17.6) express α and α ′ via two linearly independent equations in
two unknowns, and these have a unique solution. Hence, the prover can solve these two equations for α and
α ′ as claimed.

A conceptual perspective: comparison to special-soundness of Schnorr’s protocol. In Section 12.2.1
and 12.2.2, we saw Σ-protocols, and Schnorr’s Σ-protocol for knowledge of a discrete logarithm in particular.
Recall that Σ protocols are three-message protocols (where the prover speaks first) that satisfy a notion called
special-soundness. This means that given two accepting transcripts (a,e,z) and (a,e′,z′) with the same first-
message a and distinct verifier challenges e,e′, one can efficiently solve for a witness w.

In the case of Schnorr’s protocol, we saw that the two accepting transcripts implied the existence of a
witness w satisfying two linearly-independent equations in two unknowns w and r, namely z = w · e+ r and
z′ = w · e′+ r. Given such equations, one can efficiently solve for both w and r.

As we now explain, one can understand the binding analysis of this section via analogy to the special
soundness of Schnorr’s protocol.

This section’s commit/reveal protocol for a linear function π is actually a four-message protocol, rather
than a three-message one: the verifier sends the prover an encryption of r, the prover responds with an
encryption of π(r), then the verifier sends two evaluation queries q1 and q∗ = r+αq1, to which the prover
responds with π(q1) and π(q∗). Very loosely, this is analogous to a three-message protocol rather than four,
where the first message is (r,π(r)) and is sent from prover to verifier, but where the prover itself does not
know this first message because r and π(r) are encrypted.

Under this view, the binding analysis above is analogous to the special-soundness of Schnorr’s protocol.
The binding analysis supposes that we are given two accepting transcripts for the above three-message proto-
col satisfying the following properties: the two transcripts have the same first message (r,π(r)), and distinct
verifier challenges (q1,q∗ = r+αq1) and (q1, q̂ = r+α ′q1), just as in the setting of special soundness. That
is, the two transcripts are:

((r,π(r)),(q1,q∗ = r+αq1),(a1,a∗))

and
((r,π(r)),(q1, q̂ = r+α

′q1),(a′1, â)).
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The binding analysis establishes that by virtue of the verifier accepting the above two transcripts, one
can derive two equations in two unknowns, namely α and α ′ (see Equations (17.5) and (17.6)). Moreover,
if a1 ̸= a′1, these two equations are linearly independent, and hence one can solve for both α and α ′. These
in turn specify r, violating the semantic security of the encryption scheme.

17.3 A First Linear PCP for Arithmetic Circuit Satisfiability

Let {C,x,y} be an instance of arithmetic circuit satisfiability (see Section 6.5.1). For this section, we refer
to a setting W ∈ FS of values to each gate in C as a transcript for C.

The linear PCP of this section is from IKO [IKO07], and is based on the observation that W is a correct
transcript if and only if W satisfies the following ℓ= S+ |y|−|w| constraints (there is one constraint for every
other non-output gate of C, there are two constraints for each output gate of C, and there are no constraints
for any witness elements).

• For each input gate a, there is a constraint enforcing that Wa− xa = 0. This effectively insists that the
transcript W actually corresponds to the execution of C on input x, and not some other input.

• For each output gate a there is a constraint enforcing that Wa−ya = 0. This effectively insists that the
transcript W actually correspond to an execution of C that produces outputs y, and not some other set
of outputs.

• If gate a is an addition gate with in-neighbors in1(a) and in2(a), there is a constraint enforcing that
Wa−

(
Win1(a)+Win2(a)

)
= 0.

• If gate a is a multiplication, there is a constraint enforcing that Wa−Win1(a) ·Win2(a) = 0.

Together, the last two types of constraints insist that the transcript actually respects the operations performed
by the gates of C. That is, any addition (respectively, multiplication) gate actually computes the addition
(respectively, product) of its two inputs. Note that the constraint for gate a of C is always of the form
Qa(W ) = 0 for some polynomial Qa of degree at most 2 in the entries of W .

For a transcript W for {C,x,y}, let W ⊗W denote the length-(S2) vector whose (i, j)th entry is Wi ·Wj.
Let (W,W ⊗W ) denote the vector of length S+S2 obtained by concatenating W with W ⊗W . Let

f(W,W⊗W )(·) := ⟨·,(W,W ⊗W )⟩.

That is, f(W,W⊗W ) is the linear function that takes as input a vector in FS+S2
and outputs its inner product with

(W,W ⊗W ). Consider a linear PCP proof π containing all evaluations of f(W,W⊗W ). π is typically called the
Hadamard encoding of (W,W ⊗W ). Notice that π has length |F|S+S2

, which is enormous. However, P will
never need to explicitly materialize all of π .
V needs to check three things. First, that π is a linear function. Second, assuming that π is a linear

function, V needs to check that π is of the form f(W,W⊗W ) for some transcript W . Third, V must check that
W satisfies all ℓ constraints described above.

First Check: Linearity Testing. Linearity testing is a considerably simpler task than the more general
low-degree testing problems considered in the MIP of Section 8.2 (linearity testing is equivalent to testing
that an m-variate function equals polynomial of total degree 1 (with no constant term), while the low-degree
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testing problem considered in Section 8.2 tested whether an m-variate function is multilinear, which means
its total degree can be as large as m).

Specifically, to perform linearity testing, the verifier picks two random points q(1),q(2) ∈ FS+S2
and

checks that π(q(1)+q(2)) = π(q(1))+π(q(2)), which requires three queries to π . If π is linear then the test
always passes. Moreover, it is known that if the test passes with probability 1−δ , then there is some linear
function fd such that π is δ -close to fd [BLR93], at least over fields of characteristic 2.197

Second Check. Assuming π is linear, π can be written as fd for some vector d ∈ FS+S2
. To check that d

is of the form (W,W ⊗W ) for some transcript W , V does the following.

• V picks q(3),q(4) ∈ FS at random.

• Let (q(3),0) denote the vector in FS+S2
whose first S entries equal q(3) and whose last S2 entries are 0.

Similarly, let (0,q(3)⊗q(4)) denote the vector whose first S entries equal 0, and whose last S2 entries
equal q(3)⊗q(4). V checks that π(q(3),0) ·π(q(4),0) = π(0,q(3)⊗q(4)). This requires three queries to
π .

The check will pass if π is of the claimed form, since in this case

π(q(3),0) ·π(q(4),0) =
(

S

∑
i=1

Wiq
(3)
i

)
·
(

S

∑
j=1

Wjq
(4)
j

)
= ∑

1≤i, j≤S
WiWjq

(3)
i q(4)j = ⟨q(3)⊗q(4),W ⊗W ⟩

= π(0,q(3)⊗q(4)).

If π is not of the claimed form, the test will fail with high probability over the choice of q(3) and q(4).
This holds because π(q(3),0) ·π(q(4),0) = fd(q(3),0) · fd(q(4),0) is a quadratic polynomial in the entries of
q(3) and q(4), as is fd

(
0,q(3)⊗q(4)

)
, and the Schwartz-Zippel lemma (Lemma 3.3) guarantees that any two

distinct low-degree polynomials can agree on only a small fraction of points.

Third Check. Once V is convinced that π = fd for some d of the form (W,W ⊗W ), V is ready to check
that W satisfies all ℓ constraints described above. This is the core of the linear PCP.

In order to check that Qi(W ) = 0 for all constraints i, it suffices for V to pick random values α1, . . . ,αℓ ∈
F, and check that ∑

ℓ
i=1 αiQi(W )= 0. Indeed, this equality is always satisfied if Qi(W )= 0 for all i; otherwise,

∑
ℓ
i=1 αiQi(W ) is a nonzero multilinear polynomial in the variables (α1, . . . ,αℓ), and the Schwartz-Zippel

lemma guarantees that this polynomial is nonzero at almost all points (α1, . . . ,αℓ) ∈ Fℓ.
Notice that ∑

ℓ
i=1 αiQi(W ) is itself a degree-2 polynomial in the entries of W , which is to say that it is a

linear combination of the entries of (W,W ⊗W ). Hence it can be evaluated with one additional query to π .

Soundness Analysis. A formal proof of the soundness of the linear PCP just described is a bit more
involved than indicated above, but not terribly so. Roughly it proceeds as follows. If the prover passes the
linearity test with probability 1−δ , then π is δ -close to a linear function fd . Hence, as long as the 4 queries
in the second and third checks are distributed uniformly in FS+S2

, then with probability at least 1−4 ·δ , the

197See [AB09, Theorem 19.9] for a short proof of this statement based on Discrete Fourier analysis. Over fields of characteristic
other than 2, the known soundness guarantees of the linearity test are weaker. See [SBV+13, Proof of Lemma A.2] and [BCH+96,
Theorem 1.1].
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V →P Communication P → V Communication V time P time
O(S2) field elements O(1) field elements O(S2) O(S2)

Table 17.1: Costs of the argument system from Section 17.3 for arithmetic circuit satisfiability when run on a circuit C
of size S. Note that the verifier’s cost and the communication cost can be amortized when simultaneously outsourcing
C’s execution on a large batch of inputs. The stated bound on P’s time assumes P knows a witness w for C.

verifier will never encounter a point where π and fd differ, and we can treat π as fd for the remainder of
the analysis. However, the queries in the second and third checks are not uniformly distributed in FS+S2

as
described. Nonetheless, they can be made uniformly distributed by replacing each query q with two random
queries q′ and q′′ subject to the constraint that q′+q′′ = q. This way, the marginal distributions of q′ and q′

are uniform over FS+S2
. And by linearity of fd , it holds that fd(q) can be deduced to equal fd(q′)+ fd(q′′).

With this change, the soundness analysis of the second and third steps are as indicated above.

Costs of the Argument System. One obtains an argument system by combining the above linear PCP with
IKO’s commitment/reveal protocol for linear functions (Section 17.3). The costs of this argument system
are summarized in Table 17.1. Total communication from V to P is Θ(S2), and hence V and P’s runtime
is also Θ(S2). On the positive side, the communication in the reverse direction is just a constant number of
field elements per input. Also, if V is simultaneously verifying C’s execution over a large batch of inputs,
then the Θ(S2) communication and time costs can be amortized over the entire batch.

Such Θ(S2) costs are very high, precluding practicality. Conceptually, the reason for the Θ(S2) costs
above is that the prover is forced to materialize the vector W ⊗W , whose (i, j)’th entry is Wi ·Wj. This is
effectively forcing the prover to compute the product of every two gates i and j in the circuit, irrespective
of the circuit’s wiring pattern. That is, the prover must compute the product of every pair of gates in the
circuit, irrespective of whether those two gates are actually multiplied together by another gate in the circuit.
Then the third check in the linear PCP above effectively ignores almost all of those S2 products, checking
the validity only of the at most S products that actually correspond to multiplication gates in the circuit.

Section 17.4 below explains how to “cut out” the unnecessary products above, reducing the Θ(S2) costs
to Θ(S).

17.4 GGPR: A Linear PCP Of Size O(|F|S) for Circuit-SAT and R1CS

In a breakthrough result, Gennaro, Gentry, Parno, and Raykova [GGPR13] gave a linear PCP of length
O(|F|S) for arithmetic circuit satisfiability, where S denotes the size of the circuit.198 In fact, their linear
PCP also solves the more general problem of R1CS satisfiability (see Section 8.4 for a detailed introduc-
tion to R1CS and how to transform arithmetic circuit satisfiability instances into R1CS-satisfiability in-
stances).199200 In this section, we choose to present the linear PCPs of [GGPR13] in the context of R1CS
rather than arithmetic circuits because we feel this leads to a clearer description of the protocol, and is more
general. The linear PCPs of [GGPR13] have been highly influential, and form the foundation of many of
the implementations of argument systems.

198The argument system of Gennaro et al. can be understood in multiple ways, and [GGPR13] did not present it within the
framework of linear PCPs. Subsequent work [SBV+13,BCI+13] identified the protocol of Gennaro et al. as an example of a linear
PCP.

199Gennaro et al. referred to R1CS satisfiability problems as Quadratic Arithmetic Programs (QAPs).
200IKO’s linear PCP covered in Section 17.3 also applied to R1CS satisfiability, though we only presented it in the context of

circuit satisfiability.
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Recap of R1CS. For the reader’s convenience, we briefly recall the definition of R1CS. An R1CS instance
over field F is of the form

Az◦Bz =Cz, (17.7)

where A, B, and C are public matrices in Fℓ×S. Here, ◦ denotes entrywise-wise product. An R1CS instance
is satisfiable if there is some vector z ∈ FS satisfying Equation (17.7). Note that z can be thought of as the
R1CS-analog of the circuit transcript W appearing in Section 17.3.

Equivalently, if ai,bi,ci ∈ FS respectively denote the ith rows of A, B, and C, then an R1CS instance
consists of ℓ constraints, with the ith constraint of the form

⟨ai,z⟩ · ⟨bi,z⟩−⟨ci,z⟩= 0. (17.8)

The linear PCPs of [GGPR13] crucially exploit that the left hand side of Equation (17.8) can be evaluated
in constant time given three linear functions evaluated at z, namely ⟨ai,z⟩, ⟨bi,z⟩, and ⟨ci,z⟩. This is a
stronger notion of structure than was exploited Section 17.3. Section 17.3 only exploited that each circuit
gate corresponds to a constraint involving a polynomial (in the entries of the circuit transcript W ) of total
degree at most 2. This meant that the constraint is a linear function of the entries of the vector W ⊗W , but
this vector has length S2, leading to quadratic costs in the linear PCP of that section.

The linear PCP. Our ultimate goal is to associate any vector z ∈ FS with a univariate polynomial gz(t)
that vanishes on H if and only if z satisfies the R1CS instance (Equation (17.7)). To define gz, we must first
define several constituent polynomials that together capture the R1CS matrices.

Polynomials capturing matrix columns. Let H := {σ1, . . . ,σℓ} be a set of ℓ arbitrary distinct elements
in F, one for each constraint in the R1CS instance. For each j ∈ {1, . . . ,S}, we define three univariate
polynomials A j, B j, and C j, meant to “capture” the j’th column of A, B, and C respectively. Specifically,
for each j ∈ {1, . . . ,S}, define three degree-(ℓ−1) polynomials via interpolation as follows.

A j(σi) = Ai, j for all i ∈ {1, . . . , ℓ}.
B j(σi) = Bi, j for all i ∈ {1, . . . , ℓ}.
C j(σi) =Ci, j for all i ∈ {1, . . . , ℓ}.

Turning z into a polynomial that vanishes on H if and only if z is a satisfying assignment. Let gz(t)
denote the following univariate polynomial:

(
∑

columns j∈{1,...,S}
z j ·A j(t)

)
·
(

∑
columns j∈{1,...,S}

z j ·B j(t)

)
−
(

∑
columns j∈{1,...,S}

z j · C j(t)

)
. (17.9)

By design, gz vanishes on H if and only all R1CS constraints are satisfied, i.e., if and only if z is a satisfying
assignment for the R1CS instance. Indeed,

gz(σi) =

(
∑

columns j
z j ·Ai, j

)
·
(

∑
columns j

z j ·Bi, j

)
−
(

∑
columns j

z j ·Ci, j

)
= ⟨ai,z⟩ · ⟨bi,z⟩−⟨ci,z⟩,

where ai, bi, and ci the ith rows of A, B, and C respectively (see Equation (17.8)). Hence gz(σi) = 0 if and
only if the ith constraint in the R1CS instance is satisfied by z.
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Checking whether gz vanishes on H. To check whether gz vanishes on H, we rely on Lemma 9.3, which
also played a key role in our constructions of efficient PCPs and IOPs (Chapters 9 and 10) and is restated
here for the reader’s convenience.

Lemma 9.3. (Ben-Sasson and Sudan [BS08]) Let F be a field and H ⊆F. For d≥ |H|, a degree-d univariate
polynomial g over F vanishes on H if and only if the polynomial ZH(t) := ∏α∈H(t−α) divides g, i.e., if and
only if there exists a polynomial h∗ with deg(h∗)≤ d−|H| such that g = ZH ·h∗.

By inspection, the degree of the polynomial gz is at most d = 2(ℓ− 1), where ℓ is the number of con-
straints. By Lemma 9.3, to convince V that gz vanishes on H, the proof merely needs to convince V that
gz =ZH ·h∗ for some polynomial h∗ of degree d−|H|= ℓ−1. To be convinced of this, V can pick a random
point r ∈ F and check that

gz(r) = ZH(r) ·h∗(r). (17.10)

Indeed, because any two distinct degree (ℓ−1) polynomials can agree on at most ℓ−1 points, if gz ̸=ZH ·h∗,
then this equality will fail with probability at least 1− (ℓ−1)/|F|.

To this end, a correct proof represents two linear functions. The first is fcoeff(h∗), where coeff(h∗) denotes
the vector of coefficients of h∗ (recall that fv for any vector v ∈ Fℓ denotes the ℓ-variate linear function
fv(x) := ⟨v,x⟩). The second is fz. Note that

fcoeff(h∗)(1,r,r
2, . . . ,rℓ−1) = h∗(r), (17.11)

so V can evaluate h∗(r) with a single query to the proof. Similarly, V can evaluate gz at r by evaluating fz at
the three vectors (A1(r), . . . ,AS(r)), (B1(r), . . . ,BS(r)), and (C1(r), . . . ,CS(r)).

Remark 17.2. In applications, there will in fact be a public input x ∈ Fn to the R1CS instance, and it
will be required that the satisfying vector z have zi = xi for i = 1, . . . ,n (and these requirements are not
otherwise included in the R1CS constraints). One can easily modify the linear PCP to enforce this by letting
z′ = (zn+1, . . . ,zS) and replacing the linear function fz in the proof with fz′ . Whenever the linear PCP verifier
wants to query fz at some vector q = (q′′,q′) ∈ Fn×FS−n, note that fz(q) =

(
∑

n
j=1 q′′j · x j

)
+ fz′(q′). Hence,

the the verifier can query the proof fz′ at q′ to obtain v = fz′(q′) and set fz(q) =
(

∑
n
j=1 q′′j · x j

)
+ v.

Just as in the linear PCP of Section 17.3, the verifier also has to perform linearity testing on fcoeff(h∗) and
fz. The verifier must also replace the four queries described above with two queries each to ensure that all
queries are uniformly distributed. These complications arise because we required that a linear PCP be sound
against proofs that are non-linear functions of queries. We remark that for purposes of the non-interactive
argument system of the next section (Section 17.5), the linear PCP verifier need not perform linearity testing
nor ensure that any of its queries are uniformly distributed. This is because the cryptographic techniques
in that section bind the argument system prover to linear functions, so the underlying information-theoretic
protocol does not need to bother testing whether the function is in fact linear. In contrast, the cryptographic
techniques of Section 17.2 only bind the prover to some function which was not necessarily linear, hence
the need for the underlying linear PCP to be sound against proofs that are non-linear functions.

Argument System Costs. One can obtain an argument system by combining the linear PCP above with
the commitment protocol for linear functions of Section 17.2. This argument system is not currently used in
practice; one reason for this is that it is interactive. Still, it is instructive to examine the costs of the resulting
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argument system. They next section (Section 17.5) will provide a different transformation of the linear PCP
above into a succinct argument that addresses the downsides of Section 17.2 while essentially preserving
the costs.

The costs of the argument system are summarized in Table 17.2. The honest prover P needs to perform
the following steps, assuming P knows a satisfying assignment z for the R1CS instance. First, compute
the polynomial gz(t). Second, divide gz by ZH to find the quotient polynomial h∗. Third, run the linear
commitment/reveal protocol described in Section 17.2, to commit to fcoeff(h∗) and fz and answer the verifier’s
queries.

For simplicity, let us assume that the number of R1CS constraints (matrix rows) ℓ is less than or equal to
the number of columns S, and that O(S) many entries of the matrices A, B, and C are non-zero—this is the
case for R1CS instances resulting from circuit-satisfiability instances of size S, see Section 8.4. The third
step can clearly be done in time O(S).201 The first step, of computing gz, can be done in time O(S log2 S) us-
ing standard multipoint interpolation algorithms based on the Fast Fourier Transform (FFT).202 The second
step can be done in time O(S logS) using FFT-based polynomial division algorithms.

Total communication from V to P is Θ(S) as well, but the communication in the reverse direction is just
a constant number of field elements per input. Because the communication from V to P is so large, i.e.,
Θ(S), V’s runtime is also Θ(S). So this argument system in uninteresting if applied to a single input to C:
the verifier would be just as fast in the trivial protocol in which the prover sends a witness w to the verifier,
and the verifier checks on her own that C(x,w) = y. However, if V is simultaneously verifying C’s execution
over a large batch of inputs, then the Θ(S) cost for V can be amortized over the entire batch.

Note that the verifier’s check does require V to evaluate ZH(r), where ZH(X) = ∏σ∈H(X −σ) is the
vanishing polynomial of H. Since the verifier requires O(S) time just to specify the linear PCP queries, V’s
asymptotic time bound in the linear PCP is not affected by computing ZH(r) directly via S subtractions and
multiplications. Nonetheless, H could be chosen carefully to ensure that ZH(x) is sparse, thereby enabling
ZH(r) to be evaluated in logarithmic time. For example, if H is chosen to be a multiplicative subgroup of F
of order ℓ (the setting considered in Section 10.3, see Equation (10.1)), then ZH(X) = X ℓ−1. Clearly, then
ZH(r) can be evaluated with O(logn) field multiplications.

In the non-interactive argument presented in the next section, ZH(r) can simply be provided to the
verifier as part of the trusted setup procedure, which takes time O(S) regardless of whether or not H is
chosen to ensure ZH is a sparse polynomial.

17.5 Non-Interactivity and Public Verifiability

17.5.1 Informal Overview

We have already seen (Section 17.2) how to convert the linear PCP of the previous section to a succinct
interactive argument using any additively-homomorphic encryption scheme. We cannot apply the Fiat-
Shamir transformation to render this argument system non-interactive because it is not public coin—the

201More precisely, this step requires taking a linear combination of O(S) ciphertexts of a homomorphic encryption scheme.
202In somewhat more detail, the polynomial gz can be expressed as A ·B−C where A, B, and C are degree-(ℓ−1) polynomials

whose coefficients over the Lagrange basis corresponding to the set H can be computed in time proportional to the number of
nonzero entries of each matrix. Given these coefficients, fast multi-point interpolation algorithms can evaluate gz at any desired set
H ′ ⊆ F of size ℓ in F in time O(S log2 S). Since gz has degree 2(ℓ−1), if H ′ is disjoint from H, then the 2ℓ evaluations of gz at points
in H ∪H ′ uniquely specify gz. In fact, for all σ ∈ H ′, h∗(σ) can be computed directly from gz(σ), via: h∗(σ) = gz(σ) ·ZH(σ)−1.
Since h∗ has degree at most ℓ−1, these evaluations uniquely specify h∗. The coefficients of h∗ in the standard monomial basis can
be computed in O(S logS) time using FFT-based algorithms.
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V →P Communication P → V Communication V time P time
O(S) field elements O(1) field elements Õ(S) Õ(S)

Table 17.2: Costs of the argument system from Section 17.4 when run on a circuit satisfiability instance {C,x,w} of size
S, or R1CS instance with O(S) nonzero entries in each of the matrices A,B,C. The Õ notation hides polylogarithmic
factors in S. Note that the verifier’s cost and the communication cost can be amortized when outsourcing the circuit
C’s execution on a batch of inputs. The stated bound on P’s time assumes P knows a witness w for C or a solution
vector z for the R1CS instance.

argument system makes use of an additively homomorphic encryption scheme for which the verifier chooses
the private key, and if the prover learns the private key it can break soundness of the argument system.

Instead, linear PCPs can be converted to non-interactive arguments using pairing-based techniques ex-
tremely similar to the KZG polynomial commitment scheme of Section 15.2. The idea is as follows (we
simplify slightly in this informal overview, deferring a complete description of the protocol until Section
17.5.3).203 Rather than having the verifier send the linear PCP queries to the prover “in the clear” as in the
interactive argument of Section 17.2, the entries of the linear PCP queries q(1), . . . ,q(k), will be encoded in
the exponent of a group generator g for pairing-friendly group G, and the encodings provided to the prover
via inclusion in a structured reference string. The argument system then exploits the additive homomor-
phism of the encoding, i.e., that the encoding gx+y of x+ y ∈ Fp equals the product of the encodings gx,gy

of x and y individually, so long as |G| = p.204 If π(x) = ∑ j c jx j denotes a linear PCP proof, the additive
homomorphism allows the prover to evaluate the encodings of π(q(1)), . . . ,π(q(k)) and send them to the
verifier. Finally, the argument system verifier accepts if and only if the linear PCP verifier would accept
the responses π(q(1)), . . . ,π(q(k)). Since the argument system prover did not send π(q(1)), . . . ,π(q(k)) in
the clear, but rather encodings gπ(q(1)), . . . ,gπ(q(k)), it is not immediately obvious how the argument system
verifier can make this determination. This is where pairings come in.

Observe that the verifier’s check in the linear PCP is a total-degree-2 function of the responses to the
PCP queries. Indeed, recall that the linear PCP verifier checks that gz(r) = ZH(r) ·h∗(r). Letting

q(1) = (A1(r), . . . ,AS(r)),

q(2) = (B1(r), . . . ,BS(r)),

and
q(3) = (C1(r), . . . ,CS(r)),

then
gz(r) = fz(q(1)) · fz(q(2))− fz(q(3)),

which is clearly a function of total degree two in the linear PCP prover responses fz(q(1)), fz(q(2)), and
fz(q(3)), with a single multiplication operation. Similarly, letting q(4) = (1,r, . . . ,rS), the right hand side of
the verifier’s check is a linear (i.e., total degree 1) function of the linear PCP prover response fcoeff(h∗)(q(4)).

Recall from Section 15.1 that the entire point of pairings is that they allow for a single “multiplication
check” to be performed on encoded values, without the need to decode the values. This enables the argument

203In this section, we use the serif font g rather than g to denote a generator of a pairing-friendly group G, to distinguish the
group generator from the polynomial gx,y,W defined in the previous section.

204The encoding gx of x is an (unblinded) Pedersen commitment to x (Section 12.3). But in the SNARK of this section, neither
the prover nor the verifier can open these “commitments”, i.e., the exponents of the group elements in the structured reference string
are “computationally hidden” from both prover and verifier. This is why we refer to an SRS entry gx as an encoding of x rather than
a commitment to x.
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system verifier to perform the linear PCP verifier’s check “in the exponent”. That is, if the argument system
prover responds to the ith query with gvi , the verifier can use the bilinear map associated with G to check
whether the PCP verifier would have accepted if the PCP prover had answered query q(i) with value vi.

17.5.2 A Complication: Linear Interactive Proofs vs. Linear PCPs

The argument system sketched above runs into the following complication. While (under appropriate
Knowledge of Exponent assumptions) the pairing-based cryptography forces the argument system prover
to answer each encoded linear PCP query in a manner consistent with a linear function, it does not ensure
that all queries are answered with the same linear function.205 That is, for the argument system to be sound,
we really need the underlying linear PCP to be sound against provers that use a different linear function to
answer each query.206 Such a linear PCP is called a (2-message) linear interactive proof (LIP) [BCI+13].

Bitansky et al. [BCI+13] give a simple and efficient method for translating any linear PCP into a LIP.
Specifically, if soundness of the linear PCP requires that queries q(1), . . . ,q(k

′) be answered with the same
linear function, the LIP verifier simply adds an extra query q(k+1) = ∑

k′
i=1 βiq(i) to the linear PCP, where

β1, . . . ,βk′ are randomly chosen field elements known only to the verifier. That is, q(k+1) is a random linear
combination of the relevant linear PCP queries. The LIP verifier checks that the answer ak+1 to the (k+1)’st
query equals ∑

k′
i=1 βiai, and if so, feeds answers a1, . . . ,ak to the linear PCP verifier. It can be shown that if

the linear PCP is complete and knowledge-sound, then the resulting LIP is as well. We omit the proof of this
fact, but the idea is to argue that if the LIP prover does not answer all k′+1 queries q(1), . . . ,q(k

′),q(k+1) using
the same linear function for each query, then there is some nonzero linear function π such that the prover
will pass the LIP verifier’s final check only if π(β1, . . . ,βk′) = 0. Since β1, . . . ,βk′ are chosen uniformly at
random from F, the Schwartz-Zippel lemma (Lemma 3.3) implies that this occurs with probability at most
1/|F|.

17.5.3 Complete Description of the SNARK

Here is the entire non-interactive argument system. Recall that q(1), . . . ,q(4) were defined in Section 17.5.1.
Accounting for the transformation from a linear PCP to an LIP of Section 17.5.2, we define a 5th query
vector q(5) := ∑

3
i=1 βiq(i), where β1, . . . ,β3 are randomly chosen elements of Fp. We do not include the

4th query in this random linear combination because soundness of the linear PCP from Section 17.4 only
requires that the first 3 queries be answered with the same linear function fz, and completeness in fact
requires that the 4th query be answered with a different linear function, namely fcoeff(h∗).

For every entry q(i)j of each of the five LIP queries q(1), . . . ,q(5), the SRS contains the pair (gq(i)j ,gαq(i)j )
where α is chosen at random from {1, . . . , p− 1}. The verification key (i.e., the information provided to
the verifier by the trusted setup procedure) contains the quantities g, gα , gZH(r), gβ1 , gβ2 , gβ3 . Note that
all quantities in the SRS can be computed during the setup phase because they depend only on the R1CS
matrices, not on the witness vector z.

Using the SRS and additive homomorphism, the prover computes and sends to the verifier five pairs of
group elements (g1,g

′
1) . . . ,(g4,g

′
4),(g5,g

′
5) claimed to equal

(g fz(q(1)),gα· fz(q(1))),

205In fact, the cryptography does not prevent the prover from answering the ith (encoded) query q(i) with (an encoding of) a
linear combination of entries of all of the queries q(1), . . . ,q(3).

206More precisely, owing to Footnote 205, the linear PCP needs to be secure against provers that answer each of the four queries
with different linear function of all four queries.
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(g fz(q(2)),gα· fz(q(2))),

(g fz(q(3)),gα· fz(q(3))),

(g fcoeff(h∗)(q(4)),gα· fcoeff(h∗)(q(4))),

and
(g fz(q(5)),gα· fz(q(5))).

The verifier performs the following checks. First, it checks that

e(g1,g2) = e(g3,g) · e
(
gZH(r),g4

)
. (17.12)

Second, it checks that

3

∏
i=1

e(gβi ,gi) = e(g5,g). (17.13)

Third, for each of the five pairs (gi,g
′
i) for i = 1, . . . ,5, the verifier checks that

e(gi,g
α) = e(g,g′i). (17.14)

17.5.4 Establishing Completeness and Knowledge-Soundness

Completeness of the SNARK holds by design. Indeed, by bilinearity of e, the first check of the verifier
(Equation (17.12)) is specifically designed to pass if gx,y,W (r) = ZH(r) · h∗(r) and the prover returns the
prescribed proof elements. The second check (Equation (17.13)) will pass if and only if g5 = ∏

3
i=1 g

βi
i ,

which will be the case if the prover behaves as prescribed. Similarly, the final set of checks (Equation
(17.14)) will pass if indeed g′i = gα

i for all i.
The proof of knowledge-soundness relies on the following two cryptographic assumptions. These are

mild variants of the two assumptions (PKoE and SDH) that we relied upon for the pairing-based polynomial
commitment of Section 15.2.

Knowledge of Exponent Assumption (KEA). This is a variant of the PKoE assumption. Recall that the
SRS for the SNARK of this section consists of t = O(S) many pairs of the form (gi,g

α
i ) for i = 1, . . . , t. The

Knowledge of Exponent assumption essentially guarantees that for any polynomial-time algorithm that is
given such an SRS as input and is capable of outputting pairs ( f , f ′) such that f ′ = f α , there is an efficient
extractor algorithm that outputs coefficients c1, . . . ,ct explaining ( f , f ′), in the sense that f = ∏

t
i=1 g

ci
i . See

Section 15.2 for discussion of the intuition behind such an assumption and why it is reasonable.

Poly-Power Discrete Logarithm is Hard. This assumption posits that, if r is chosen at random from Fp,
then any polynomial time algorithm, when given as input the encodings of t ≤ poly(S) many powers of r
(i.e., g, gr, gr2

, . . . , grt
), is incapable of outputting r except with negligible probability.

Informally, the final set of five checks the SNARK verifier performs (Equation (17.14)) guarantees by
KEA that the SNARK prover answers all of the LIP queries using linear functions, and in fact the prover
“knows” these linear functions. To clarify, since in the SNARK the LIP queries are encoded in the exponent
of g, the SNARK prover is applying the linear function to the exponents, by taking products of constant
powers of the encoded query entries in the SRS.
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The remaining two checks that the SNARK verifier performs ensures that these linear functions would
convince the verifier to accept in the LIP obtained by applying the transformation of Section 17.5.2 to the
linear PCP of Section 17.4. Knowledge-soundness of the SNARK then follows from that of the LIP.

In more detail, the analysis establishing that the SNARK is knowledge sound shows how to transform
any argument system prover that convinces the argument system verifier to accept with non-negligible prob-
ability into either a witness vector z for the R1CS instance, or a polynomial time algorithm A that breaks
the poly-power discrete logarithm assumption. Because the SNARK prover passes the final set of 5 checks
performed by the verifier (Equation (17.14)) with non-negligible probability, the KEA implies that there is
an efficient extractor E outputting linear functions π1, . . . ,π5 : Ft → F that “explain” the query responses as
linear combinations (in the exponent) of SRS elements. That is, for i = 1, . . . ,5, if the SRS σ consists of
pairs of group elements ( f j, f α

j ) for j = 1, . . . , |σ |, let ci,1, . . . ,ci,|σ | denote the coefficients of πi. Then for
i ∈ {1,2,3,4,5},

gi =
|σ |
∏
j=1

f ci, j
j .

For notational convenience, let us write π1 as fz, and π4 as fcoeff(h∗). Let gz and h∗ be the polynomials
implied by z and h∗ via Equations (17.9) and (17.11). The argument system’s verifier’s first and second
checks ensure that these linear functions convince the LIP verifier to accept with non-negligible probability.
In particular, the LIP soundness analysis then implies that π1 = π2 = π3 = fz and hence that gz(r) = ZH(r) ·
h∗(r).

If gz =ZH ·h∗, then z satisfies the R1CS instance, so to prove knowledge-soundness it suffices to suppose
that gz ̸= ZH ·h∗ and show that this would contradict the poly-power discrete logarithm assumption.

If gz ̸= ZH · h∗, then since both the left hand side and right hand side are polynomials of degree most
2ℓ, there are at most 2ℓ points r′ for which gz(r′) = ZH(r′) ·h∗(r′), and all such points r′ can be enumerated
in poly(S) time using a polynomial factorization algorithm. Consider the algorithm A that selects one of
these points r′ at random. Clearly A runs in polynomial time, and with non-negligible probability (at least
1/(2ℓ)), it outputs r. We claim that this violates the poly-power discrete logarithm assumption. Indeed, since
A1, . . . ,AS, B1, . . . ,BS, C1, . . . ,CS, are all polynomials of degree at most ℓ that are all computable in poly(S)
time, the SRS for the SNARK of this section consists entirely of encodings of known linear combinations
of powers-of-r (i.e., of products of known powers of g, gr, gr2

, . . . , grℓ−1
), plus additional group elements

equal to these values raised to either α , β1, β2, β3, α ·β1, α ·β2, or α ·β3, where α,β1,β2,β3 are uniform
random elements of {1, . . . , p−1}. Hence, a string distributed identically to the entire SRS of the SNARK
(which A is given access to) can be computed in polynomial time given the input encodings referred to in
the poly-power discrete logarithm assumption. SinceA outputs r with non-negligible probability,A violates
the assumption.

17.5.5 Handling Public Input

For clarity, the presentation of the SNARK above elided the following detail. As per Remark 17.2, in many
applications, there will in fact be a public input x ∈ Fn to the R1CS instance, and it will be required that the
satisfying vector z have zi = xi for i = 1, . . . ,n, with these requirements not otherwise included in the R1CS
constraints. Remark 17.2 explained how to modify the linear PCP to enforce this. Essentially, the prover is
forced to “ignore” the first n entries of z. Since the verifier knows x, the verifier on its own can “determine
the contributions” of those entries of z to the verification checks.

This translates into the following modifications to the SNARK. First, let z′ = (zn+1, . . . ,zS) and replace
the linear function fz in the prescribed SNARK proof with fz′ . In more detail, letting q(i)

′ ∈ FS−n denote
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the last S− n entries of q(i), the SNARK proof elements (g1,g1′), (g2,g2′), (g3,g3′), and (g5,g5
′) are now

respectively claimed to equal:

(g fz′ (q
(1)′ ),gα· fz′ (q

(1)′ )),

(g fz′ (q
(2)′ ),gα· fz′ (q

(2)′ )),

(g fz′ (q
(3)′ ),gα· fz′ (q

(3)′ )),

and
(g fz′ (q

(5)′ ),gα· fz′ (q
(5)′ )).

Second, the SRS entries gq(i)1 , . . . ,gq(i)n for i ∈ {1,2,3,5} get added to the verification key. Note that the
prover does not need to know these entries so they can be omitted from the proving key. Neither the prover
nor verifier need to know the α’th powers of these entries, and in fact, those α’th powers must be omitted
from the proving and verification keys for the SNARK to be sound.207

For i ∈ {1,2,3}, let g(x,i) = g∑
n
j=1 x j·q(i)j , which can be computed by the verifier using the now-expanded

verification key. Finally, the verifier’s first check (Equation (17.12)) changes to

e
(
g1 ·g(x,1),g2 ·g(x,2)

)
= e
(
g3 ·g(x,3),g

)
· e
(
gZH(r),g4

)
. (17.15)

Remark 17.3. It is often asserted that the verifier’s work in the SNARK above is dominated by the handful
of evaluations of the bilinear map e performed across all of its checks. There are 17 such bilinear map
evaluations in the SNARK presented above; as discussed in Section 17.5.6, Groth [Gro16] gave a variant
SNARK that reduces this number to 3. In fact, these bilinear map evaluations will only dominate the
verifier’s costs if the size n of the public input is reasonably small. Otherwise, the verifier’s processing
of the public input, specifically the computation of g(x,i) above, will dominate, as this requires a multi-
exponentiation of size n. Fortunately, in many applications, the public input is merely a commitment to a
much larger witness, and hence is small.

17.5.6 Achieving Zero-Knowledge

The SNARK above is not zero-knowledge. One reason for this is that the proof contains encodings of fz

evaluated at various points, where z is a satisfying assignment for the R1CS instance. This leaks information
to the verifier that the verifier cannot compute on its own, since the verifier does not know z.

To render the SNARK zero-knowledge, we modify the underlying LIP to be honest-verifier zero-knowledge.
This ensures that the resulting SNARK is zero-knowledge even against dishonest verifiers, by the follow-
ing reasoning. Because the SNARK verifier does not send any message to the prover, honest-verifier and
malicious-verifier zero-knowledge are equivalent for the SNARK. The SNARK verifier only sees the verifi-
cation key, which is generated in polynomial time and is independent of the witness vector z, and encodings
of the LIP prover’s responses to the LIP verifier’s queries. Once the proving and verification keys are gen-
erated, these encodings are deterministic, efficiently computable functions of the responses. Hence, since
the LIP is honest-verifier perfect zero-knowledge, so is the resulting SNARK. That is, the simulator for the

207A variant SNARK given in [BCTV14b] accidentally included these group elements in the SRS. Gabizon [Gab19b] gave an
attack on the resulting SNARK, showing that these group elements’ inclusion enables any prover to take a valid proof of knowledge
of a witness w such that C(x,w) = y, and for any x′ ̸= x turn it into a “proof” for the potentially invalid statement that C(x′,w) = y.
This flawed SNARK was deployed for several years in the cryptocurrency ZCash before the vulnerability was discovered. if
exploited, it could have permitted unlimited counterfeiting of currency.
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SNARK verifier’s view simply runs the simulator for the LIP verifier’s view, and outputs encodings of the
LIP prover’s messages instead of the messages themselves.

Rendering the LIP honest-verifier zero-knowledge. Recall that in the non-zero-knowledge LIP, the
prover established that gz = ZH ·h∗ for an R1CS solution vector z, where

gz(t) =

(
∑

columns j∈{1,...,S}
z j ·A j(t)

)
·
(

∑
columns j∈{1,...,S}

z j ·B j(t)

)
−
(

∑
columns j∈{1,...,S}

z j · C j(t)

)
.

This required the LIP verifier to pick a random r ∈ F and obtain from the prover the following four evalua-
tions:

h∗(r),

∑
columns j

z j ·A j(r),

∑
columns j

z j ·B j(r),

and
∑

columns j
z j ·C j(r).

These four values leak information to the LIP verifier, who cannot efficiently compute W or h∗.
To render the LIP zero-knowledge, the prover picks three random values rA,rB,rC ∈ F, and considers

a “perturbed” version g′z of gz, in which each constituent function comprising gz has added to it a random
multiple of the vanishing polynomial ZH of H. Specifically, letting

A(t) := ∑
columns j

z j ·A j(t),

B(t) := ∑
columns j

z j ·B j(t),

C(t) := ∑
columns j

z j ·C j(t),

define:

g′z(t) := (A(t)+ rAZH(t)) · (B(t)+ rBZH(t))−(C(t)+ rCZH(t)) . (17.16)

Note that g′z(t) = gz(t)+ rBZH(t)A(t)+ rAZH(t)B(t)+ rArB (ZH(t))
2− rCZH(t). Just as gz vanished on

H if and only if z is a satisfies the R1CS instance, the same can be said for g′z, because the “added factors”
in g′z are multiples of the polynomial ZH , which vanishes on H.

To prove that g′z vanishes on H, it is sufficient for the prover to establish that there exists a polynomial
h′ such that g′z = h′ ·ZH . Note that this is satisfied by

h′ = h∗+ rB ·A(t)+ rA ·B(t)+ rArBZH − rC.

The LIP verifier can (with soundness error at most 2ℓ/(|F|− ℓ)) check that this equality of formal polyno-
mials holds by confirming that the right hand and left hand sides agree at a random point r ∈ F\H.
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The zero-knowledge LIP proof consists of two linear functions. The first is claimed to equal fcoeff(h′),
defined as usual so that fcoeff(h′)(1,r,r2, . . . ,rdeg(h′)) = h′(r). The second is prescribed to equal fz′ where z′

is the vector z◦ rA ◦ rB ◦ rC ∈ FS+3, where ◦ denotes concatenation. That is, z′ is the satisfying R1CS vector
z, with the random values rA,rB,rC that are chosen by the prover appended.

The honest LIP verifier will query fz′ at three locations:

q(1) = (A1(r), . . . ,AS(r),ZH(r),0,0),

q(2) = (B1(r), . . . ,BS(r),0,ZH(r),0),

and
q(3) = (C1(r), . . . ,CS(r),0,0,ZH(r))

to obtain the three values:
v1 := rA ·ZH(r)+ ∑

columns j
z j ·A j(r),

v2 := rB ·ZH(r)+ ∑
columns j

z j ·B j(r),

and
v3 := rC ·ZH(r)+ ∑

columns j
z j ·C j(r).

The honest LIP verifier will then pick a point r ∈ F \H at random and query fcoeff(h′) at a single point
q(4) := (1,r,r2, . . . ,rℓ−1) to obtain a value v4 claimed to equal h′(r). Then the verifier will check that

v1 · v2− v3 = v4 ·ZH(r).

Finally, following Section 17.5.2, in order to confirm that the LIP prover answered the queries q(1), q(2),
and q(3) with the same linear function, the verifier will also choose β1,β2,β3 at random from F and query
fz′ at location q(5) = ∑

3
i=1 βiq(i) to obtain response v5, and check that ∑

3
i=1 βivi = v5. By the discussion in

Section 17.5.2, if the LIP prover passes this check, then with high probability a single linear function fz′ was
used to answer q(1), q(2), and q(3).

Analysis of the LIP. Completeness of this LIP holds by design. Soundness holds because for any linear
functions fcoeff(h′) and fz′ that cause the LIP verifier to accept, coeff(h′) must specify the coefficients of a
polynomial h′ and z′ must specify a witness z ∈ FS followed by three values rA,rB,rC such that

h′(r) ·ZH(r) = g′z(r),

where g′z(t) is as defined in Equation (17.16). This implies that z is a valid circuit transcript.
The LIP is honest-verifier zero-knowledge by the following reasoning. Since r ̸∈ H, we may conclude

that ZH(r) = ∏a∈H(r−a) ̸= 0. Combined with the fact that rA, rB, and rC are independent, uniform random
field elements, it follows that ZH(r) · rA, ZH(r) · rB, and ZH(r) · rC are uniform random field elements as
well. Hence, fz′(q(1)), fz′(q(2)), and fz′(q(3)) are themselves uniform random field elements, as each is some
fixed quantity plus a uniform random field element (e.g., fz′(q(1)) = fz(A1(r), . . . ,AS(r))+ZH(r) · rA).

Meanwhile, for any choice of r ∈ F, v4 = h′(r) is always equal to

(v1 · v2− v3)ZH(r)−1. (17.17)
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Hence, the simulator can choose r at random from F, and simply set v1,v2,v3 (i.e., the simulated re-
sponses to queries q(1), q(2), q(3)) to be uniform random field elements, and then set v4 as per Equation
(17.17). Finally, the simulator chooses β1,β2,β3 at random from F, and computes the simulated response v5
to q(5) as ∑

3
i=1 βivi. This is a perfect simulation of the LIP verifier’s view.

Historical notes. The zk-SNARK described above is nearly identical to the one for QAPs given in [GGPR13].
Minor differences arise in our treatment, stemming from our use of the linear-PCP-to-LIP from subsequent
work [BCI+13] in the construction and analysis of the SNARK presented here. [PHGR13] provided concrete
improvements to the zk-SNARK from [GGPR13], and implemented the resulting variant. Other optimized
variants were presented in [BCG+13, BCTV14b, Gab19b].

Groth’s SNARK. Groth [Gro16] gave an influential variant of the zk-SNARK of this section, in which the
proof consists of only 3 group elements, and proved his SNARK to be knowledge sound in the generic group
model. Roughly speaking, this reduction in proof size can be traced to two differences from the SNARK
covered in this chapter. First, he gave an LIP in which the verifier only makes 3 queries, rather than 5 as
in the LIP we cover. This alone reduces the number of group elements from 10 to 6. Second, establishing
security in the generic group model rather than relying on Knowledge of Exponent assumptions allows for
a halving of the number of group elements, as it is possible to ensure that each group element gi in the proof
need not be paired with gα

i . Fuchsbauer, Kiltz, and Loss [FKL18] extended the security proof of Groth’s
SNARK to the Algebraic Group Model.
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Chapter 18

SNARK Composition and Recursion

18.1 Composing Two Different SNARKs

Consider two SNARK systems, I andO, say for arithmetic circuit-satisfiability, with different cost profiles.
The prover in I is very fast (say, linear in the size of the statement being proven), but the proofs and
verification time are fairly large (though still sublinear in the size of the statement being proven, e.g., square
root of the circuit size). In contrast, the prover in O is slower—say, superlinear in the size of the circuit by
logarithmic factors, and with a large leading constant factor—but the proofs and verification time are very
short and fast (say, of length logarithmic or even constant in the circuit size). Is it possible to combine them
to get the best of both worlds? That is, we seek a SNARK F with the fast prover speed of I and the short
proof length and fast verification of O.

The answer is yes, at least in principle, via a technique called proof composition. This works as follows.
Suppose the F-prover PF claims to know a witness w such that C(w) = 1, where C is a specified circuit. PF
can use I to generate a SNARK proof π of the claim at hand. But since π is pretty big and verifying it is
somewhat slow, PF doesn’t want to explicitly send π to the F verifier. Rather, PF can use the O-SNARK
system to prove to the F-verifier that it knows π . It is this O-proof π ′ that PF actually sends to the verifier.
Put another way, PF uses the fast-verification SNARKO to establish knowledge of an I-proof π that would
have convinced the I verifier that PF knows a w such that C(w) = 1.

The above procedure requires taking the verification procedure of I and feeding it through the proof
machinery ofO. That is, the I-verifier must be represented as an arithmetic circuit C′ and theO prover then
applied to C′ to establish knowledge of a π such that C′(π) = 1.208

Let F =O◦I denote the above composed proof system. Here, O stands for the “outer” SNARK and I
stands for the “inner” SNARK. The motivation for this terminology is that one thinks of the O-proof π ′ that
is actually sent to the verifier in F as having an I-proof π “living inside of it”: the O-proof π ′ attests that
whoever generated the proof knows some I-proof π for the claim at hand.

Costs of the composed proof system. The final proof length and verification time of F is the size of the
proof generated by O applied to the I verifier circuit C′. Since the O-proof and verification procedure are
respectively short and fast, the F-proof and verification procedure are short and fast as well.

208There is nothing special about circuit-satisfiability in this example. What matters is that the verification procedure of I be
represented in whatever format O requires to allow P to establish that it knows an I-proof π that would have caused the I verifier
to accept. See Chapter 6 and Section 8.4 for additional discussion of intermediate representations other than circuits, including
R1CS.
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The F prover first has to generate the I-proof π for C (which is by assumption fast), and then has to
generate the O-proof for C′. While the O prover is slow, the key point is that C′ should be much smaller
than C, since the verification procedure of I is sublinear (e.g., square root) in the size of C. Hence, the time
required by the F prover to generate the I-proof that C′(π) = 1 should be dwarfed by the time required to
compute π in the first place. Hence, the F prover time is extremely close to that of the I prover, which by
assumption is fast. The best of both worlds has been achieved.

There are other potential benefits of proof composition beyond reducing verification costs. For example,
if the inner SNARK I is not zero-knowledge, but the outer SNARK O is zero-knowledge, the composed
SNARK F will be zero-knowledge. Hence, composition can be used to transform a highly efficient but
non-zero-knowledge SNARK I into a new SNARK O◦I that is zero-knowledge.

18.2 Deeper Compositions of SNARKs

As in the previous section, imagine a SNARK I for circuit satisfiability instances of size S in which the
verification procedure, when itself represented as an arithmetic circuit, has size O(S1/2), and proofs have
size O(S1/2) as well. That is, verification is sublinear relative to the cost of evaluating the circuit gate-by-
gate on a witness w, but is still more expensive than we might like. In principle, self-composition can be
used to obtain a SNARK with lower verification cost.

Composing I with itself yields a new SNARKF = I ◦I with proof size and verification time O
(
(S1/2)1/2

)
=

O
(
S1/4

)
. One more invocation of composition, say with F as the outer SNARK and with I as the inner

SNARK, yields yet another SNARK, now with verification time O
(
(S1/4)1/2

)
= O(S1/8). In this way, the

more invocations of composition, the smaller the proofs and faster the verification time of the resulting
SNARK. One can fruitfully continue this process until the verification circuit of the composed SNARK is
smaller than the so-called recursion threshold of the base SNARK I. This refers to the smallest circuit size
S∗ such that the verification procedure of I cannot be represented by a circuit-satisfiability instance of size
smaller than S∗. On circuits smaller than the recursion threshold, composing the SNARK with itself does
not reduce verification costs, and in fact may increase them.

Of course, the deeper the recursion, the more work the prover has to do. For example, if I is composed
with itself three times, then the prover has to “in its own head” first produce a proof π that would convince
the I verifier of the claim at hand, then produce a proof π ′ that it knows π , then produce a proof π ′′ that
it knows π ′.209 This is naturally more work than just producing the proof π for the non-composed proof
system.

Establishing knowledge-soundness of composed SNARKs. When considering the composition F of
two SNARKs I andO (Section 18.1), we presented F in a manner that hopefully made intuitively clear that
it is knowledge-sound: the F-prover PF establishes using the outer SNARK O that it knows a proof π that
would have caused the I-verifier to accept the claim at hand, namely that PF knows a w such that C(w) = 1.
In turn, since I is knowledge-sound, any efficient party PF who knows such a proof π must also know such
a witness w.210

209By in its own head, we mean the prover performs a computation without sending the result to the verifier.
210Note that if O satisfies only standard soundness rather than knowledge-soundness, the composed proof system O ◦I may

not even satisfy standard soundness. This is because O will only establish the existence of a proof π that would have caused
the I-verifier to accept. And there will typically exist convincing proofs of false statements under the SNARK I: computational
soundness of I only guarantees that such proofs are difficult for a cheating prover to find.
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Still, it is instructive to carefully write out a description of the procedure EF that extracts the witness w
from PF . This will help us understand knowledge-extraction for the “deeper” compositions considered in
this section. As we will see, the natural knowledge extractor for a composed SNARK will have runtime that
grows exponentially with the depth of the composition. This means that super-constant depth compositions
will yield a superpolynomial-time knowledge-extractor. Hence, the knowledge-soundness of such deep
compositions is not on firm theoretical footing.211

Knowledge extractor for F = O◦I. Given an efficient prover PF that can generate accepting proofs for
F , EF must identify a witness w such that C(w) = 1. EF works as follows. Since a convincing proof for
F establishes via the outer SNARK system O that PF knows a proof π causing the I-verifier to accept,
EF can first apply the following sub-routine: “run the knowledge-extractor EO for O to extract from PF
such a proof π”. This sub-routine itself represents an efficient convincing prover algorithm PI for the inner
SNARK I. Hence, EF can apply the knowledge-extractor EI to extract from PI a witness w such that
C(w) = 1.

How efficient is EF? EF has to apply the inner-SNARK knowledge-extractor EI to a prover PI that
itself runs the outer-SNARK knowledge-extractor EO on PF . Hence, EF may be significantly slower than
EI or EO individually (though EF still runs in polynomial time as long as EI and EO both do). For example,
if A denotes the number of times EI calls212 PI to extract w from it, and B denotes the number of times EO
calls PF to extract π from it, then the entire extraction procedure EF may call PF up to A ·B times.213

Knowledge extractor for deeper compositions. Now consider a SNARK O composed with itself, say, four
times, and denote the composition byO4 :=O◦O◦O◦O. We can viewO4 asO2 ◦O2, whereO2 :=O◦O.
The previous paragraph shows that if A denotes the number of times that the knowledge extractor EO for O
must run a convincing prover PO to extract a witness, then the number of times that the natural knowledge
extractor for O2 must run a convincing prover PO2 to extract a witness is A2. Then applying the same
analysis to O2 ◦O2 means that the number of times the natural knowledge extractor for O4 must run a
convincing prover is A4.

In general, composingO with itself t times will yield a knowledge extractor that runs a prover generating
convincing proofs at most At times. If A is polynomial in the size of the statement that the SNARK is applied
to, then At will be superpolynomial unless t is constant.

Practical considerations of composition. For many popular SNARKs O, there can be considerable con-
crete overhead in attempting to represent the O-verifier as an equivalent instance of arithmetic circuit-
satisfiability or R1CS, or whatever intermediate representation is “consumed” by the outer SNARK. Here,
we highlight one particularly common and important issue, and describe how it is has been addressed to
date.

As we have seen in Chapters 14 and 17, many popular SNARKs require the verifier to perform operations
in cryptographic groups in which the discrete logarithm problem is intractable (and for many SNARKs, the

211While we cannot prove knowledge-soundness of superconstant-depth SNARK recursions, that does not necessarily mean we
think deep recursions are not knowledge-sound, just that we don’t know how to provably reduce their knowledge-soundness to
that of the underlying base SNARK. Indeed deep recursions of SNARKs are beginning to see practical deployment in distributed
environments (e.g., [BMRS20]. See also Sections 18.4 and 18.5).

212When we say that a knowledge extractor “calls” a prover more than once, we refer to the fact that the extractor might repeatedly
“rewind and restart” the prover from which it is extracting a witness. We saw examples of this in the context of forking-lemma-
based extractors for Σ-protocols (see Remark 12.1 in Section 12.2.1 and Section 14.4.1), and for SNARKs obtained thereof via the
Fiat-Shamir transformation (Section 12.2.3).

213A and B may depend on the size of the statement being proven, but we suppress this dependence from our notation for
simplicity.
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groups must furthermore be pairing-friendly, see Section 15.1). Modern instantiations of such cryptographic
groups use elliptic curves (Section 12.1.2.2). Recall that elements of an elliptic curve group correspond to
pairs of points (x,y) ∈ F×F that satisfy an equation of the form y2 = x3 + ax+ b for field elements a and
b. F is referred to as the base field of the curve. When designing a discrete-logarithm-based SNARK for
arithmetic circuit-satisfiability or R1CS-satisfiability over a field Fp of prime order p, one requires that the
order of the elliptic curve group G be p (in this case, Fp is called the scalar field of G). The crucial point
here is that the base field F and the scalar field Fp of G are not the same field (see Section 12.1.2.2). This
means that, in a discrete-log-based SNARK O for an arithmetic circuit C defined over field Fp, the verifier
has to perform field operations over a base field F that differs from Fp.

Recall that in order to compose a SNARK O for circuit-satisfiability with itself, one must represent the
verification procedure of O as an arithmetic circuit C′ to which O can be applied. If O uses a cryptographic
group G as per the above paragraph, then it is natural to define C′ over the base field F of G rather than
the scalar field Fp of G, so that C′ can “natively” perform the operations over F required to perform group
operations in G (while it is possible to “implement” F operations via a circuit defined over a different
field Fp using techniques discussed in Chapter 6, it is currently quite expensive, despite efforts from many
researchers to make it less so). But in order to apply O to C′, one needs to know another cryptographic
group G′ whose scalar field (rather than base field) is F.

Accordingly, to support arbitrary-depth compositions of O with itself (or with other SNARKs), it is
useful to identify a cycle of elliptic curves. The simplest form of such a cycle has length two. This is a pair
of elliptic curve groups G and G′ such that the base field Fp of G is the scalar field F of G′ and vice versa.
Using such a cycle of elliptic curves ensures that the verifier of O applied to a circuit over field F can be
efficiently implemented via a circuit over field Fp, and vice versa.

To walk through the specific example of depth-two recursive composition: let O be a SNARK for
arithmetic circuit-satisfiability. It will be helpful to use a subscript OF to clarify what field the circuit-
satisfiability instance is defined over. ThenO3 :=OFp ◦OF◦OFp will work as follows to establish knowledge
of a w such that C(w) = 1, where C is defined over Fp. First, the O3 prover P in its own head will generate
a proof π that convinces the OFp-verifier of the claim. The OFp verifier for this claim can be efficiently
represented by a circuit C′ over F. So (in its own head once again) the O3 prover will generate an OF-proof
π ′ that it knows such an OFp-proof π . The OF-verifier for this claim can in turn be efficiently implemented
by a circuit C′′ over Fp, so the O3 prover finally computes a proof π ′′ that it knows such an OF-proof π ′.
And P sends this proof explicitly to the O3 verifier.

More generally, given a cycle of elliptic curves, arbitrary-depth composition of OF and OFp can be
supported. Every time the prover needs to produce a proof π ′ that it knows a proof π that the OFp-verifier
would accept, it represents the OFp-verifier as a circuit over F and applies the OF SNARK to this circuit,
and similarly with the roles of Fp and F reversed.

Currently, a popular cycle of (non-pairing-friendly) curves are Pasta curves214, which are reasonably
close in efficiency to some of the best curves that don’t support cycles (e.g., Curve25519, see Section
12.1.2.2). Cycles of pairing-friendly curves are also known, e.g., via so-called MNT curves [CCDW20], but,
at the time of writing, for a given security level these remain significantly less efficient than popular pairing-
friendly curves for SNARK design that don’t support cycles (e.g., BLS12-381, see Section 15.1). This owes
to a need of the cycle-supporting curves to work over significantly larger finite fields, which leads to slower
group operations. While cycles of pairing-friendly curves are currently very expensive, efficient depth-one
composition of two pairing-based SNARKs does not require a cycle of curves; rather, it only requires two
pairing-friendly curves such that the base field of one is the scalar field of the other. This is currently offered

214https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
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by an efficient curve known as BLS12-377 and a sister curve called BW6-761 [BCG+20b, HG20].
Another common practical consideration arising in recursive SNARK composition is that the verifier

in many transparent SNARKs performs Merkle hash path verifications, which means cryptographic hash
operations must be expressed as a circuit- or R1CS-satisfiability instance. As mentioned in Chapter 6, there
has been considerable effort devoted to developing “SNARK-friendly” hash functions, meaning plausibly
collision-resistant hash functions that can be efficiently expressed in such a form.

18.3 Other Applications of SNARK Composition

We have seen that composition of SNARKs can be used to improve efficiency: a SNARK with fast prover
and somewhat slow verification can be composed with itself or with another SNARK to improve the verifi-
cation costs. There are other reasons to compose SNARKs.

Incremental computation. One, which we detail later in this chapter (Sections 18.4 and 18.5), uses re-
cursion more directly to construct efficient SNARKs tailored for iterative computation, i.e., to prove that
for some designated input x and specified function F that F(F(F(F(F(F(x)))))) = y. More generally, let
F(i)(x) denote the i-fold iterative application of F to x, e.g., F(3)(x) = F(F(F(x))). A quintessential appli-
cation of such proof systems is to let F be a delay function, meaning a simple function that requires some
non-trivial sequential computation to compute. Then a SNARK for many iterative applications of F yields a
verifiable delay function: a function that requires substantial sequential time to compute, the result of which
can be verified very quickly.

Incrementally Verifiable Computation (IVC). Certain applications (to be discussed momentarily) ac-
tually call for a primitive called incrementally verifiable computation [Val08]. This means that after each
application j of F to x, a prover can output y j and a SNARK proof π j that F( j)(x) = y j, and moreover, given
y j and π j, any other party can apply F to y j to obtain an output y j+1 and efficiently compute a new SNARK
proof π j+1 that F( j+1)(x) = y j+1.

Applications to distributed computing environments. In fact, our SNARKs for iterative computation
will be able more generally to handle non-deterministic computations F . That is, F can take two inputs, a
public input x and a witness w, and produce some output y = F(x,w). The SNARKs we present hereon in
this chapter will be able to215 establish knowledge of witnesses w1, . . . ,wi such that

F(F(. . .F(F(F(x,w1),w2),w3), . . . ,wi−1),wi) = yi.

Here is one example of a possible application to public blockchains. Think of F as taking as input
the current state of an “accumulation” (e.g., Merkle-hash, see Section 7.3.2.2) of all account balances for a
public blockchain, and think of each witness wi as specifying a new valid transaction ti along with associated
proof-of-work, and such that F outputs an updated accumulation (i.e., F outputs the accumulation of the new
account balances following the processing of transaction ti). Then a SNARK for the above yields a proof
that yi is a valid accumulation of account balances after i transactions. This can enable computationally
weak nodes in a blockchain network to very efficiently learn from any untrusted party an accumulation
of the global state of the network (i.e., the current account balances), with a proof that the accumulation

215For simplicity, we do not present the SNARKs in this level of generality but they will support it without modification.
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actually captures a sequence consisting of a certain number of valid transactions and associated proofs-of-
work. This may be important for protocols that designate the current state of the network to be that of the
“longest chain”, i.e., the longest known sequence of valid transactions. Hence, nodes can trustlessly learn
the accumulation of the network state, with no need to download the entire transaction history of the network
or even the current account balances.

Proof aggregation. Another application of SNARK composition is proof aggregation, which can be ex-
plained via the following example application. Suppose that a prover P claims for some public input x and
function F that F(x) = y, but computing F is highly computation-intensive. Imagine that the computation
is broken up into ℓ more manageable pieces, say, F1(x), . . . ,Fℓ(x), that can be performed independently of
each other. P farms each piece out to a different machine (possibly untrusted even by the prover, who is in
turn untrusted by the verifier), to produce outputs y1, . . . ,yℓ, which are then combined via some aggregation
function G to produce the final output y.

In order to prove that F(x) = y, each machine can produce a proof πi that yi = Fi(x), and send both πi

and the result yi back to P . Then it suffices for P to (a) prove knowledge of the convincing proofs π1, . . . ,πℓ

for the ℓ claims yi = Fi(x), and (b) prove that G(y1, . . . ,yℓ) = y. One can accomplish this by applying a
SNARK to the computation that first verifies the proofs π1, . . . ,πℓ and then computes G(y1, . . . ,yℓ).

18.4 SNARKs for Iterative Computation via Recursion

Recall that F(i)(x) denote the i-fold iterative application of F to x. Suppose we want to design a SNARK for
the claim that F(i)(x) = y.

One could of course apply any of the (non-composed) SNARKs from earlier chapters of this survey to
F(i), but these come with various downsides and tradeoffs, delineated in detail in the next chapter, Chapter
19. For starters, they do not support IVC (Section 18.3). Turning to efficiency, if one desires the shortest
possible proofs and fastest verification, the SNARKs with these properties require a trusted setup (see Chap-
ter 17). They also tend to be quite space-intensive for the prover due in part to their use of FFTs, so applying
them to very large computations may not be feasible, and their use of pairing-friendly groups can lead to
slow prover time. While many of the transparent SNARKs of earlier chapters avoid FFTs and pairings, they
have much larger proofs and verification costs than the trusted-setup SNARKs with fastest verification.

The recursive-composition-of-SNARKs approach. Can we address the above issues by taking a base
SNARKO and applying recursive composition? Let us imagine for a moment that we have already designed
a SNARKOi−1 for the claim that F(i−1)(x) = yi−1. Then here is a SNARKOi for the claim that F(i)(x) = yi:
the prover P uses the base SNARK O to prove that

(a) it knows an Oi−1-proof πi−1 that F(i−1)(x) = yi−1, and

(b) that F(yi−1) = yi.216

216An important practical issue here is that, in order to identify a single arithmetic circuit confirming both (a) and (b), it is
essential that the Oi−1-verifier’s computation and F itself both be efficiently expressible as a circuit over the same field. This can
be challenging for SNARKs that perform elliptic curve operations, because as discussed in Section 18.2, such SNARK verifiers
are only efficiently representable as circuits over the base field F of the curve, which differs from the (scalar) field Fp that F is
presumably efficiently representable over. One way to sidestep this issue is to identify a cycle of curves with scalar and base fields
Fp and F such that F is efficiently computable by circuits over both Fp and F. This way, at each step i, the Oi−1 verifier will be
efficiently expressible as a circuit over one of the two fields (which one depends on whether i is odd or even), and F will also be
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This recursive-composition-of-SNARKs approach to incremental computation has been pursued (e.g., [BCTV14a])
using the trusted-setup SNARK with fastest known verification, which is now due to Groth [Gro16] (Section
17.5.6).217 A major benefit of the recursive approach is that it yields IVC (Section 18.3): for each iteration
j−1, the prover could output y j−1 and the proof π j−1 that y j−1 = F( j−1)(x), and any other party could “pick
up the computation from there”, computing F(y j−1) and using π j−1 to compute a proof π j that y j = F( j)(x).

Relative to the direct application of the non-composed base SNARK, the above recursive solution also
reduces the prover’s space cost, because the prover only ever applies the base SNARK to a single application
of F , one after the other (i.e, it does not apply the base SNARK “all at once” to an entire circuit computing
F(i)). That is, at any time j during its computation of the proof πi, the prover only needs to remember the
preceding proof π j−1 and the preceding output y j−1 of F( j−1).

On the other hand, a significant downside of the recursive approach when applied to a SNARK that uses
pairings such as Groth’s [Gro16] is that the prover is quite slow, in large part owing to the need to use cycles
of pairing-friendly elliptic curves to support arbitrary-depth recursion (Section 18.2). On top of this, there
is additional overhead for the prover that can be traced to a notion we term the overhead of recursion.

The overhead of recursion. Effectively, the final SNARK proof πi for F(i) establishes that for all j ≤ i,
the prover P not only faithfully applied F to y j−1 to obtain y j (as per (b) above), but also that P , in its own
head, faithfully verified the proof π j−1 as per (a) above.218 Put another way, the above recursive approach
replaces the computation of F(y j−1) with a larger computation F ′(y j−1,π j−1) that outputs F(y j−1) and
verifies π j−1, and it applies the base SNARK to F ′ for all j ≤ i. (This perspective will come up again in
Section 18.5).

We refer to the added cost to the prover of establishing that it verified π j−1 for each iterative application
j of F as the “overhead of recursion”. This is because non-recursive solutions—i.e., a direct application
of a SNARK to a circuit computing F(i)—require the prover to establish only that it faithfully applied F
all i times, not that it verified any proofs of its own faithfulness along the way. Hence, the “overhead of
recursion” is purely extra work for the prover, which does not arise in non-recursive solutions.

This overhead is naturally measured by the number of gates in a circuit, or other intermediate represen-
tation as appropriate, implementing the base SNARK’s verifier.219 This will be the dominant contributor to
the prover’s costs if this circuit is larger than the circuit required to implement F itself. Specifically, this
happens if the circuit representing F is smaller than the recursion threshold of the base SNARK O (see
Section 18.2).

Trusted-setup SNARKs with state-of-the-art verification costs [Gro16] have a reasonably low recur-
sion threshold. Still, we will see later (Section 18.5) that this overhead can be reduced further via other
approaches that moreover can avoid a trusted setup and pairing-friendly groups (the use of pairings both

efficiently expressible as a circuit over the same field. If F is only efficiently computable by a circuit over Fp, then one will run
into the issue that the Oi−1-verifier is efficiently representable as a circuit only over F, and F itself is not. To address this, one can
define Oi via two steps of SNARK composition, rather than one. In the first step, the prover represents the Oi−1-verifier as a circuit
over F, and in its own head computes an OF-proof π that it knows an Oi−1-proof πi−1 that F(i−1) = yi−1. Then, since (unlike the
Oi−1-verifier) the OF-verifier is efficiently representable as a circuit over Fp, there is a small circuit over Fp to establish that both
(a) the prover knows such a proof π and and (b) that F(yi−1) = yi. Hence, OFp can be applied to this circuit to yield a proof that
F(i)(x) = yi.

217More recent work has studied recursive-composed SNARKs with a universal rather than circuit-specific trusted setup, but this
leads to even higher overheads for the prover [CCDW20].

218To clarify, πi establishes all of this without even “telling the verifier” what y j−1 or π j−1 even were.
219The issue described at the end of Footnote 216 can further increase the overhead of recursion, by forcing two statements about

SNARK verification circuits to be proved for every application of F , rather than one.
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increases the recursion threshold and, as mentioned above, leads to concretely high prover costs).220

Recursively composing transparent SNARKs. To recap, there are a number of downsides to above ap-
proach of recursively composing a SNARK with state-of-the-art verification costs: the base SNARK’s need
for a trusted setup, the very high prover overheads due to the use of cycles of pairing-friendly curves, and
the concretely sub-optimal “overhead of recursion”.

The most straightforward approach to address the first two issues is to replace the trusted-setup SNARKs
with transparent SNARKs that moreover do not require pairing-friendly groups. These SNARKs all utilize
transparent polynomial commitment schemes—e.g., based on FRI (Section 10.4), Ligero’s polynomial com-
mitment scheme (Section 10.5), Hyrax’s polynomial commitment scheme (Section 14.3), or Bulletproofs
(Section 14.4). The problem with a naive implementation of this approach is that the verification of evalua-
tion proofs of such polynomial commitment schemes is quite expensive and hence the overhead of recursion
is very large. For example, if the popular Bulletproofs polynomial commitment is used, then while proofs
are short (logarithmic in size), the verification cost is linear. Even FRI-based polynomial commitments (Sec-
tion 10.4.4), while achieving polylogarithmic verification time, has proofs that are concretely quite large for
appropriate security levels, and verification involve many Merkle hash path authentication operations, which
can be somewhat expensive to represent as a circuit or R1CS (see the end of Section 18.2).

To address the overhead of recursion in this case, a line of works starting with Halo [BGH19, BDFG21,
BCL+21, BCMS20, KST22] has roughly shown how to avoid feeding verification of evaluation proofs of
polynomial commitment schemes through the proof machinery. The verifier in these transparent SNARKs
can be split into two parts: (a1) verifying all parts of the proof other than evaluations of committed poly-
nomials and (a2) verifying evaluations of committed polynomials. Essentially, the SNARK is modified to
simply omit the verification check (a2). This means that, each time the prover, in its own head, generates a
“proof”221 π j that F( j)(x) = y j (having already computed a “proof” π j−1 that F( j−1)(x) = y j−1), π j does not
directly attest to the validity of any claimed evaluations of committed polynomials involved in the “proof”.
So these evaluation claims must be checked separately. What these works roughly do is show how to use
homomorphism properties of known polynomial commitment schemes to cheaply “batch-check” all evalu-
ations of all committed polynomials across all “proofs” π1, . . . ,πi that the prover generated in its own head.
That is, all such evaluation claims regarding committed polynomials across π1, . . . ,πi are “accumulated”
into a single claim, which can then be checked at the same cost as a single claim. In Section 16.1, we
covered details of this technique in the case of homomorphic polynomial commitments all being evaluated
at the same point.

The most recent works in this line have taken the above approach to its logical extreme and derived
SNARKs for iterative computation F(i) purely from homomorphic vector commitment schemes (i.e., without
first developing a “base SNARK” that is recursively applied i times). See Footnote 231 in Section 18.5.4 for
additional discussion of this perspective. The following section describes one such result, yielding a proof
system called Nova [KST22].

220Verification of Groth’s SNARK [Gro16] involves 3 pairing computations, which are concretely fairly expensive, especially
once represented as a circuit or R1CS. Hence, there is room to reduce this overhead further. We will see an approach later in this
chapter (Section 18.5) that reduces the “three pairing computations” down to roughly two group exponentiations in a non-pairing-
friendly group, which concretely can be represented by a significantly smaller circuit or R1CS than three pairing computations.

221Here, we are putting the word “proof” in quotes, because π j omits essential verification information, namely verification of
evaluations of committed polynomials. Hence, π j is not actually a complete SNARK proof for the claim at hand, that F( j)(x) = y j.
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18.5 SNARKs for Iterative Computation via Homomorphic Commitments

Our goal in this section is to design a SNARK for iterative computation directly from homomorphic vector
commitment schemes. The resulting SNARK is transparent, avoids the need for pairing friendly curves, and
has state-of-the-art overhead of recursion. These last two properties together ensure a significantly faster
prover relative to the recursive composition of pairing-based SNARKs (Section 18.4).

18.5.1 Informal Overview of the SNARK

The SNARK will roughly work as follows. Using the front-end techniques of Chapter 6, one first transforms
F into an equivalent R1CS instance, i.e., three public matrices A,B,C ∈ Fn×n such that F(x) = y if and only
if there exists a vector z of the form (x,y,w) for some witness w such that (A · z) ◦ (B · z) = C · z. Here ◦
denotes the element-wise product of two vectors.222

Let y0 = x. Then proving that F(i)(x) = yi is equivalent to showing the existence of vectors w1, . . . ,wi

such that for

z j := (y j−1,y j,w j), (18.1)

(A · z j)◦ (B · z j) =C · z j : j = 1, . . . , i. (18.2)

The rough idea of the SNARK is that P will commit to all of the vectors z1, . . . ,zi using a homomorphic
vector-commitment scheme, and prove that each one has the form Equation (18.1) and satisfies Equation
(18.2). It will do this by repeatedly applying a primitive called a “folding scheme”—roughly, a way of
taking two R1CS instances of the form Equation (18.2) and transforming them into a single R1CS instance
such that the derived instance is satisfied if and only if both original instances are satisfied.223 The folding
scheme can be repeatedly applied to reduce all i instances of Equation (18.2) into a single instance. For
simplicity, we will focus on the “sequential” folding pattern whereby instance one of Equation (18.2) is
folded with instance two, and then the resulting derived instance is folded with instance three, and then the
resulting derived instance is folded with instance four, and so on until all i instances have been folded into
a single one.224 The folding scheme is interactive, but the interaction can be removed with the Fiat-Shamir
transformation.

The validity of this final R1CS instance can be proven with any SNARK for R1CS instances of the
form (A · z)◦ (B · z) =C · z in which the prover commits to the witness vector z via the same homomorphic
vector commitment scheme used by the prover to commit to z1, . . . ,zi. This includes, for example, SNARKs
that make use of the Bulletproofs polynomial commitment scheme (Section 14.4) as the commitment in

222Previous sections in this chapter referred to SNARKs for arithmetic circuit satisfiability for simplicity and concreteness, but
as pointed out in Footnote 208, they apply without modification to SNARKs for R1CS. In this section, we use the formalism of
R1CS rather than circuits because Nova is most naturally described in the R1CS setting. Of course, R1CS is a generalization of a
circuit (see Section 8.4), so any SNARK for R1CS representations also yields a SNARK for circuit representations.

223This folding scheme is reminiscent several earlier protocols in this text. Most directly, in each round of Bulletproofs (Section
14.4), a claim about an inner product of committed vectors of length n is reduced to a derived claim about an inner product of
vectors of length n/2. Also, in each round of the sum-check protocol (Section 4.2), a claim about a sum over 2ℓ terms is reduced to
a claim about a sum over 2ℓ−1 terms. In fact, there have been works that view these protocols through a unified lens [BCS21,KP22].

224In general, any folding pattern can be used. That is, we can treat the i instances as the leaves of any binary tree, with any
internal node of the tree representing the “folding” of its two children into a single instance. The root of the tree represents the final
R1CS instance that results from all of the folding operations.
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Bulletproofs is just a generalized Pedersen commitment to the coefficient vector of the polynomial. If
Bulletproofs is used, the length of the SNARK proof for the final R1CS instance that results from folding
can be made O(logn), though the verification time will be O(n).225

The above brief description glosses over a number of details. First, the folding scheme will take two
R1CS instances and not yield another R1CS instance, but rather a generalization that we call committed-
R1CS-with-a-slack-vector. Second, because each folding operation will require a message from the prover
to the verifier (and a random challenge sent from verifier to prover), the proof length of the resulting proto-
col will be linear in i, when we would really like a proof length that is independent of i. We will ultimately
achieve the desired proof length via a variant of recursive proof composition (Section 18.5.4). We addition-
ally have not explained how to check that each committed vector z j has the form of Equation (18.1).

18.5.2 A Folding Scheme for Committed-R1CS-with-a-Slack-Vector

The problem of committed-R1CS-with-a-slack-vector. In an instance of this problem, there are three
public n× n matrices A, B, and C with entries from a field F, as well as a public scalar u ∈ F and a public
vector s ∈ Fm. In addition to those public objects, there are two committed vectors w ∈ Fn−m and E in
Fn. Let z = (s,w) ∈ Fn. One should think of the prover as having already committed to w and E using
a homomorphic vector-commitment scheme (e.g., Pedersen vector commitments from Section 14.2). The
prover claims that

(A · z)◦ (B · z) = u · (C · z)+E.

Folding two instances. Consider having two instances of committed-R1CS-with-a-slack-vector, in which
the public matrices in the two instances are identical. That is, the prover has claimed that:

(A · z1)◦ (B · z1) = u1 ·C · z1 +E1, (18.3)

(A · z2)◦ (B · z2) = u2 ·C · z2 +E2. (18.4)

Here, A,B,C ∈ Fn×n are public matrices, u1,u2 ∈ F are public scalars, s1,s2 ∈ Fm are public vectors,
w1,w2 ∈ Fn−m and E1,E2 ∈ Fn are committed vectors, and z1 = (s1,w1) and z2 = (s2,w2). V would like to
check both of these claims. The naive way to do this would be to have the prover open the commitments
to w1, w2, E1, and E2, so V can check both claims directly, but this naive approach is too expensive for
our purposes. Instead, imagine the verifier V would like to “take a random linear combination” of the two
claims, to derive a single claim of the same form, such that the derived claim is true (up to some negligible
soundness error) if and only if both of the original claims are true.

Here is a way the verifier could try to accomplish this.

A first attempt that doesn’t work. The verifier could choose a random field element r ∈ F, and let

s← s1 + r · s2 (18.5)

225For iterative computation, one typically thinks of the number of iterations i as very large, and function F applied at each
iteration as small, perhaps even computed by a constant-size circuit. In this case, O(n) can be thought of as a constant and O(logn)
as an even smaller constant.
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w← w1 + r ·w2 (18.6)

u← u1 + r ·u2 (18.7)

E← E1 + r2E2. (18.8)

Observe that V can directly compute s and u because s1,s2 ∈ Fm and u1,u2 ∈ F are public. Also, by
homomorphism of the commitment scheme used by P to commit to w1, w2, E1, and E2, the verifier can on
its own compute commitments to w and E. The verifier might hope that under these definitions, Equation
(18.3) and (18.4) imply the following (and vice versa):

(A · z)◦ (B · z) = u · (C · z)+E. (18.9)

If this were the case, then the verifier, on its own, could derive a single new instance of committed-
R1CS-with-a-slack-vector that is equivalent to the validity of the two original instances (Equations (18.3)
and (18.4)).

Unfortunately, even if Equation (18.3) and (18.4) both hold, Equation (18.9) does not hold. But as we
will see, we can slightly modify the definition of E so that Equation (18.9) does hold.

What does work. Let us redefine E to include an extra “cross-term”, namely, throw away Equation (18.8)
and replace it with:

E← E1 + r2E2 + r ·T (18.10)

where

T ← (A · z2)◦ (B · z1)+(A · z1)◦ (B · z2)−u1 ·C · z2−u2 ·C · z1. (18.11)

Then it can be checked via elementary algebra that Equation (18.9) holds for every choice of r ∈ F.
Calculation showing that Equation (18.9) holds for every r ∈ F. The left hand side of Equation
(18.9) is:

(A · z)◦ (B · z) = (A · z1 + r ·A · z2)◦ (B · z1 + r ·B · z2)

= (A · z1)◦ (B · z1)+ r2 · (A · z2)◦ (B · z2)+ r · ((A · z1)◦ (B · z2)+(A · z2)◦ (B · z1)) (18.12)

while the right hand side equals:

u ·(C ·z)= (u1+ru2) ·C ·(z1+rz2)= u1 ·C ·z1+E1+r2(u2 ·C ·z2+E2)+r (u2 ·C · z1 +u1 ·C · z2) (18.13)

By Equations (18.3) and (18.4), we can rewrite Expression (18.12) as:

u1 ·C · z1 +E1 + r2 · (u2 ·C · z2 +E2)+ r · ((A · z1)◦ (B · z2)+(A · z2)◦ (B · z1)) . (18.14)

The difference between Expression (18.14) and the right hand side of Equation (18.13) is exactly r times
the value assigned to T by Equation (18.11).

290



Accordingly, consider the following simple interactive protocol that seeks to “reduce” checking that
Equation (18.3) and (18.4) both hold to the task of checking that Equation (18.9) holds: First, P commits
to a vector v claimed to equal the cross-term T (Equation (18.11)) using the same homomorphic vector-
commitment scheme used to commit to w1, w2, E1, and E2. Next, V chooses r at random from F and sends
it to P . Observe that, given the commitments to E1, E2, and v, V can use the homomorphism to compute a
commitment to the vector E1 + r2E2 + r · v, which, if v is as claimed, equals the right hand side of Equation
(18.10).

We have already explained that if the committed vector v equals T (Equation (18.11)) as prescribed,
then Equation (18.10) holds with probability 1 over the random choice of r. Meanwhile, it is not hard to see
that if the prover commits to a vector v that differs from T , then with probability 1−2/|F| over the random
choice of r, Equation (18.9) will fail to hold. This is because, if v j ̸= Tj for some j ∈ {1, . . . ,n}, then the
jth entries of the vectors on the left hand side and right hand side of Equation (18.9) will be two distinct
degree-2 univariate polynomials in r, and hence will disagree at a randomly chosen input with probability
1−2/|F|. Here, it is essential that the prover is forced to commit to the cross-term vector T before learning
the verifier’s choice of r ∈ F. Similarly, if either Equation (18.3) or (18.4) does not hold, then there is no
vector T that the prover can commit to that would render every entry of the right hand and left hand sides of
Equation (18.9) to be the same polynomials in r.

Formally, to be useful in designing a SNARK for iterative computation, we need to show that the above
folding scheme is a proof of knowledge, meaning given any efficient prover that can convince the verifier of
the validity of the folded instance with non-negligible probability, we can extract openings of the vectors w1,
E1, w2, E2 that respectively satisfy the instances that were folded together (Equations (18.3) and (18.4)). We
omit the details, as the paragraph above conveys the key intuition as to why a prover that does not behave as
prescribed will, with overwhelming probability over the choice of r, be left to establish a false claim after
the folding, namely that it can open the commitments to w and E to vectors satisfying Equation (18.9).226

While this folding scheme is interactive, it is public coin, and hence can be rendered non-interactive via
the Fiat-Shamir transformation (i.e, replace the verifier’s challenge with a hash of the public inputs and the
prover’s message in the folding scheme).

18.5.3 A Large Non-Interactive Argument

A non-interactive argument of knowledge for an iterative computation F(i)(x) with proof length linear in i
can be obtained by repeatedly applying the above folding scheme in the manner sketched in Section 18.5.1.
This proof length is far too large to be interesting in applications, but it will be a useful object to have
considered when we turn to designing the final SNARK (Section 18.5.4).

We will describe the proof as being produced and processed in “rounds”, even though it is non-interactive.
Since there is no message sent from V to P , the entire proof is obtained by simply concatenating all prover
messages across all “rounds”.

At the start of each “round” j > 1 of the protocol, there is already a “running folded instance” I of
committed-R1CS-with-slack-vector that captures the result of having folded across the first j rounds the
R1CS instances capturing the first j−1 applications of F (as per Equation (18.2)), and the purpose of round
j > 1 is to fold into this running instance the R1CS capturing the jth application of F (again, as per Equation
(18.2)). This means that at the start of round j > 1, the verifier will be tracking a commitment cw to the
“witness vector” w for I, and a commitment cE for the “slack vector” E for I. The verifier at all times keeps

226Readers are referred to the knowledge-soundness analysis of the Bulletproofs polynomial commitment (Section 14.4) for an
example of a knowledge-soundness analysis for a folding scheme.
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track of the following variables:

• round-count (meant to track the number j of applications of F that have been processed so far).

• prev-output (meant to track y j−1 = F( j−1)(x))

• cur-output (meant to track y j = F( j)(x))

• u ∈ F (meant to track the scalar u of the running folded instance I)

• s ∈ Fm (meant to track the public input s to the running folded instance I)

• cw (meant to track the commitment to the witness vector w of the running folded instance I)

• cE (meant to track the commitment to the slack vector E of the running folded instance I).

Let us introduce some notation to capture this state of affairs at the start of round j. We denote the
prover’s claim in running folded instance I at the very start of round j by

(A · z) · (B · z) = u · (C · z)+E, (18.15)

with the verifier’s variables cw, cE being a commitments to w and E respectively, and recall that z = (s,w).
As per Equation (18.2), there is an R1CS instance that is satisfiable if and only if F(y j−1) = y j. This R1CS
instance has the form

(A · z j) · (B · z j) =C · z j, (18.16)

where z j = (s j,w j) ∈ Fm×Fn−m, and s j = (y j−1,y j). Let us refer to this R1CS instance as I j.

The prover’s work in round j. At the start of round j, the prover sends the claimed value of y j. This
reveals to the verifier the public vector s j = (y j−1,y j), as V learned the claimed value of y j−1 in the pre-
vious round. The prover also sends a commitment cw j to vector w j. Together, these quantities specify the
committed-R1CS instance I j given in Equation (18.16). The purpose of round j > 1 is then to fold I j into
the running folded instance I. Accordingly, the prover sends a commitment cT to the claimed cross-term T
(Equation (18.11)). In round j = 1, there is no folding operation to perform, as the verifier will simply set
the running folded instance to I1; see next paragraph for details.

How the verifier V processes round j. Upon reading the prover’s message in round j = 1, V sets its
variables in accordance with the running folded instance becoming I1. Specifically, V sets round-count to 1,
prev-output to x, cur-output to the claimed value of y1, u to 1, s to (prev-output,cur-output), cw to cw1 , and
cE to a commitment to the all-0s vector.

Upon receiving the prover’s message in round j > 1, the verifier increments round-count from j−1 to
j, sets prev-output to cur-output, and updates cur-output to (the claimed value of) y j. In a truly interactive
protocol, the verifier would randomly choose the field element r ∈ F used for that round’s folding operation
and send it to the prover, but in the non-interactive setting, both prover and verifier can determine r via the
Fiat-Shamir transformation as per Section 18.5.2. After r is chosen, using homomorphism of the vector
commitment scheme, V updates cw to a commitment to w+ rw j (as per Equation (18.6)).227 V also updates

227i.e., cw← cw · (cw j )
r where · denotes the group operation of the multiplicative group over which the Pedersen vector commit-

ments used by the protocol are defined (see Section 14.2).
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cE to a commitment to E + rT (as per Equation (18.10)).228 V updates u← u+ r (as per Equation (18.7))229

and updates s← s+ r · s j, where s j = (prev-output, cur-output) (as per Equation (18.5)).
In this manner, after processing all i “rounds” of the proof, the verifier has computed a single folded

committed-R1CS-with-slack-vector instance as per Equation (18.15), whose validity, up to a negligible
soundness error, is equivalent to the validity of all i applications of F . In this final “round”, the prover
can establish the validity of the instance using any SNARK for committed-R1CS-with-slack-vector. Such
a SNARK can in turn be easily obtained from any SNARK for R1CS satisfiability that commits to witness
vectors via the same homomorphic vector commitment scheme used throughout the folding protocol. This
includes the SNARK for R1CS from Section 8.4 when combined with, say, the Bulletproofs polynomial
commitment scheme (Section 14.4).

18.5.4 The Final SNARK: Nova

Unfortunately, the argument of the previous section yields a proof π that grows linearly with i, the number
of applications of F . Roughly speaking, we now address this by forcing the SNARK prover to, in its own
head, perform the verifier’s processing of π across i “rounds” of the protocol, and thereby avoid having the
prover explicitly send π to the verifier.

Conceptual overview: folding as deferral of proof checking. The protocol of the previous section can
be thought of as an argument system for incremental computation that works by reducing the checking of
all applications of F (or more precisely, of R1CS instances equivalent to F) to checking a single derived
folding of the applications of F . That is, the validity of the single folded instance is equivalent to the validity
of every one of the applications of F that the prover claims to have faithfully executed.

With this in mind, the (validity of) the running folded committed-R1CS-with-slack-vector instance I at
the start of each “round” j > 1 itself acts a “proof” π j that F( j−1)(x) = y j−1. The folding procedure that
occurs in “round” j > 1 should then be thought of as a way to defer checking the validity of π j to a later
point. Moreover, the folding has the effect of “accumulating” all i such checks into a single statement that
can be checked at the same cost as performing any one of the validations individually. Specifically, the
checks are deferred until all i foldings have occurred, at which point the prover finally establishes that the
final running folded instance is valid.

The above method of “deferring/accumulating” the checking of each “proof” π j is in contrast to the
recursive-composition-of-SNARKs approach covered in Section 18.4, in which the prover explicitly proves
that it verified a SNARK proof π j in its own head for all j = 1, . . . , i−1.230 Intuitively, it is cheaper to de-
fer/accumulate the checks than it is to actually explicitly perform each check, thereby reducing the overhead
of recursion relative to the recursive-composition-of-SNARKs approach of Section 18.4 (we discuss exactly
what is the overhead of recursion of Nova later).231

228Note that Equation (18.10) simplifies due to the fact that there is no slack vector in the R1CS instance of Equation (18.16)—
equivalently, the slack vector is zero.

229Note that Equation (18.7) simplifies due to the fact that in the right hand side of Equation (18.16), C · z j is multiplied by the
trivial scalar 1.

230More precisely, the prover establishes that it knows a π j that would have convinced the SNARK verifier to accept. But this
effectively means that the prover has itself applied the SNARK verifier’s accept/reject computation to π j, since the prover knows
that the outcome of this computation is “accept”.

231The deferral/accumulation of these checks is also analogous to earlier results such as Halo [BGH19], that de-
ferred/accumulated only part of the verification of the SNARK proof π j, namely the verification of evaluations of committed
polynomials, via a folding-like procedure.
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The augmented function F ′. Now we come to obtaining a SNARK from the folding scheme via recursive
proof composition. Let us “augment” the computation of F to a larger computation F ′ that not only 1) applies
F but also 2) does the verifier’s work in one step of the folding scheme. This is analogous to how, in Section
18.4, the honest prover in round j of proof generation applied a base SNARK O to a circuit C′ that not only
applied F to y j−1, but also applied a verification circuit to the proof π j−1 computed in the previous round
j−1.

In more detail, F ′ will take as public input values for the variables maintained by the verifier in round
j of the folding scheme (see the bulleted list in Section 18.5.3), and will also take as non-deterministic
input the prover’s message in the folding scheme (except for the claimed value of y j). F ′ will output the
new values of the verifier’s variables in the folding scheme upon processing the prover’s message—see
the paragraph entitled “How the verifier processes round j” of Section 18.5.3. The one exception is that
whereas the verifier in the folding scheme updates the value of the variable cur-output to a claimed value
for y j provided by the prover, F ′ will instead output the actual value of y j. That is, F ′ will apply F to the
relevant input and include the result in its output.

The SNARK. The final SNARK applies the folding-based proof of the previous section with F ′ in place
of F .232 But rather than outputting the entire proof, which consists of i “rounds”, the final SNARK proof
provides only the information sent by the prover in the final “round”. This information comprises the
following:

• A specification of the running folded instance I at the start of round i (Equation (18.15)), and a
description of the final R1CS instance I j to be folded in (Equation (18.16) with j = i). This latter
description includes the claimed output of (F ′)(i)(x). This includes both the variable round-count
(Section 18.5.3) and the claimed output yi of F(i)(x). The SNARK verifier must confirm that round-
count= i and reject if not, as this ensures that the proof actually refers to F(i) and not F( j) for some
j ̸= i. If all of the SNARK verifier’s remaining checks (described below) pass, then the verifier is
convinced that indeed yi = F(i)(x).

• The information provided by the prover in the “final round” of the protocol of the previous section
to perform the final folding operation, specifically a commitment cT to the cross-term used in this
folding operation.

• A SNARK proof that the final folded instance is satisfiable.

In summary, the honest prover performs each “round” of the previous section’s protocol in its own head,
only outputting a transcript of the final “round” of the protocol. This is analogous to how the prover in the

232This description elides the following subtlety, which requires a tweak to the definition of F ′ to address. The folding-scheme is
applied to force the prover to faithfully compute (F ′)(i), which means that for j≤ i, the output of the ( j−1)’st application of F ′ has
to be fed as public input to the j’th application of F ′. One “piece” of the output of F ′ is the folding-verifier’s variable s representing
a “running folding” of all public inputs to previous applications of F ′. This means that the vector s that is (just one piece of the)
input to the jth application of F ′ has to be at least as big as the entire public input to the previous application of F ′. But since there
are other outputs of the ( j−1)’st application of F ′ as well (see the bulleted list of verifier values in Section 18.5.3), this forces the
length of the public input to the jth application of F ′ to be strictly bigger than that of the previous application. Thus, the public
input length for F ′ grows with each application of F ′. To address this issue, one can modify F ′ to not include in its output s ∈ Fm,
but only a cryptographic hash H(s), thereby ensuring that the output length of F ′ is independent of the length of s. F ′ will then take
s as an additional non-deterministic input rather than as public input and as part of its computation it will confirm that s is indeed
the pre-image of the associated public input value H(s). In summary, without this modification, the public input size to F ′ grows
iteration-by-iteration, because the vector s (the folding of prior public inputs) grows with each iteration. The modification replaces
s in the input and output of F ′ with a hash H(s), which addresses the issue because the size of the hash H(s) does not depend on
the length of the vector s.
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recursive-SNARK solution of Section 18.4 for F(i) generated in its own head a sequence of SNARK proofs
π1, . . . ,πi, with each π j attesting to a correct execution of F to input y j−1 (as well as knowledge of π j−1).
But ultimately, only the final proof πi needs to be sent to the verifier to guarantee the correctness of the
claimed output of F(i).

Essentially, each time that the Nova prover P performs a folding operation in its own head, thereby
folding I j into the running folded instance I, the very next application of F ′ performs the verifier’s work in
the folding operation, in addition to applying F for a ( j + 1)’st time. This is the sense in which the final
Nova SNARK forces the prover of the previous section’s protocol to perform in its own head the verifier’s
work of that protocol.

The overhead of recursion. In this SNARK, the overhead of recursion refers to the amount of extra work
that F ′ does beyond simply applying F (or more precisely, the number of constraints in the R1CS instance
over field Fp representing F ′ relative to the R1CS instance over Fp representing F). This extra work done
in F ′ simply implements the verifier’s variable updates in the folding scheme; see the final paragraph of
Section 18.5.3. This consists of a handful of field multiplications and additions over Fp, one invocation of a
cryptographic hash function per the Fiat-Shamir transformation, and the homomorphic updating of the two
commitments cw and cE to obtain commitments to w+ rw j (as per Equation (18.6)), and E + rT .

If a SNARK-friendly hash function is used for Fiat-Shamir, then it is the two homomorphic commitment
updates that dominate the overhead of recursion. If the commitments are Pedersen vector commitments
over a multiplicative group G, then each of these updates requires one group exponentiation and one group
multiplication; it is the two group exponentiations that dominate the cost, as a group exponentiation takes
approximately log |G| ≈ 2λ group multiplications. This overhead of recursion is concretely cheaper than
that of recursive-SNARK solutions considered earlier in this chapter (see Footnote 220 in Section 18.4).233

Overall prover runtime. Assuming the number of iterations i is not very small, the prover’s runtime is
dominated by the cost of computing a Pedersen vector commitment at every iteration j ≤ i to the witness
vector w j and the cross-term T . Both of these vectors have length at most n′, where n′ is the number of rows
of the R1CS instance capturing F ′. Hence, this is two multi-exponentiations of size n′ per iteration. As per
the above overhead-of-recursion analysis, n′ is quite close to n, the number of rows of the R1CS capturing F
alone. One does need to use a cycle of elliptic curves, but the curves need not be pairing friendly, ensuring
fast group operations (see Section 18.2).

233This description elides an important implementation issue that is essentially identical to the one described in Footnote 216 in
the context of IVC from recursive SNARKs. Specifically, Pedersen vector commitments that are homomorphic over field Fp are
elements of an elliptic curve group G in which the scalar field is Fp and the base field is another field, F. And group operations over
G can be efficiently implemented by a circuit or R1CS defined over the base field, but unfortunately not the scalar field. Similar
to Footnote 216, one way to sidestep this issue is to identify a cycle of curves G and G′ with scalar and base fields Fp and F such
that F is efficiently computable by circuits or R1CS over both Fp and F. One then maintains two different sequences of R1CS
instances, with one sequence defined over field Fp and the other defined over field F. Since F is efficiently computable in R1CS
over both fields, one can efficiently define two different augmented functions, say, F ′, and F ′′, computing F and performing folding
operations when commitments are sent over G′ and G respectively. One then alternates performing folding operations on each
sequence. Specifically, a folding of two committed-R1CS-with-slack-vector instances defined over Fp (and associated application
of F ′) can be efficiently computed by F ′′ and hence by the R1CS sequence defined over field F, and similarly a folding operation
of two instances defined over F can be efficiently computed by F ′ and hence by the R1CS sequence defined over Fp. The final
SNARK proof consists of the final folding operation for both sequences, and SNARK proofs for both sequences that the final folded
instance is satisfied. Also similar to Footnote 216, if F is only efficiently implementable over Fp one will still have two functions
F ′ and F ′′, but only F ′ will both apply F and implement folding; F ′′ will only implement folding. This will double the number of
folding operations required to obtain a SNARK for F(i). Effectively only applications of F ′ perform the “useful work” of applying
F ; applications of F ′′ are only used to “switch” which of the two fields folding operations can be efficiently computed over.
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Chapter 19

Bird’s Eye View of Practical Arguments

We have covered four approaches to the construction of practical SNARKs. In each of the four, an underlying
information-theoretically secure protocol is combined with cryptography to yield an argument. The first
approach is based on the interactive proof for arithmetic circuit evaluation of Section 4.6 (the GKR protocol),
the second is based on the MIPs for circuit or R1CS satisfiability of Sections 8.2 and 8.4, the third is based
on the constant-round polynomial IOP for circuit or R1CS satisfiability of Section 10.3, and the fourth is
based on the linear PCP of Section 17.4. We presented a unified view of the first three approaches, and the
pros and cons of each, in Section 10.6, via the lens of polynomial IOPs.

We have also covered a fifth approach to argument design, based on commit-and-prove techniques (Sec-
tion 13.1), which can be viewed as combining a trivial static (i.e., NP) proof system with cryptographic com-
mitments. Commit-and-prove based arguments have been studied in several works, e.g., [DIO20,BMRS21,
WYKW21]. These arguments are not succinct, and recent works on this approach yield interactive proto-
cols; for both of these reasons, these arguments are not SNARKs.

For each of the first three approaches (IP-based, MIP-based, and constant-round-polynomial-IOP-based),
one can combine the information-theoretically secure protocol with any extractable polynomial commit-
ment scheme of the protocol designer’s choosing to obtain a succinct argument (there is essentially just
one technique to to turn linear PCPs into publicly-verifiable SNARKs, based on pairings and very similar
to KZG polynomial commitments, see Section 17.5). For the IP-based and MIP-based argument systems,
the polynomial commitment scheme must allow committing to multilinear polynomials. For the IOP-based
argument system, the polynomial commitment scheme must allow committing to univariate polynomials.
Of course, the resulting argument system will inherit the cryptographic and setup assumptions as well as
any efficiency bottlenecks of the chosen polynomial commitment scheme.

We have in turn covered three broad approaches to polynomial commitment schemes in this survey,
though some of these approaches have multiple instantiations with various cost tradeoffs. The first is via
IOPs combined with Merkle hashing, where we saw FRI in Section 10.4.2 and Ligero- and Brakedown-
commitments in Section 10.5. The second is based on transparent Σ-protocols that assume hardness of
the discrete logarithm problem, where we saw Hyrax-commit (Section 14.3), Bulletproofs (Section 14.4),
and Dory (Section 15.4).234 The third is based on the approach of KZG [KZG10] and uses pairings and a
trusted setup (Section 15.2). Below, we call these respective approaches to polynomial commitments “IOP-
based”, “discrete-log-based”, and “KZG-based”. We discussed the pros and cons of the various polynomial
commitment schemes in Section 16.3.

234We also saw that it is possible to combine various commitment schemes to obtain different cost tradeoffs, e.g., Section 15.4.
We omit such combinations from this section to avoid a combinatorial explosion of commitment schemes to discuss.
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Approaches to Practical SNARK Design

Linear PCP + Pairing-based cryptography

Groth16

Polynomial IOP + Polynomial Commitment Scheme

Polynomial Commitment Approaches

Pairing-based (non-transparent)

KZG

Discrete-log-based (transparent)

DoryBulletproofsHyax-commit
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Ligero/Brakedown-commitFRI

Polynomial IOP approaches

Constant-round polynomial IOP

PLONKMarlin
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SpartanClover

IP-based

GKR protocol

Figure 19.1: Our taxonomy of SNARK design. Leaves depict selected example protocols covered or discussed in
this survey. Every combination of polynomial IOP and polynomial commitment scheme yields a SNARK, though
constant-round polynomial IOPs need a commitment scheme for univariate polynomials, while IPs and MIPs need
one for multilinear polynomials. SNARKs using transparent polynomial commitments are transparent. SNARKs
using IOP-based polynomial commitments are plausibly post-quantum.

19.1 A Taxonomy of SNARKs

The research literature on practical succinct arguments is a veritable zoo of built systems and theoretical
protocols. In this section, we attempt to tame this zoo with a coherent taxonomy of the primary approaches
that have been pursued.

Outside of the linear-PCP-based SNARKs, most known SNARKs are obtained by combining some IP,
MIP, or constant-round polynomial IOP with a polynomial commitment scheme. As we have covered at least
six polynomial commitment schemes in this survey, this yields at least 18 possible SNARKs (even ignoring
the fact that there are multiple MIPs and constant-round polynomial IOPs to choose from). Most of these
combinations have been explored; below, we list which implemented systems use which combination.235

Our taxonomy is depicted in Figure 19.1.

(a) IPs combined with FRI-based (multilinear) polynomial commitments (Section 10.4.5) were explored
in [ZXZS20], producing a system called Virgo.

(b) IPs combined with discrete-log-based (multilinear) polynomial commitments (Bulletproofs, and Hyrax-
commit) were explored in [WTS+18], producing a system called Hyrax.

(c) IPs combined with KZG-based (multilinear) polynomial commitments were explored in [ZGK+17a,
ZGK+17b, XZZ+19], producing systems called zk-vSQL and Libra.

(d) MIPs combined with many different multilinear polynomial commitments were explored in [Set20,
SL20, GLS+21], producing systems including Spartan, Xiphos, Kopis, Brakedown, and Shockwave.
Spartan, Kopis, and Xiphos use various discrete-logarithm-based multilinear commitments, while
Brakedown naturally uses the Brakedown-commitment and Shockwave the Ligero-commitment.

(e) Constant-round polynomial IOPs combined with FRI-based (univariate) polynomial commitments
were explored in a series of works, most recently [BSCR+19, COS20, KPV19], producing systems
called Aurora, Fractal, and Redshift. Other related works in this series include [BSCGT13b, BS-
BHR18, SGKS20, BSBC+17, BBHR19, BSCI+20].

235This list is surely not exhaustive.
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(f) Constant-round polynomial IOPs combined with KZG-based (univariate) polynomial commitments
were explored in popular systems called Marlin [CHM+20] and PlonK [GWC19]. Marlin uses the
polynomial IOP for R1CS from Section 10.3, while PlonK gives a different polynomial IOP, for
circuit-satisfiability. A predecessor to these works is Sonic [MBKM19].

“Halo 2”236 combines the PlonK constant-round polynomial IOP with the Bulletproofs polynomial
commitment scheme. “PlonKy2”237 uses a FRI-based polynomial commitment scheme rather than
Bulletproofs.

(g) Ligero [AHIV17] combines a constant-round polynomial IOP with the polynomial commitment of
the same name, and Ligero++ [BFH+20] replaces the polynomial commitment with a “combination”
of Ligero’s commitment and FRI.

(h) A very large number of systems have been derived from the linear PCP of Genarro, Gentry, Parno, and
Raykova [GGPR13] (Section 17.5). These include [BCG+13, PHGR13]. The most popular variant
of the SNARK derived from GGPR’s linear PCP is due to Groth [Gro16], who obtained a proof
length of just 3 elements of a pairing-friendly group, and proved the SNARK secure in the Generic
Group Model that was briefly discussed in Section 15.2 ( [FKL18] extended the security proof to the
Algebraic Group Model). This variant is colloquially referred to as Groth16.

More SNARKs via composition. On top of the taxonomy of SNARKs delineated above, one can take
any two SNARKs designed via one of the 18 above approaches, and compose them one or more times. As
discussed in Section 18.1, by taking a “fast-prover, larger-proof” SNARK and composing it with a “slower
prover-smaller proof” SNARK, one can in principle obtain a “best-of-both-worlds” SNARK with a fast
prover and small proofs. Such compositions are growing increasingly popular and already yield state-of-
the-art performance.

To name some recent examples, PlonKy2 self-composes the SNARK obtained by combining the PlonK
polynomial IOP with the FRI polynomial commitment scheme. In the first SNARK application, FRI can
be configured to have a fast prover but to generate a large proof π . Since π is large, it is not actually sent
to the verifier. Rather, subsequent applications of the same SNARK are used to establish knowledge of π .
Since these later applications of the SNARK are applied to a relatively small computation (the procedure for
verifying π), FRI can be configured in these later applications to have a slower prover and smaller proofs.

Relatedly, Polygon Hermez is composing such a FRI-based SNARK with Groth16, in order to inherit
Groth16’s attractive verification costs, while keeping both the prover time and size of the trusted setup
smaller than in a direct application of Groth16 to the original statement being proved [Bay22] (the use of
Groth16 does relinquish the plausible post-quantum security and transparency of the FRI-based SNARK).

As other examples, Orion [XZS22] composes Brakedown with Virgo to reduce proof size. deVirgo
[XZC+22] in turn composes Virgo with Groth16. Filecoin uses a technique called SnarkPack [GMN21] to
aggregate many Groth16 proofs into one; such aggregation of SNARK proofs can be viewed as a form of
SNARK composition (see Section 18.3). zkSync has similarly used recursive aggregation of PlonK proofs
since 2020.

Other approaches. There are a handful of approaches to the design of arguments that do not necessarily
fall into the categories above. One example is called MPC-in-the-head, which takes any secure multi-

236https://zcash.github.io/halo2/
237https://github.com/mir-protocol/PlonKy2/blob/main/PlonKy2.pdf
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party computation (MPC) protocol238 and transforms it into a (zero-knowledge) IOP [IKOS09, AHIV17,
GMO16].239 The IOP can in turn be transformed into a non-interactive argument via Merkle-hashing and
the Fiat-Shamir transformation, as we have described in this survey.

Arguments derived via MPC-in-the-head typically have a cost profile loosely analogous to commit-and-
prove arguments: much larger proof sizes and higher verifier costs than the approaches above, but they can
have good concrete costs on small instance sizes, and good prover runtimes. This has led, for example, to
an interesting family of candidate post-quantum secure digital signatures, called Picnic [CDG+17, KZ20,
DKP+19, KKW18, KRR+20].240

We do not cover MPC-in-the-head because, in our view, it is not truly distinct from the approaches
covered in this survey. In particular, all known succinct arguments (i.e., with sublinear proof size) that were
originally discovered or presented via the MPC-in-the-head framework in fact comprise a polynomial IOP
combined with one of the IOP-based polynomial commitment schemes that we have covered [AHIV17].

Another example approach not covered in this survey is that linear PCPs can be combined with non-
pairing-based cryptosystems to yield designated-verifier (i.e., non-publicly-verifiable) SNARKs, including
some based on the assumed hardness of lattice problems that are plausibly post-quantum secure [BCI+13].
To date, this approach has not led to practical protocols.

19.2 Pros and Cons of the Approaches

Every combination of {IP, MIP, constant-round polynomial IOP} and polynomial commitment scheme nat-
urally inherits the pros and cons of the two components of the combination. Sections 10.6 and 16.3 respec-
tively discussed the pros and cons of the individual components. In this section, we aim to do the same for
the various combinations, as well as for SNARKs derived from linear PCPs.

Approaches minimizing proof size. There are two approaches that achieve proofs consisting of a constant
number of group elements, captured in items (f) and (h) of the previous section—namely, constant-round
polynomial IOPs combined with KZG-based polynomial commitments, and linear PCPs (transformed into
SNARKs using pairing-based cryptography). The linear PCP approach is the ultimate winner in proof size,
as its proofs consist of as few as 3 group elements [Gro16]. For comparison, Marlin [CHM+20] (which uses
the former approach), produces proofs that are roughly 4 times larger than that of Groth’s SNARK [Gro16].

The downsides of the two approaches are also related. First, both require a trusted setup (as they make
use of a structured reference string), which produces toxic waste (also called a trapdoor) that must be dis-
carded to prevent forgeability of proofs. In the case of IOPs combined with KZG-based polynomial commit-
ments, the downsides of the SRS are not as severe as for linear PCPs, for two reasons. First, the SRS for the
former approach is universal: a single SRS can be used for any R1CS-satisfiability or circuit-satisfiability
instance up to some specified size bound. This is because the SRS simply consists of encodings of powers

238An MPC protocol allows t ≥ 2 parties to compute some function f of their inputs, say, f (x1, . . . ,xt) where xi is the i’th party’s
input. Very roughly speaking, the guarantee of an MPC protocol is that each party i learns no other information about the other
parties’ inputs, other than f (x1, . . . ,xt).

239Very roughly speaking, the IOP is obtained as follows. If the IOP prover claims to know a witness w such that C(w) = 1, it
simulates, in its own head, the secret-sharing of w amongst several parties. It then simulates an MPC protocol for evaluating C on
w, using verifier-supplied randomness within the MPC protocol. The IOP proof string is then a (claimed) transcript of the MPC
protocol. The IOP verifier inspects the proof string to try to ascertain whether it is indeed a valid transcript for the MPC protocol.
The security properties of the MPC protocol are used to ensure that the resulting IOP is complete, sound, and zero-knowledge.

240Other related techniques also derive zero-knowledge proofs from MPC protocols [FNO15,HK20,JKO13], with broadly similar
cost profiles to MPC-in-the-head (long proofs and verification time, but good prover runtime and small hidden constants).

299



of a random field element τ , and hence is independent of the circuit or R1CS instance. In contrast, the
SRS in the linear PCP approach is computation-specific: in addition to including encodings of powers-of-τ ,
the SRS in the linear PCP approach also has to include encodings of evaluations of univariate polynomials
capturing the wiring pattern of the circuit or the matrix entries specifying the R1CS instance.241 Second, the
SRS for the former approach is updatable (see Section 16.3 for discussion of this notion), while the SRS for
the linear PCP approach is not, again owing to the fact that the SRS contains elements other than encodings
of powers-of-τ .

The second downside of both of these two approaches is that they are computationally expensive for the
prover, for two reasons. First, in both approaches, the prover needs to perform FFTs or polynomial division
over vectors or polynomials of size proportional to the circuit size S, or number K of nonzero entries of of
constraints in the the R1CS instance. This is time-intensive as well as highly space intensive and difficult to
parallelize and distribute [WZC+18]. Second, in both approaches the prover also needs to perform several
multi-exponentiations of size Θ(S) or Θ(K) in a pairing-friendly group. See Section 16.3 for discussion of
the concrete costs of these operations.

SNARKs such as Marlin and PlonK that are derived from constant-round polynomial IOPs have a sig-
nificantly slower prover than Groth’s SNARK for a given circuit or R1CS size.242 This increased prover
cost can be mitigated in certain applications by the fact that polynomial-IOP derived SNARKs, compared
to linear-PCP derived SNARKs such as Groth’s, have more flexibility in the intermediate representation
used—see Section 19.3.3 for details.

In the remainder of this section, we describe broad tradeoffs of the remaining approaches.

Transparency. In contrast to the two approaches that minimize proof size, all of the remaining approaches
are transparent unless they choose to use KZG-based polynomial commitments. That is, they use a uniform
reference string (URS) rather than a structured reference string, and hence no toxic waste is produced.
Transparency of the SNARK is totally determined by the polynomial commitment scheme used—if the
commitment scheme uses a URS, then the entire SNARK uses a URS.

Post-quantum security. The approaches that are plausibly post-quantum secure are comprised of those
that utilize an IOP-based polynomial commitment (FRI, Ligero, Brakedown).243 That is, quantum security
is determined entirely by the polynomial commitment scheme–IOPs are plausibly post-quantum, but the
other two classes of polynomial commitments are not, due to their reliance on the hardness of discrete log.

241One can render universal a SNARK with a computation-specific SRS by applying the SNARK to a so-called universal circuit,
which takes as input both a description of another circuit C and an input-witness pair (x,w) for C and evaluates C on (x,w).
This introduces significant overhead, despite several mitigation efforts [BCTV14b, KPPS20]; see [WSR+15] for some concrete
measurements of overhead.

242In Groth’s SNARK, the prover performs three multi-exponentiations in G1 and one in G2, all of size linear in the number of
gates of the circuit or number of constraints in the R1CS. With popular pairing-friendly groups such as BLS12-381, this cost is
comparable to that of applying KZG polynomial commitments to roughly six polynomials of this size. Marlin and PlonK require
the prover to commit to more and/or larger polynomials than this. This is especially so as these systems are typically applied
in the holographic setting (Sections 10.3.2 and 16.2), whereby polynomials capturing the “wiring” of the circuit or R1CS are
committed in pre-processing, to enable sublinear verification time. These pre-processing polynomials are larger than the others by
a constant factor, and there are several of them, and the prover must reveal evaluations of these committed polynomials as part of
the SNARK proof. In contrast, Groth’s SNARK, with its circuit-specific pre-processing, “bakes” circuit wiring information into the
SRS generation procedure, and thereby does not have to “pay” in prover efficiency to achieve holography.

243The MPC-in-the-head approach, by virtue of yielding IOPs, also gives plausibly post-quantum secure protocols [GMO16,
AHIV17].
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Dominant contributor to cost: polynomial commitments. When MIPs and constant-round polynomial
IOPs are combined with any polynomial commitment, it is the polynomial commitment that typically dom-
inates the most relevant costs: prover time, proof length, and verifier time (the lone exception is that, if an
MIP is combined with KZG commitments, it is the MIP and not the polynomial commitment that dominates
verification costs).

This may or may not be the case for IPs for circuit-satisfiability as well—IPs have larger proofs “outside
of the polynomial commitment” than MIPs and constant-round IOPs, and that may or may not dominate
verification costs, depending on the polynomial commitment scheme used, how small the witness is relative
to the rest of the circuit, and how deep the circuit is.

Detailed asymptotic costs of the transparent polynomial commitments covered in this survey were pro-
vided in Table 16.1. Here is a brief summary of how concrete costs compare. Broadly speaking, in terms of
prover costs, FRI244 and Bulletproofs245 are the most expensive polynomial commitment schemes, followed
by those using pairings (Dory and KZG commitments). Hyrax, Ligero and Brakedown’s commitments all
have similar prover costs, though Brakedown is slightly faster and applies over fields that the others do not
(see Section 19.3.1 for details). In terms of the sum of commitment size and evaluation proof length (which
is what ultimately determines SNARK proof length), Brakedown is the largest, followed by Ligero, followed
by Hyrax—all three yield roughly square-root size proofs, but with different constant factors. After that is
FRI (polylogarithmic proof size). Next is Dory and Bulletproofs (logarithmic size proofs, with Bulletproofs
shorter than Dory by a significant constant factor). KZG-commitments for univariate polynomials are the
smallest (constant size).

Recent work called Orion [XZS22] reduces the size of Brakedown’s evaluation proofs via depth-one
SNARK composition, but in so doing it relinquishes the field-agnostic nature of Brakedown and the proofs
remain large (megabytes). Hyperplonk [CBBZ22] proposes to reduce the proof size much further, to under
10 KBs, by combining Brakedown or Orion with KZG commitments, though this relinquishes transparency
in addition to field-agnosticism.

Constant-round IOPs vs. MIPs and IPs. Broadly speaking, SNARKs from constant-round IOPs tend
to be much slower and more space intensive for the prover than SNARKs from MIPs and IPs. This is
because constant-round IOPs require the prover to commit to many polynomials (often 10 or more), while
in SNARKs from MIPs or IPs, the prover only needs to commit to a single polynomial (which is no bigger
than each of the polynomials arising in known constant-round IOPs).246 This leads to prover time and space
costs that are often one or more orders of magnitude larger than for MIP- and IP-derived SNARKs. The
large number of committed polynomials in SNARKs from constant-round IOPs does not effect verification
costs as much, owing to techniques for efficiently “batch-verifying” the claimed evaluations of multiple
committed polynomials at the same input.

244As discussed in detail in Section 16.3, FRI exhibits a strong tension between prover costs and verification costs, with the
tradeoff between the two determined by the rate of the Reed-Solomon code used in the protocol (see Section 10.4.4 for details).
It can be configured to have a relatively fast prover, but then proofs are large (multiple hundreds of KBs), or a slower prover with
smaller proofs (though still close to 100 KBs when run at 100 bits of security under current analyses [Hab22]).

245A principle reason for high prover costs in Bulletproofs prover is that evaluation proofs are concretely expensive to compute:
they require a linear number of exponentiations, as opposed to the single multi-exponentiation of linear size that suffices to compute
the commitment itself. This high prover cost can be mitigated in contexts where many polynomials are committed and then
evaluated, owing to efficient batch-verification of homomorphic polynomial commitments (Section 16.1).

246These statistics about the number of polynomials committed ignore the cost of holography/computation commitments, which
requires even more (and even larger) committed polynomials (see Sections 10.3.2 and 16.2 and Footnote 242.). Even in the
holographic setting, the qualitative comparison is similar.
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On pre-processing and work-saving for the verifier. The approaches requiring an SRS (i.e., linear PCPs,
or any approach using KZG-based polynomial commitments) inherently require a pre-processing phase to
generate the SRS, and this takes time proportional to the size of the circuit or R1CS instance and must be
performed by a trusted party.247 But the other approaches (combining any IP, MIP, or IOP with IOP-based or
discrete-log-based polynomial commitments) can achieve a work-saving verifier without pre-processing, if
applied to computations with a “regular” structure. By work-saving verifier, we mean that V runs faster than
the time required simply to check a witness—in particular, V’s runtime is sublinear in the size of the circuit
or R1CS instance under consideration. For example, the MIP of Section 8.2 achieves a work-saving verifier
without pre-processing so long as the multilinear extensions ãdd and m̃ult of the circuit’s wiring predicate
can be efficiently evaluated at any input, and any RAM of runtime T can be transformed into such a circuit
of size Õ(T ) (Chapter 6).

That said, not all implementations of these approaches seek to avoid pre-processing for the verifier. One
reason for this is that guaranteeing that the intermediate representation (whether a circuit, R1CS instance, or
other representation) has a sufficiently regular structure to avoid pre-processing can introduce large concrete
overheads to the representation size. Another is that “paying for” an expensive pre-processing phase can
enable improved verification costs in the online phase of the protocol. For example, a primary ethos of
SNARKs derived from linear PCPs, as well as constant-round polynomial IOPs combined with KZG com-
mitments, is that, while it is expensive to generate the (long) SRS and distribute it to all parties wishing to
act as the prover, checking proofs is extremely fast (only a constant number of group operations and bilinear
map (pairing) evaluations). We elaborate further on these points at the end of this section.

To give a few examples from the research literature, STARKs [BBHR19, Sta21, GPR21] implement
an IOP specifically designed to avoid pre-processing and achieve a polylogarithmic time verifier for any
computation, with considerable effort devoted to mitigating the resulting overheads in the size of the in-
termediate representation. Although STARKs achieve considerable improvements over earlier instantia-
tions of this approach [BSBC+17], the resulting intermediate representations remain very large in gen-
eral. Meanwhile, many IP and MIP implementations avoid or minimize pre-processing in data parallel
settings [Tha13, WJB+17, WTS+18] (see Section 4.6.7). These systems are able to exploit data parallel
structure to ensure that the verifier can efficiently compute the information it needs about the computation
in order to check the proof. Specifically, the time required for the verifier is independent of the number of
parallel instances executed. They achieve this without incurring large concrete overheads in the size of the
intermediate representation (see Section 6.6.4 for a sketch of how such overheads can arise when supporting
work-saving verifiers for arbitrary computations).

Still other systems, such as Marlin [CHM+20], RedShift [KPV19], PlonK [GWC19], and Spartan
[Set20] implement IOPs and MIPs targeted for the pre-processing setting, where a party can commit to
polynomials encoding the wiring of the circuit or R1CS instance during pre-processing,248 and thereafter,
every time the circuit or R1CS is evaluated on a new input, the verifier can run in time sublinear in the circuit
size. This is sometimes referred to as holography or computation commitments.

Finally, many systems do not seek a work-saving verifier even after potential pre-processing—these
include [BSCR+19, AHIV17, BBB+18, BCC+16, Gab19a].

Prover time in holographic vs. non-holographic SNARKs. In systems that implement holography, pro-
ducing evaluation proofs for the “wiring” polynomials committed in pre-processing is typically the dominant

247A partial exception is that combining IPs for circuit-satisfiability with KZG-based polynomial commitments has a setup phase
of cost proportional to the size of the witness w rather than the entire circuit C. Also, [BMM+21] gives a variant of KZG-based
polynomial commitments with square-root-sized SRS, but logarithmic- rather than constant-sized evaluation proofs.

248The pre-processing may or may not be transparent, depending on the polynomial commitment scheme used.
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cost in terms of prover time, for reasons discussed in Footnote 242. Hence, care should be taken when com-
paring prover time of holographic SNARKs to non-holographic ones (i.e., SNARKs that either don’t seek to
save work for the verifier, or that do seek to save work but only for circuits with “regular” wiring patterns).
Non-holographic systems may achieve faster prover time as measured on a per-gate basis, but they may
have to use much bigger circuits to achieve a work-saving verifier in general, or else limit themselves to
applications that naturally perform the same “small’ computation many times, to ensure “regular” wiring
without significant blowups in circuit size.

19.3 Other Issues Affecting Concrete Efficiency

There are many subtle or complicated issues that can affect the concrete efficiency of a SNARK. This section
provides an overview of some of them.

19.3.1 Field choice

A subtle aspect of the various approaches to SNARK design that can have a significant effect on practical
performance is the many ways in which the designer’s choice of field to work over can be limited. One
reason this matters is that many cryptographic applications naturally work over fields that do not satisfy the
properties required by many SNARKs. Examples include proofs regarding encryption or signature schemes,
many of which work over elliptic curve groups that are defined over fields that are not FFT-friendly; this is
problematic for the many SNARKs in which the prover needs to perform FFTs.

Another reason flexibility in field choice matters is that for certain fields, addition and multiplication
are particularly efficient on modern computers. For example, when working over Mersenne-prime fields
(Fp where p is a prime of the form 2k− 1 for some positive integer k), reducing an integer modulo p can
be implemented with simple bit-shifts and addition operations, and field multiplication can be implemented
with a constant number of native (integer) multiplications and additions, followed by modular reduction.
Mersenne primes include 261−1, 2127−1, and 2521−1. Similarly fast arithmetic can be implemented more
generally using any pseudo-Mersenne prime, which are of the form 2k− c for small odd constant c (e.g.,
2224−296 +1). In contrast, modular reduction in an arbitrary prime-order field potentially requires division
by p, and this is typically slower than reduction modulo pseudo-Mersenne primes by a factor of at least
2.249 As another example of fields with fast arithmetic, some modern CPUs have built-in instructions for
arithmetic operations in fields of sizes including 264 and 2192.

Limitations on the choice of field size for SNARKs come in multiple ways. Here are the main examples.

Guaranteeing soundness. All of the IPs, IOPs, MIPs, and linear PCPs that we have covered have sound-
ness error that is at least 1/|F| (and often larger by significant factors). Of course, so long as the soundness
error is at most, say, 1/2, the soundness error can always be driven to 2−λ by repeating the protocol λ times,
but this is expensive (often, only certain “soundness bottleneck” components need to be repeated, and this
can mitigate the blowup in some costs, see for example Section 10.4.4). Regardless, |F| must be chosen
sufficiently large to ensure the desired level of soundness.

Limitations coming from discrete-logarithm- or KZG-based polynomial commitments. SNARKs
making use of discrete-logarithm-based or KZG-based polynomial commitments (Chapter 14), or linear

249More information on efficient techniques for modular reduction in arbitrary prime-order fields can be found, for example, at
https://en.wikipedia.org/wiki/Montgomery_modular_multiplication.
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PCPs (which are compiled into SNARKs via pairings) must use a field of size equal to the order of the cryp-
tographic group that the polynomial commitment is defined over.250 In contrast, SNARKs using polynomial
commitment schemes derived from IOPs do not suffer such limitations, as the only cryptographic primitive
they make use of is a collision-resistant hash function (to build a Merkle-tree over the evaluations of the
polynomial to be committed), and such hash functions can be applied to arbitrary data.

Limitations coming from FFTs. SNARKs derived from IOPs (Chapter 10) and linear PCPs (Chapter 17)
require the prover to perform FFTs over large vectors, and different finite fields support FFT algorithms of
different complexities. In particular, standard FFT algorithms running in time Õ(n) on vectors of length n
work only for prime fields Fp if p−1 has many small prime factors.

Many, but not all, desirable fields do support fast FFT algorithms251. As an example, all fields of char-
acteristic 2 do have efficient FFT algorithms, though until relatively recently, the fastest known algorithm
ran in time O(n logn log logn). The extra log logn factor was removed only in 2014 by Lin et al. [LAHC16].
Very recent work [BCKL21, BCKL22] does show how to obtain O(n logn)-time FFT-like algorithms and
associated argument systems over arbitrary fields (after a more expensive field-dependent pre-processing
phase), but at the time of writing, its concrete efficiency remains unclear.

A related issue is that known constant-round polynomial IOPs [CHM+20, GWC19] require the field to
have multiplicative or additive subgroups of specified sizes. For example, the polynomial IOP in Section
10.3 requires F to have a subgroup H of size roughly the number variables of the R1CS system, and a second
subgroup L0 ⊃ H of size a constant factor larger than H. This is one reason SNARK designers may choose
to work over a field of size 2k, as this field has additive subgroups of size 2k′ for every k′ ≤ k (see Remark
10.1 in Section 10.3.1).

Limitations coming from program-to-circuit transformations. IOP-derived SNARKs that seek to em-
ulate arbitrary computer programs (Random Access Machines (RAMs)) while being work-saving for the
verifier and avoiding pre-processing typically use transformations from RAMs to circuits or other interme-
diate representations that only work over fields of characteristic 2. We saw an example of this in Section
9.4.1, and modern instantiations such as STARKs [BSBC+17, BBHR19] also have this property.

Other considerations in field choice. There are other considerations when choosing a field to work over,
beyond the limitations described above. For example, as discussed in Section 6.5.4.1, a prime field of size p
naturally simulates integer addition and multiplication so long as one is guaranteed that the values arising in
the computation always lie in the range [−p/2, p/2] (if the values grow outside of this range, then the field,
by reducing all values modulo p, will no longer simulate integer arithmetic). Such an efficient simulation
is not possible in fields of characteristic 2. Conversely, addition in fields of characteristic 2 is equivalent to
bitwise-XOR. Hence, aspects of the computation being fed through the proof machinery will affect which
choice of field is most desirable: arithmetic-heavy computations may be more efficiently simulated when
working over prime fields, and computations heavy on bitwise operations may be better suited to fields of
characteristic 2.

250For any large enough prime p, it is typically possible to identify an elliptic curve group G with scalar field Fp, such that
discrete logarithms are presumed difficult to compute in G. See for example [SSS+22]. However, the curve may not support
pairings, and it is generally undesirable to have to design a new elliptic curve group every time a SNARK protocol designer wishes
to change the field order p.

251By desirable, we either mean that the field supports fast arithmetic and meets the other desiderata described in this section, or
that a particular cryptographic application calls for use of the field, say, because a SNARK is being used to prove a statement about
an existing cryptosystem that performs arithmetic over the field.
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Example field choices. To give some examples from the literature: Aurora [BSCR+19], which is based
on IOPs, chooses to work over the field of size 2192. This is large enough to provide good soundness
error while supporting FFT algorithms requiring O(n logn) group operations, and some modern processors
have built-in support for arithmetic over this field. Virgo [ZXZS20] chooses to work over the field of
size p2 where p = 261− 1 is a Mersenne prime, to take advantage of the fast field operations offered by
such primes. [BBHR19] chooses to work of the field of size 264. This field is not large enough to ensure
cryptographically-appropriate soundness error on its own, so aspects of the protocol are repeated several
times to drive the soundness error lower. PlonKy2 works over (an extension of) the field of size 264−232+1.
This field has is increasingly popular due features such as its fast arithmetic, its ability to support FFTs of
length up to 232 or larger, and the fact that it is large enough to represent the product of two 32-bit unsigned
integer data types (which is at most (232−1)2 = 264−233 +1).

The three systems above use FRI-based polynomial commitments, meaning they do not have to work
over a field of size equal to the order of some cryptographically-secure group (though they do need the field
to support FFTs and have subgroups of specified sizes for other reasons as well). SNARKs based on pairings
or discrete-logarithm-based polynomial commitments are not able to work over these fields.

Hyrax [WTS+18] and Spartan [Set20], both of which combine IPs or MIPs with discrete-logarithm-
based polynomial commitments, work over the field whose size is equal to the order of (a subgroup of) the
elliptic curve group Curve25519 [Ber06] (see Section 12.1.2.2), with this group chosen for its fast group
arithmetic and popularity.

Systems that use pairings (e.g., all linear-PCP-derived SNARKs, as well as any SNARK using KZG-
based polynomial commitments or Dory) work over a field of size equal to the order of (a subgroup of)
chosen pairing-friendly elliptic curves. There have been significant efforts to design such pairing-friendly
curves with fast group arithmetic while ensuring, e.g., that the order of the chosen subgroup is a prime p
such that the field Fp supports fast FFTs. The most popular such curve today is perhaps BLS12-381—see
the references in Footnote 179 in Section 15.1.

The choice of field can make a significant concrete difference in the efficiency of field arithmetic. For
example, experiments in [Set20, ZXZS20] suggests that the field used in Virgo (of size

(
261−1

)2 ≈ 2122)
has arithmetic that is at least 4× faster than the field used in Hyrax and Spartan (of size close to 2252). Much
of this 4× difference can be attributed to the fact that Virgo’s field is roughly square root of the size of
Hyrax and Spartan’s, and hence field multiplications operate over smaller data types. However, some of the
difference can be attributed to extra structure in the Mersenne prime 261−1 that is not present in the prime
order field used by Hyrax and Spartan.

Currently, Brakedown [GLS+21], which combines an MIP with the Brakedown-commitment, is the
only implemented SNARK that neither requires the field to support FFTs nor to match the order of a cryp-
tographic group. The same would hold if combining an IP with the Brakedown commitment, but not a
constant-round polynomial IOP.252

19.3.2 Relative Efficiency of Different Operations

Of course, the speed of field arithmetic is just one factor in determining overall runtime of a SNARK. In
some SNARKs, the bottleneck for the prover is performing FFTs over the field, in others the bottleneck
is group operations, and in still others the bottleneck may be processes that have nothing to do with the
field choice (e.g., building a Merkle tree). To give one example, in SNARKs for R1CS-satisfiability derived

252This is because Brakedown-commitment applies to univariate polynomials represented over the standard monomial basis, but
the univariate polynomials arising in constant-round polynomial IOPs are specified via their evaluations over a subgroup H of F.
Efficiently converting from these evaluations to the standard monomial basis requires an FFT.
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from constant-round polynomial IOPs, the prover typically has to perform an FFT over a vector of length
Θ(K), where K is the number of nonzero matrix entries of the R1CS system, and also must build one or
more Merkle trees over vectors of length Θ(K). For reasonably large values of K, the O(K logK) runtime
of the FFT will be larger than the time required to perform the Θ(K) evaluations of a cryptographic hash
function that are needed to build the Merkle tree(s). But for very small values of K, the logK factor in the
FFT runtime may be concretely smaller than the time required to evaluate a cryptographic hash evaluation,
particularly if the field supports fast arithmetic, ensuring the hidden constant in the FFT runtime is small.
So which part of the protocol is the bottleneck (FFT vs. Merkle-tree building) likely depends on how large
a computation is being processed.

As another example, if an MIP is combined with many of the discrete-logarithm-based or KZG-based
polynomial commitment schemes, the prover does not have to do any FFTs, and the bottleneck is typically
in performing one multi-exponentation of size proportional to K. Via Pippenger’s algorithm, the multiex-
ponentiation can be done using O(K log(|G|)/ log(K)) group multiplications. In many other SNARKs the
prover would have to at least perform an FFT over a vector of length at least K, and this will cost O(K logK)
field operations.

For small R1CS instances, the FFT is likely to be faster than the multi-exponentation, for three reasons.
First, each operation in a cryptographic group G is often an order of magnitude more expensive than a
field multiplication. Second, when K is small, log(|G|)/ log(K)≫ logK, so even ignoring differences in
the relative cost of a group vs. field operation, O(K log(|G|)/ logK) is larger than O(K logK). Third, if the
SNARK uses IOP-based polynomial commitments, it has the flexibility to work over a field whose size is not
the order of an elliptic-curve group, and these fields can potentially support faster arithmetic. However, once
K is large enough that log |G| ≪ log2 K, the O(K logK) field operations required by the FFT will take more
time than the O(K log(|G|)/ log(K)) group multiplications required to perform the multiexponentiation.

19.3.3 Intermediate Representations (IRs) Other than Arithmetic Circuits and R1CS

This survey described a variety of SNARKs for arithmetic circuit-satisfiability and R1CS. The SNARKs for
arithmetic circuits supported addition and multiplication gates of fan-in two. R1CS systems are conceptually
similar to arithmetic circuits augmented to allow “linear combination” gates of arbitrary fan-in (see Section
8.4.1). In both cases, all gates compute degree-two operations, meaning the output of each gate or constraint
is a polynomial in the gate’s inputs of total degree at most 2.

However, SNARKs based on polynomial IOPs can typically be modified to support more general inter-
mediate representations. For example, they can typically be modified to handle circuits with gates computing
operations of total degree up to some bound d, with an increase in prover time that grows linearly with d.253

The proof size will typically also grow with the degree bound d, but in many cases this growth will be
a low-order effect. For example, in MIP-based SNARKs using certain polynomial commitment schemes,
the proof length, when applied to a circuit of size S in which gates compute operations of degree at most d,
will be O(S1/2 +d logS). The d logS term, which grows linearly with d, will be dominated by the S1/2 term
unless the circuit size S is tiny.

253Such modifications require understanding how the SNARK works and modifying it in a non-black-box manner. To
give a very rough indication of how this might work: the MIP of Section 8.2 uses a (3logS)-variate polynomial g(a,b,c) =

m̃ult(a,b,c)
(

W̃ (a)−W̃ (b) ·W̃ (c)
)

to “check” that the value that W̃ “assigns” to a multiplication gate a is the product of the
values assigned to the two in-neighbors of a. To support multiplication gates of fan-in three rather than two, with the MIP one
would replace g with the following modified polynomial defined over 4 logS variables, with total degree four instead of three:
g(a,b,c,e) = m̃ult(a,b,c,e)

(
W̃ (a)−W̃ (b) ·W̃ (c) ·W (e)

)
.
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The use of such expanded gate sets can be fruitful. To give a simple example, suppose that allowing gates
computing degree-3 operations rather than degree-2 operations reduces the size S of the resulting circuit by
a factor of 2, while the prover’s runtime as a function of S increases by a factor of only 4/3 due to the degree
of gate operations increasing from 2 to 3. Then using the expanded gate set yields a faster prover: the total
prover time decreases by a factor of 2 · (3/4)> 1.254

The polynomial-IOP-derived SNARKs covered in this survey can all be modified in the manner sketched
above to support operations of total degree higher than 2. This does not appear to be the case for linear-
PCP derived SNARKs such as Groth’s [Gro16]: their use of pairing-based cryptography appears to rely
heavily on the linear PCP verifier computing a degree-2 function of the proof string, which in turn relies
on the circuit or R1CS instance computing only degree-2 operations. It is also not clear that recursive-
composition-based SNARKs for iterative computation, e.g., Nova (Section 18.5) can be modified support
operations with degree d > 2, at least not without a blowup in prover time or proof size that outweighs the
benefits.

There has been particular recent interest in modifications of the PlonK SNARK to support expanded and
modified IRs. For example, the cryptocurrency Zcash incorporates so-called “PlonKish arithmetization”
into its Orchard protocol255. This refers to a modification of PlonK256 to support an IR reminiscent of
circuits with gates of degree up to 9.257 There is also considerable interest in backends for a related IR
called AIR [GPR21, Sta21].

As SNARK protocol designers move beyond arithmetic circuits and R1CS to variant IRs, the line be-
tween “front-ends” (Chapter 6) and “back-ends” (i.e., SNARK proof machinery) becomes blurred. Protocol
designers may tailor the chosen IR to the desired back-end, and in turn have to modify the chosen back-end
to support the resulting IR.

There may be tradeoffs to such efforts. On the one hand, the use of more expressive or idiosyncratic
IRs may yield important efficiency gains. On the other, it may increase the burden on protocol designers
or render it more difficult to develop or reuse infrastructure. For example, protocol designers may find
themselves painstakingly designing “circuits” in the modified IRs by hand to adequately take advantage
of the expanded set of primitive operations supported. And if one decides to swap out one back-end for
another with a different cost profile, one may have to change the IR, and hence repeat the entire protocol
design process, or at least alter the front-end.

254Intermediate representations that are more restrictive than arithmetic circuits or R1CS can also be useful for some applications.
This will be the case if one manages to design a SNARK with improved prover time or proof size for these limited IRs, and the
improvements outweigh the negative effects of any resulting increase in representation size. For one example, see the notion of
“R1CS-Lite” in [CFF+21]. Highly efficient SNARKs for incremental computation (Sections 18.4 and 18.5) can also be thought of
as utilizing restricted IRs to obtain efficiency benefits, as can the various super-efficient IPs given for specific problems in Chapter
4.

255https://zips.z.cash/zip-0224
256More precisely, to a modification of the SNARK obtained by combining the constant-round polynomial IOP underlying PlonK

with the Bulletproofs polynomial commitment scheme.
257See, for example, https://zcash.github.io/halo2/concepts/arithmetization.html and, in particular, sections on

“gadgets” within the same document, such as https://zcash.github.io/halo2/design/gadgets/sha256/table16.html.
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