Lower Bounds for the Approximate Degree of Block-Composed Functions

Justin Thaler¹

¹Yahoo Labs

Boolean function
$$f : \{-1, 1\}^n \to \{-1, 1\}$$

AND_n(x) =
$$\begin{cases} -1 & (\mathsf{TRUE}) & \text{if } x = (-1)^n \\ 1 & (\mathsf{FALSE}) & \text{otherwise} \end{cases}$$

• A real polynomial $p \epsilon$ -approximates f if

$$|p(x) - f(x)| < \epsilon \quad \forall x \in \{-1, 1\}^n$$

• $\widetilde{\deg}_{\epsilon}(f) = \text{minimum degree needed to } \epsilon\text{-approximate } f$ • $\widetilde{\deg}(f) := \deg_{1/3}(f)$ is the approximate degree of f • A real polynomial $p \epsilon$ -approximates f if

$$|p(x) - f(x)| < \epsilon \quad \forall x \in \{-1, 1\}^n$$

- $\deg_{\epsilon}(f) = \min \max \text{ deg}_{\epsilon}(f)$
- $\blacksquare \ \deg(f) := \deg_{1/3}(f)$ is the approximate degree of f
- $\deg_{\pm}(f) := \lim_{\epsilon \to 1} \widetilde{\deg_{\epsilon}}(f)$ is the threshold degree of f
- Equivalent to the least degree of a polynomial p such that $p(x) \cdot f(x) > 0$ for all $x \in \{-1, 1\}^n$.

- OR_n has threshold degree 1, since $p(x) = \sum_i (1 x_i)/2 1$ sign-represents OR_n.
- OR_n has approximate degree $\Theta(\sqrt{n})$ [NS94].

Upper bounds on $\widetilde{\deg}_{\epsilon}(f)$ yield efficient learning algorithms

- $\epsilon \rightarrow 1$ (i.e., threshold degree): PAC learning [KS01]
- ϵ "close to" 1: Attribute-Efficient Learning [KS04, STT12]
- $\epsilon < 1$ a constant: Agnostic Learning [KKMS05]

Lower bounds on $\widetilde{\deg}_{\epsilon}(f)$ yield lower bounds on:

- Quantum query complexity [BBCMW98] [AS01] [Amb03] [KSW04]
- Communication complexity [BVdW08] [She07] [SZ07] [CA08] [LS08] [She12]
- Circuit complexity [MP69] [Bei93] [Bei94] [She08]

Hardness-Amplification for Approximate Degree

- Approximate degree remains poorly understood.
- However, several recent works have established various forms of "hardness amplification" for approximate degree.

Hardness-Amplification for Approximate Degree

- Approximate degree remains poorly understood.
- However, several recent works have established various forms of "hardness amplification" for approximate degree.
- The goal of these results is:
 - Given: A "simple" Boolean function *f* that is "hard to approximate to low error" by degree *d* polynomials.
 - Turn f into a "still-simple" F that is hard to approximate even to very high error.

Prior Results on Hardness Amplification for Approximate Degree

(Negative) One-Sided Approximate Degree

- Negative one-sided approximate degree is an intermediate notion between approximate degree and threshold degree.
- A real polynomial *p* is a <u>negative one-sided</u> *ϵ*-approximation for *f* if

$$|p(x) - 1| < \epsilon \quad \forall x \in f^{-1}(1)$$
$$p(x) \le -1 \quad \forall x \in f^{-1}(-1)$$

• $\widetilde{\operatorname{odeg}}_{-,\epsilon}(f) = \min$ degree of a negative one-sided ϵ -approximation for f.

(Negative) One-Sided Approximate Degree

- Negative one-sided approximate degree is an intermediate notion between approximate degree and threshold degree.
- A real polynomial *p* is a <u>negative one-sided</u> *ϵ*-approximation for *f* if

$$|p(x) - 1| < \epsilon \quad \forall x \in f^{-1}(1)$$
$$p(x) \le -1 \quad \forall x \in f^{-1}(-1)$$

- $\operatorname{odeg}_{-,\epsilon}(f) = \min \text{ degree of a negative one-sided} \\ \epsilon \operatorname{-approximation for } f.$
- Examples: $\widetilde{\mathsf{odeg}}_{-,1/3}(AND_n) = \Theta(\sqrt{n}); \ \widetilde{\mathsf{odeg}}_{-,1/3}(OR_n) = 1.$

(Negative) One-Sided Approximate Degree

- Negative one-sided approximate degree is an intermediate notion between approximate degree and threshold degree.
- A real polynomial *p* is a <u>negative one-sided</u> *ϵ*-approximation for *f* if

$$|p(x) - 1| < \epsilon \quad \forall x \in f^{-1}(1)$$
$$p(x) \le -1 \quad \forall x \in f^{-1}(-1)$$

- $\operatorname{odeg}_{-,\epsilon}(f) = \min \text{ degree of a negative one-sided } \epsilon$ -approximation for f.
- Examples: $\widetilde{\mathsf{odeg}}_{-,1/3}(AND_n) = \Theta(\sqrt{n}); \ \widetilde{\mathsf{odeg}}_{-,1/3}(OR_n) = 1.$
- Positive one-sided approximate degree is defined similarly, with the rule of +1 and -1 reversed.

• Examples: $\widetilde{\mathsf{odeg}}_{+,1/3}(AND_n) = 1$; $\widetilde{\mathsf{odeg}}_{-,1/3}(OR_n) = \Theta(\sqrt{n})$.

Prior Hardness Amplification Results

Theorem (Bun and Thaler)

Let f be a Boolean function with $odeg_{-,1/2}(f) \ge d$. Let $F = OR_t(f, \ldots, f)$. Then $odeg_{-,1-2^{-t}}(F) \ge d$.

Theorem (Bun and Thaler)

Let f be a Boolean function with $odeg_{-,1/2}(f) \ge d$. Let $F = OR_t(f, \ldots, f)$. Then $odeg_{-,1-2^{-t}}(F) \ge d$.

Theorem (Sherstov)

Let f be a Boolean function with $odeg_{-,1/2}(f) \ge d$. Let $F = OR_t(f, \ldots, f)$. Then $\deg_{\pm}(F) = \Omega(\min\{d, t\})$.

Our Hardness Amplification Result

- For some applications in complexity theory, one needs a hardness amplification theorem that yields lower bounds even for functions with low threshold degree.
- This is what we achieve.

Our Hardness Amplification Result

- For some applications in complexity theory, one needs a hardness amplification theorem that yields lower bounds even for functions with low threshold degree.
- This is what we achieve.
- Define $OMB_t \colon \{-1,1\}^t \to \{-1,1\}$ via:

$$OMB_t(x_1, \dots, x_t) = (-1)^{i^*-1},$$

where i^* is the largest index such that $x_{i^*} = -1$.

Theorem

Let f be a Boolean function with $\widetilde{odeg}_{+,1/2}(f) \ge d$. Let $F = OMB_t(f, \dots, f)$. Then $\widetilde{odeg}_{+,1-2^{-t}}(F) \ge d$.

Our Hardness Amplification Result

- For some applications in complexity theory, one needs a hardness amplification theorem that yields lower bounds even for functions with low threshold degree.
- This is what we achieve.
- Define $OMB_t \colon \{-1,1\}^t \to \{-1,1\}$ via:

$$OMB_t(x_1, \dots, x_t) = (-1)^{i^*-1},$$

where i^* is the largest index such that $x_{i^*} = -1$.

Theorem

Let f be a Boolean function with $\widetilde{odeg}_{+,1/2}(f) \ge d$. Let $F = OMB_t(f, \dots, f)$. Then $\widetilde{odeg}_{+,1-2^{-t}}(F) \ge d$.

• Example Application: Let $F = \text{OMB}_t(\text{OR}_{n/t}, \dots, \text{OR}_{n/t})$. Then $\deg_{\pm}(F) = 1$, yet $\widetilde{\text{odeg}}_{+,1-2^{-t}}(F) = \Omega(\sqrt{n/t})$.

Theorem

Let f be a Boolean function with $odeg_{+,1/2}(f) \ge d$. Let $F = OMB_t(f, \ldots, f)$. Then $odeg_{+,1-2^{-t}}(F) \ge d$.

• OMB_t itself can be sign-represented by the degree-1 polynomial $p(x) = 1 + \sum_{i=1}^{t} (-3)^i \cdot (1 - x_i)/2$.

Theorem

Let f be a Boolean function with $odeg_{+,1/2}(f) \ge d$. Let $F = OMB_t(f, \ldots, f)$. Then $odeg_{+,1-2^{-t}}(F) \ge d$.

- OMB_t itself can be sign-represented by the degree-1 polynomial $p(x) = 1 + \sum_{i=1}^{t} (-3)^i \cdot (1 x_i)/2$.
- In fact, OMB_t is approximated to error $\approx 1 3^{-t}$ by $3^{-t-1} \cdot p(x)$.

Theorem

Let f be a Boolean function with $odeg_{+,1/2}(f) \ge d$. Let $F = OMB_t(f, \ldots, f)$. Then $odeg_{+,1-2^{-t}}(F) \ge d$.

- OMB_t itself can be sign-represented by the degree-1 polynomial $p(x) = 1 + \sum_{i=1}^{t} (-3)^i \cdot (1 x_i)/2$.
- In fact, OMB_t is approximated to error $\approx 1 3^{-t}$ by $3^{-t-1} \cdot p(x)$.
- Suppose there is a degree d polynomial q such that

1
$$q(x) = 1$$
 for all $x \in f^{-1}(1)$.

2 $1 \le q(x) \le 4/3$ for all $x \in f^{-1}(-1)$.

Then $OMB_t(f, \ldots, f)$ is sign-represented by $p(q, \ldots, q)$.

Theorem

Let f be a Boolean function with $odeg_{+,1/2}(f) \ge d$. Let $F = OMB_t(f, \ldots, f)$. Then $odeg_{+,1-2^{-t}}(F) \ge d$.

- OMB_t itself can be sign-represented by the degree-1 polynomial $p(x) = 1 + \sum_{i=1}^{t} (-3)^i \cdot (1 x_i)/2$.
- In fact, OMB_t is approximated to error $\approx 1 3^{-t}$ by $3^{-t-1} \cdot p(x)$.
- Suppose there is a degree d polynomial q such that

1
$$q(x) = 1$$
 for all $x \in f^{-1}(1)$.

2 $1 \le q(x) \le 4/3$ for all $x \in f^{-1}(-1)$.

Then $OMB_t(f, \ldots, f)$ is sign-represented by $p(q, \ldots, q)$.

In fact, it is approximated to error $\approx 1 - 3^{-t}$ by $3^{-t-1} \cdot p(q, \dots, q)$.

Overview of the Proof

Symmetrization

- Historically, approximate degree lower bounds were proven via a technique called symmetrization.
- Symmetrization argues any approximating polynomial $p: \{-1,1\}^n \to \mathbb{R}$ for f must have large degree via a two-step process.
 - **1** Turn p into a certain <u>univariate polynomial</u> q such that $\deg(q) \leq \deg(p)$.
 - 2 Argue that q has to have large degree, and hence p does as well.

Beyond Symmetrization

- Symmetrization is "lossy": in turning an *n*-variate poly *p* into a univariate poly *p*^{sym}, we throw away information about *p*.
- Recent breakthroughs have exploited a "lossless" approach to proving approximate degree lower bounds.

What is best error achievable by **any** degree d approximation of f? Primal LP (Linear in ϵ and coefficients of p):

$$\begin{array}{ll} \min_{p,\epsilon} & \epsilon \\ \text{s.t.} & |p(x)-f(x)| \leq \epsilon \\ & \deg p \leq d \end{array} \qquad \qquad \text{for all } x \in \{-1,1\}^n \\ \end{array}$$

Dual LP:

$$\begin{split} \max_{\psi} & \sum_{x \in \{-1,1\}^n} \psi(x) f(x) \\ \text{s.t.} & \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1 \\ & \sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0 \qquad \text{whenever } \deg q \leq d \end{split}$$

Theorem: $\deg_\epsilon(f)>d$ iff there exists a "dual polynomial" $\psi\colon\{-1,1\}^n\to\mathbb{R}$ with

(1)
$$\sum_{x \in \{-1,1\}^n} \psi(x) f(x) > \epsilon$$
 "high correlation with f "

(2)
$$\sum_{x \in \{-1,1\}^n} |\psi(x)| = 1$$
 "L₁-norm 1"

(3) $\sum_{x \in \{-1,1\}^n} \psi(x)q(x) = 0$, when $\deg q \le d$ "pure high degree d"

Key technique in, e.g., [She07] [Lee09] [She09]

A **lossless** technique. Strong duality implies any approximate degree lower bound can be witnessed by dual polynomial.

Our Proof

Recall our main result:

Theorem Let f be a Boolean function with $\widetilde{odeg}_{+,1/2}(f) \ge d$. Let $F = OMB_t(f, \dots, f)$. Then $\widetilde{odeg}_{+,1-2^{-t}}(F) \ge d$.

Proved by showing how to take any dual witness to the fact that $\widetilde{\text{odeg}}_{+,1/2}(f) \ge d$ and turn it into a dual witness for the statement in the theorem.

Our Proof

Recall our main result:

Theorem

Let f be a Boolean function with $\widetilde{odeg}_{+,1/2}(f) \ge d$. Let $F = OMB_t(f, \dots, f)$. Then $\widetilde{odeg}_{+,1-2^{-t}}(F) \ge d$.

- Proved by showing how to take any dual witness to the fact that $\widetilde{\text{odeg}}_{+,1/2}(f) \ge d$ and turn it into a dual witness for the statement in the theorem.
- Our construction differs substantially from the dual witnesses of prior work (Bun and Thaler, Sherstov).

Our Proof

Recall our main result:

Theorem

Let f be a Boolean function with $\widetilde{odeg}_{+,1/2}(f) \ge d$. Let $F = OMB_t(f, \dots, f)$. Then $\widetilde{odeg}_{+,1-2^{-t}}(F) \ge d$.

- Proved by showing how to take any dual witness to the fact that $\widetilde{\text{odeg}}_{+,1/2}(f) \ge d$ and turn it into a dual witness for the statement in the theorem.
- Our construction differs substantially from the dual witnesses of prior work (Bun and Thaler, Sherstov).
- Such new techniques are essential, as the "primal optimal" (approximating polynomials) for OMB_t(f,..., f) are very different from the optimal approximating polynomials for OR_t(f,..., f).

The Dual Witness

- Let ψ_{IN} be a dual witness for the fact that $\operatorname{odeg}_{+,1/2}(f) \ge d$.
- Let x_1, \ldots, x_t be inputs to f.

• The dual witness we construct for $F = OMB_t(f, \ldots, f)$ is:

$$\psi_F(x_1,\ldots,x_t) := \sum_{i=1}^t \psi^{(i)}, \text{ where }$$

$$\psi^{(i)} = (-1)^{i-1} \cdot \left(\prod_{j < i} \mathbb{I}_E(x_j) \cdot |\psi_{\mathsf{IN}}(x_j)| \right) \cdot \psi_{\mathsf{IN}}(x_i) \cdot \left(\prod_{j > i} \mathbb{I}_{f^{-1}(1)}(x_j) \cdot |\psi_{\mathsf{IN}}(x_j)| \right),$$

where E is set of inputs on which $\psi_{\rm IN}$ "makes an error" (i.e., disagrees in sign with f).

Applications to Query and Communication Complexity

- An important question in complexity theory is to determine the relative power of alternation (as captured by the polynomial-hierarchy PH), and counting (as captured by #P and its decisional variant PP).
- Both PH and PP generalize NP in natural ways.
- Toda famously showed that their power is related: $PH \subseteq P^{PP}$.
- But it is open how much of PH is contained in PP itself.

- An important question in complexity theory is to determine the relative power of alternation (as captured by the polynomial-hierarchy PH), and counting (as captured by #P and its decisional variant PP).
- Both PH and PP generalize NP in natural ways.
- Toda famously showed that their power is related: $PH \subseteq P^{PP}$.
- But it is open how much of PH is contained in PP itself.
- It is interesting to study the analogous question in the settings of query and communication complexity.

- An important question in complexity theory is to determine the relative power of alternation (as captured by the polynomial-hierarchy PH), and counting (as captured by #P and its decisional variant PP).
- Both PH and PP generalize NP in natural ways.
- Toda famously showed that their power is related: $PH \subseteq P^{PP}$.
- But it is open how much of PH is contained in PP itself.
- It is interesting to study the analogous question in the settings of query and communication complexity.
- Beigel (1992) used OMB to give an oracle (i.e., a query problem) relative to which $P^{NP} \not\subseteq PP$.

- An important question in complexity theory is to determine the relative power of alternation (as captured by the polynomial-hierarchy PH), and counting (as captured by #P and its decisional variant PP).
- Both PH and PP generalize NP in natural ways.
- Toda famously showed that their power is related: $PH \subseteq P^{PP}$.
- But it is open how much of PH is contained in PP itself.
- It is interesting to study the analogous question in the settings of query and communication complexity.
- Beigel (1992) used OMB to give an oracle (i.e., a query problem) relative to which $P^{NP} \not\subseteq PP$.
- Buhrman, Vershchagin, and de Wolf (2008) "lifted" the result to communication complexity.
 - They gave a problem that is in the communication analogue of $P^{\rm NP},$ but not in the communication analogue of PP.

Our Improvements

- Quantitatively, Beigel and Buhrman et al. gave functions in the query and communication analogues of P^{NP} , but any PP algorithm for the problem has cost $\Omega(n^{1/3})$.
- Our results improve the PP cost to $\Omega(n^{2/5})$.
- Our proof also yields the first explicit distributions under which the functions are "hard" for PP.

- Quantitatively, Beigel and Buhrman et al. gave functions in the query and communication analogues of P^{NP} , but any PP algorithm for the problem has cost $\Omega(n^{1/3})$.
- Our results improve the PP cost to $\Omega(n^{2/5})$.
- Our proof also yields the first explicit distributions under which the functions are "hard" for PP.
- Upcoming work with Bun: improved the PP cost further to nearly $\Omega(n^{2/3})$, with additional applications to learning theory, communication complexity, and circuit complexity.
- Requires a hardness amplification method that goes beyond block-composed functions!