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Boolean Functions

m Boolean function f: {-1,1}" — {-1,1}

) ~1 (TRUE) ifz=(-1)"

AND, (x) =
(=) {1 (FALSE)  otherwise



Approximate Degree and Threshold Degree

m A real polynomial p e-approximates f if
Ip(z) — f(x)] <e Voe{-1,1}"

[ Eéée(f) = minimum degree needed to e-approximate f

] Eéé(f) := degy /3(f) is the approximate degree of f



Approximate Degree and Threshold Degree

A real polynomial p e-approximates f if

p(z) — f(z)| <e Voe{-1,1}"

Eéée(f) = minimum degree needed to e-approximate f

Eéé(f) := degy /3(f) is the approximate degree of f

deg (f) := lime_; Eizée(f) is the threshold degree of f

Equivalent to the least degree of a polynomial p such that
p(x) - f(z) >0 forall x € {—1,1}"



Approximate Degree and Threshold Degree: Example

m OR,, has threshold degree 1, since p(z) =) ,(1 —x;)/2 -1
sign-represents OR,,.

m OR,, has approximate degree ©(y/n) [NS94].



Why Care About Approximate and Threshold Degree?

Upper bounds on Héés(f) yield efficient learning algorithms
m ¢ — 1 (i.e., threshold degree): PAC learning [KS01]

m ¢ “close to” 1: Attribute-Efficient Learning [KS04, STT12]
m ¢ < 1 a constant: Agnostic Learning [KKMS05]



Why Care About Approximate and Threshold Degree?

Lower bounds on a;_ée(f) yield lower bounds on:

m Quantum query complexity [BBCMW98] [AS01] [Amb03]
[KSW04]

m Communication complexity [BVdWO08] [She07] [SZ07] [CA08]
[LS08] [Shel2]

m Circuit complexity [MP69] [Bei93] [Bei94] [She08§]



Hardness-Amplification for Approximate Degree

m Approximate degree remains poorly understood.

m However, several recent works have established various forms
of “hardness amplification” for approximate degree.



Hardness-Amplification for Approximate Degree

m Approximate degree remains poorly understood.

m However, several recent works have established various forms
of “hardness amplification” for approximate degree.
m The goal of these results is:
m Given: A “simple” Boolean function f that is “hard to
approximate to low error” by degree d polynomials.

m Turn f into a “still-simple” F' that is hard to approximate even
to very high error.



Prior Results on Hardness Amplification for
Approximate Degree
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m Negative one-sided approximate degree is an intermediate
notion between approximate degree and threshold degree.
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(Negative) One-Sided Approximate Degree

m Negative one-sided approximate degree is an intermediate
notion between approximate degree and threshold degree.

m A real polynomial p is a negative one-sided e-approximation
for fif

Ip(z) — 1| <e Ve f1(1)
p(z) < -1 Vze f(-1)
n ofdzg_ﬁ(f) = min degree of a negative one-sided
e-approximation for f.
m Examples: ofd\gg_J/g(ANDn) = 0(y/n); o?e/g_’l/g)(ORn) =1

m Positive one-sided approximate degree is defined similarly,
with the rule of 41 and -1 reversed.

m Examples: o/(i\«a/g+’1/3(ANDn) =1; o/cj\e/g,71/3(ORn) = 0(/n).



Prior Hardness Amplification Results

Theorem (Bun and Thaler)

d. Let

Let f be a Boolean function with odeg_ 1/2(f) =
F =ORy(f,...,f). Then odeg_71,2 +(F) > d.



Prior Hardness Amplification Results

Theorem (Bun and Thaler)
Let f be a Boolean function with odeg_ 1/2 d. Let

(f) =
F =ORy(f,...,f). Then odeg_71,2 +(F) > d.

Theorem (Sherstov)

Let f be a Boolean function with o?gg_’l/z(f) >d. Let
F =OR(f,...,f). Then deg  (F) = Q(min{d,t}).
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for functions with low threshold degree.

m This is what we achieve.
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Our Hardness Amplification Result

m For some applications in complexity theory, one needs a
hardness amplification theorem that yields lower bounds even
for functions with low threshold degree.

m This is what we achieve.

m Define OMB;: {—1,1}t — {-1,1} via:

OMBt(l‘l, e ,J?t) = (—1)i*_1,

where ¢* is the largest index such that z;+ = —1.

Let f be a Boolean function with odeg+ 12(f) > d. Let
F =OMBqy(f,...,f). Then odeg+71_2 (F) >

>
d.

m Example Application: Let /' = OMB(OR,, /s, ..., O0Ry, /).
Then deg (F) = 1, yet odeg, , o «(F) = Q(y/n/t).
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Intuition: A Matching Upper Bound

Let f be a Boolean function with odeg+ 12(f) > d. Let

) >
F = OMBy(f,...,f). Then odngr,l,g (F) >d.

m OMB; itself can be sign-represented by the degree-1
polynomial p(z) =1+ 3¢ (=3)"- (1 — x;)/2.

m In fact, OMB; is approximated to error ~ 1 — 3~ by
371 p(a).

m Suppose there is a degree d polynomial ¢ such that

q(x) =1 forall x € f~1(1).
1 <gq(z) <4/3forall x € f~1(-1).

Then OMBy(f, ..., f) is sign-represented by p(q,...,q).

m In fact, it is approximated to error ~ 1 — 3~ by
3_t_1 : p(Q? cee 7Q)



Overview of the Proof




Symmetrization

m Historically, approximate degree lower bounds were proven via
a technique called symmetrization.

m Symmetrization argues any approximating polynomial
p: {—1,1}" — R for f must have large degree via a two-step
process.
Turn p into a certain univariate polynomial ¢ such that

deg(q) < deg(p).
Argue that ¢ has to have large degree, and hence p does as

well.




Beyond Symmetrization

m Symmetrization is “lossy”: in turning an n-variate poly p into
a univariate poly p™, we throw away information about p.

m Recent breakthroughs have exploited a “lossless” approach to
proving approximate degree lower bounds.



Linear Programming Formulation of Approximate Degree

What is best error achievable by any degree d approximation of f7
Primal LP (Linear in € and coefficients of p):

min, . €
sit. |p(x) — f(z)| <e forall z € {—1,1}"
degp <d
Dual LP:
max, Y P(x)f(x)

ze{—-1,1}"

s.t. > @) =1
ze{-1,1}"

Z P(x)g(x) =0 whenever degq < d
ze{-1,1}"



Dual Characterization of Approximate Degree

Theorem: deg,(f) > d iff there exists a “dual polynomial”
P: {—1,1}" — R with

(1) Z Y(x)f(x) > € “high correlation with f”
ze{-1,1}"

(2) Z ()| =1 “Li-norm 1"
ze{—1,1}m

(3) Z Y(z)q(x) =0, when degg <d  “pure high degree d’
ze{-1,1}"

Key technique in, e.g., [She07] [Lee09] [She09]

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.



Our Proof

m Recall our main result:

Let f be a Boolean function with odeg+ 12(f) > d. Let

) =

F = OMBy(f,...,f). Then odeg+71,2 «(F) > d.

m Proved by showing how to take any dual witness to the fact

that odeg, ;/5(f) > d and turn it into a dual witness for the
statement in the theorem.
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Our Proof

m Recall our main result:

Let f be a Boolean function with odeg+ 12(f) > d. Let

>
d.

)
F = OMBy(f,...,f). Then odeg+71,2 ((F) >

m Proved by showing how to take any dual witness to the fact
that odeg, ;/5(f) > d and turn it into a dual witness for the
statement in the theorem.

m Our construction differs substantially from the dual witnesses
of prior work (Bun and Thaler, Sherstov).

m Such new techniques are essential, as the “primal optimal”

(approximating polynomials) for OMBy(f, ..., f) are very
different from the optimal approximating polynomials for

OR«(f,..., f).



The Dual Witness

m Let ¢y be a dual witness for the fact that of(ingr’l/Q(f) >d.

m Let x1,...,xs be inputs to f.
m The dual witness we construct for F' = OMBy(f,..., f) is:

t

Vp(T1,...,T) == Zw(i), where

wl =(-1)""
(H]IE(%)'WIN(%N) in(;) (H]If 11y () - |¢|N(xj)|)7

where E is set of inputs on which ¢y “makes an error” (i.e.,
disagrees in sign with f).



Applications to Query and Communication
Complexity




A Motivating Goal for This Work

m An important question in complexity theory is to determine
the relative power of alternation (as captured by the
polynomial-hierarchy PH), and counting (as captured by #P
and its decisional variant PP).

m Both PH and PP generalize NP in natural ways.

m Toda famously showed that their power is related:

PH C PFP.
m But it is open how much of PH is contained in PP itself.
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A Motivating Goal for This Work

m An important question in complexity theory is to determine
the relative power of alternation (as captured by the
polynomial-hierarchy PH), and counting (as captured by #P
and its decisional variant PP).

m Both PH and PP generalize NP in natural ways.

m Toda famously showed that their power is related:

PH C PFP.

m But it is open how much of PH is contained in PP itself.

m It is interesting to study the analogous question in the settings
of query and communication complexity.

m Beigel (1992) used OMB to give an oracle (i.e., a query
problem) relative to which PN¥ ¢ PP.

m Buhrman, Vershchagin, and de Wolf (2008) “lifted” the result
to communication complexity.

m They gave a problem that is in the communication analogue of
PP but not in the communication analogue of PP.



Our Improvements

m Quantitatively, Beigel and Buhrman et al. gave functions in
the query and communication analogues of PNY'| but any PP
algorithm for the problem has cost Q(n!/3).

m Our results improve the PP cost to Q(n?/°).

m Our proof also yields the first explicit distributions under
which the functions are “hard” for PP.



Our Improvements

m Quantitatively, Beigel and Buhrman et al. gave functions in
the query and communication analogues of PNY'| but any PP
algorithm for the problem has cost Q(n!/3).

m Our results improve the PP cost to Q(n?/°).

m Our proof also yields the first explicit distributions under
which the functions are “hard” for PP.

m Upcoming work with Bun: improved the PP cost further to
nearly Q(n2/3), with additional applications to learning theory,
communication complexity, and circuit complexity.

m Requires a hardness amplification method that goes beyond
block-composed functions!
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