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Boolean Functions

Boolean function f : {−1, 1}n → {−1, 1}

ANDn(x) =

{
−1 (TRUE) if x = (−1)n

1 (FALSE) otherwise



Approximate Degree and Threshold Degree

A real polynomial p ε-approximates f if

|p(x)− f(x)| < ε ∀x ∈ {−1, 1}n

d̃egε(f) = minimum degree needed to ε-approximate f

d̃eg(f) := deg1/3(f) is the approximate degree of f

deg±(f) := limε→1 d̃egε(f) is the threshold degree of f

Equivalent to the least degree of a polynomial p such that
p(x) · f(x) > 0 for all x ∈ {−1, 1}n.
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Approximate Degree and Threshold Degree: Example

ORn has threshold degree 1, since p(x) =
∑

i(1− xi)/2− 1
sign-represents ORn.

ORn has approximate degree Θ(
√
n) [NS94].



Why Care About Approximate and Threshold Degree?

Upper bounds on d̃egε(f) yield efficient learning algorithms

ε→ 1 (i.e., threshold degree): PAC learning [KS01]

ε “close to” 1: Attribute-Efficient Learning [KS04, STT12]

ε < 1 a constant: Agnostic Learning [KKMS05]



Why Care About Approximate and Threshold Degree?

Lower bounds on d̃egε(f) yield lower bounds on:

Quantum query complexity [BBCMW98] [AS01] [Amb03]
[KSW04]

Communication complexity [BVdW08] [She07] [SZ07] [CA08]
[LS08] [She12]

Circuit complexity [MP69] [Bei93] [Bei94] [She08]



Hardness-Amplification for Approximate Degree

Approximate degree remains poorly understood.

However, several recent works have established various forms
of “hardness amplification” for approximate degree.

The goal of these results is:

Given: A “simple” Boolean function f that is “hard to
approximate to low error” by degree d polynomials.
Turn f into a “still-simple” F that is hard to approximate even
to very high error.
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Prior Results on Hardness Amplification for
Approximate Degree



(Negative) One-Sided Approximate Degree

Negative one-sided approximate degree is an intermediate
notion between approximate degree and threshold degree.

A real polynomial p is a negative one-sided ε-approximation
for f if

|p(x)− 1| < ε ∀x ∈ f−1(1)

p(x) ≤ −1 ∀x ∈ f−1(−1)

õdeg−,ε(f) = min degree of a negative one-sided
ε-approximation for f .

Examples: õdeg−,1/3(ANDn) = Θ(
√
n); õdeg−,1/3(ORn) = 1.

Positive one-sided approximate degree is defined similarly,
with the rule of +1 and -1 reversed.

Examples: õdeg+,1/3(ANDn) = 1; õdeg−,1/3(ORn) = Θ(
√
n).
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Prior Hardness Amplification Results

Theorem (Bun and Thaler)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then õdeg−,1−2−t(F ) ≥ d.

Theorem (Sherstov)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then deg±(F ) = Ω(min{d, t}).
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Our Hardness Amplification Result

For some applications in complexity theory, one needs a
hardness amplification theorem that yields lower bounds even
for functions with low threshold degree.

This is what we achieve.

Define OMBt : {−1, 1}t → {−1, 1} via:

OMBt(x1, . . . , xt) = (−1)i
∗−1,

where i∗ is the largest index such that xi∗ = −1.

Theorem

Let f be a Boolean function with õdeg+,1/2(f) ≥ d. Let
F = OMBt(f, . . . , f). Then õdeg+,1−2−t(F ) ≥ d.

Example Application: Let F = OMBt(ORn/t, . . . ,ORn/t).

Then deg±(F ) = 1, yet õdeg+,1−2−t(F ) = Ω(
√
n/t).
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Example Application: Let F = OMBt(ORn/t, . . . ,ORn/t).

Then deg±(F ) = 1, yet õdeg+,1−2−t(F ) = Ω(
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Intuition: A Matching Upper Bound

Theorem

Let f be a Boolean function with õdeg+,1/2(f) ≥ d. Let
F = OMBt(f, . . . , f). Then õdeg+,1−2−t(F ) ≥ d.

OMBt itself can be sign-represented by the degree-1
polynomial p(x) = 1 +

∑t
i=1(−3)i · (1− xi)/2.

In fact, OMBt is approximated to error ≈ 1− 3−t by
3−t−1 · p(x).

Suppose there is a degree d polynomial q such that

1 q(x) = 1 for all x ∈ f−1(1).
2 1 ≤ q(x) ≤ 4/3 for all x ∈ f−1(−1).

Then OMBt(f, . . . , f) is sign-represented by p(q, . . . , q).

In fact, it is approximated to error ≈ 1− 3−t by
3−t−1 · p(q, . . . , q).
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F = OMBt(f, . . . , f). Then õdeg+,1−2−t(F ) ≥ d.
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Overview of the Proof



Symmetrization

Historically, approximate degree lower bounds were proven via
a technique called symmetrization.

Symmetrization argues any approximating polynomial
p : {−1, 1}n → R for f must have large degree via a two-step
process.

1 Turn p into a certain univariate polynomial q such that
deg(q) ≤ deg(p).

2 Argue that q has to have large degree, and hence p does as
well.



Beyond Symmetrization

Symmetrization is “lossy”: in turning an n-variate poly p into
a univariate poly psym, we throw away information about p.

Recent breakthroughs have exploited a “lossless” approach to
proving approximate degree lower bounds.



Linear Programming Formulation of Approximate Degree

What is best error achievable by any degree d approximation of f?
Primal LP (Linear in ε and coefficients of p):

minp,ε ε

s.t. |p(x)− f(x)| ≤ ε for all x ∈ {−1, 1}n

deg p ≤ d

Dual LP:

maxψ
∑

x∈{−1,1}n
ψ(x)f(x)

s.t.
∑

x∈{−1,1}n
|ψ(x)| = 1

∑
x∈{−1,1}n

ψ(x)q(x) = 0 whenever deg q ≤ d



Dual Characterization of Approximate Degree

Theorem: degε(f) > d iff there exists a “dual polynomial”
ψ : {−1, 1}n → R with

(1)
∑

x∈{−1,1}n
ψ(x)f(x) > ε “high correlation with f”

(2)
∑

x∈{−1,1}n
|ψ(x)| = 1 “L1-norm 1”

(3)
∑

x∈{−1,1}n
ψ(x)q(x) = 0, when deg q ≤ d “pure high degree d”

Key technique in, e.g., [She07] [Lee09] [She09]

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.



Our Proof

Recall our main result:

Theorem

Let f be a Boolean function with õdeg+,1/2(f) ≥ d. Let
F = OMBt(f, . . . , f). Then õdeg+,1−2−t(F ) ≥ d.

Proved by showing how to take any dual witness to the fact
that õdeg+,1/2(f) ≥ d and turn it into a dual witness for the
statement in the theorem.

Our construction differs substantially from the dual witnesses
of prior work (Bun and Thaler, Sherstov).

Such new techniques are essential, as the “primal optimal”
(approximating polynomials) for OMBt(f, . . . , f) are very
different from the optimal approximating polynomials for
ORt(f, . . . , f).
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The Dual Witness

Let ψIN be a dual witness for the fact that õdeg+,1/2(f) ≥ d.

Let x1, . . . , xt be inputs to f .

The dual witness we construct for F = OMBt(f, . . . , f) is:

ψF (x1, . . . , xt) :=

t∑
i=1

ψ(i), where

ψ(i) =(−1)i−1·∏
j<i

IE(xj) · |ψIN(xj)|

 · ψIN(xi) ·

∏
j>i

If−1(1)(xj) · |ψIN(xj)|

 ,

where E is set of inputs on which ψIN “makes an error” (i.e.,
disagrees in sign with f).



Applications to Query and Communication
Complexity



A Motivating Goal for This Work

An important question in complexity theory is to determine
the relative power of alternation (as captured by the
polynomial-hierarchy PH), and counting (as captured by #P
and its decisional variant PP).

Both PH and PP generalize NP in natural ways.

Toda famously showed that their power is related:
PH ⊆ PPP.

But it is open how much of PH is contained in PP itself.

It is interesting to study the analogous question in the settings
of query and communication complexity.

Beigel (1992) used OMB to give an oracle (i.e., a query
problem) relative to which PNP 6⊆ PP.
Buhrman, Vershchagin, and de Wolf (2008) “lifted” the result
to communication complexity.

They gave a problem that is in the communication analogue of
PNP, but not in the communication analogue of PP.
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Our Improvements

Quantitatively, Beigel and Buhrman et al. gave functions in
the query and communication analogues of PNP, but any PP
algorithm for the problem has cost Ω(n1/3).

Our results improve the PP cost to Ω(n2/5).

Our proof also yields the first explicit distributions under
which the functions are “hard” for PP.

Upcoming work with Bun: improved the PP cost further to
nearly Ω(n2/3), with additional applications to learning theory,
communication complexity, and circuit complexity.

Requires a hardness amplification method that goes beyond
block-composed functions!
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