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Outsourcing 
  Many applications require outsourcing computation to 

untrusted service providers. 
 Main motivation: commercial cloud computing services. 
 Also, weak peripheral devices; fast but faulty co-processors. 
 Volunteer Computing (SETI@home,World Community 

Grid, etc.) 

  User requires a guarantee that the service provider 
performed the computation correctly.  

  One solution: require provider to prove correctness of 
answer. 



Interactive Proofs 
  Two Parties: Prover P and Verifier V. 

  Think of P and powerful, V as weak. P solves 
a problem, tells V the answer. 
 Then P and  V have a conversation. 
  P’s goal: convince V the answer is correct. 

  Requirements:  
  1. Completeness: An honest P can convince V 

she’s telling the truth. 
  2. Soundness: V will catch a lying P with high 

probability no matter what P says to try to 
convince V. 



Interactive Proofs 
  IPs have revolutionized complexity theory in the last 25 

years. 
  IP=PSPACE [Shamir 90]. 
  PCP Theorem e.g. [AS 98]. Hardness of approximation.  
 Zero Knowledge Proofs. 

  But IPs have had very little impact in real delegation scenarios. 
 Why? 
 Not due to lack of applications! 



Interactive Proofs 
  Old Answer: Most results on IPs dealt with hard 

problems, needed P to be too powerful. 
  But recent constructions focus on “easy” problems 

(e.g. “Interactive Proofs for Muggles” [GKR 08]). 
 Allow V to run very quickly, use small space, so 

outsourcing is useful even though problems are 
“easy”. 

   P does not need much more time to prove 
correctness than she does to solve the problem in 
the first place. 

  Shouldn’t these results be useful and exciting to 
practitioners?  



New Application of IPs 
  To streaming problems: hard because V has to read input in one-

pass streaming manner, but (might be) easy if  V could store the 
whole input. [CCM 09/CCMT 12], [CMT 10], [CTY 11]. 

  Fits cloud computing well: streaming pass by V can occur while 
uploading data to cloud. 

  V never needs to store entirety of data. 

  [GKR 08] actually works with streaming verifier. [CCM 09/
CCMT 12], [CMT 10], [CTY 10] give improved protocols for 
large classes of important problems (LPs, graph problems, 
frequency moments, etc).  



This Work: A Two-Pronged Approach 
  Ideal: General purpose implementation allowing to verify 

arbitrary computation. 
 We revisit general-purpose  “Interactive Proofs for Muggles” 

construction of [GKR 08], with focus on speeding up prover. 
  Plus extensions to help move it from theory to practice. 
  Full implementation, with encouraging experimental results. 

  Also revisit specialized protocols of [CCM 09/CCMT 12], 
[CMT 10], [CTY 11]. 
  Speed up prover for these too. 
  Full implementation, with encouraging experimental results. 



First Prong: General Purpose 
Construction 



Speeding up P in “Muggles” [GKR08] 
  In “Muggles”, P and V first agree on a layered arithmetic 

circuit C computing the function of interest. Then P gives V 
the output of C and proves that the output is correct. 
 Runs a sum-check protocol for each layer in turn, in order to 

check that all outputs of each layer are computed correctly.   

  A naïve implementation of P would require Ω(S3) time, 
where S is size of circuit C, because each message P sends 
involves a sum over S3 terms. 

  We engineer P’s time down to O(S log S), under mild 
conditions on the circuit. 



A general technique 
  Arithmetization: Given function f ’ defined on a small 

domain, extend domain of f ’ to a large field and replace f ’ 
with its low-degree extension (LDE) f as a polynomial over 
the field. 

  Can view f as an error-corrected encoding of f ’. The error 
correcting properties of f give V considerable power over P. 

  If two functions differ in one location, their LDE’s will differ 
in almost all locations. 



Speeding up P in “Muggles” [GKR08] 
  The ith sum-check protocol makes use of the following functions. 

  Let v = log n.  jth gate at layer i is associated with v-bit representation 
of j. 

  Functions add-i, mult-i (3v bits to 1 bit) 
  add-i(a,b,c) = 1 if gate a at layer i is sum of gates b, c from layer i-1 
  Extend to multilinear low-degree extension (this is a SPECIAL 

low-degree extension) 

  Key point: If you use the multilinear extension of add-i and 
mult-i, the sum defining P’s message simplifies nicely. 
  Each gate in layer i only contributes to a single term in the sum, and 

this contribution can be computed in O(1) time per gate. 
  So each message can be computed with a single pass over the gates at 

layer i. So O(S log S) time is required over all rounds. 



Speeding up P in “Muggles” [GKR08] 
  Complication: V needs to evaluate the multilinear extensions 

at a random point (rest of V’s computation is extremely light-
weight). 
 V can do this in log space for any log-space uniform circuit. 

Sufficient for many streaming applications. 
 Moreover, this computation depends only on the circuit, not the 

input, so it can occur in an offline pre-processing phase. V will 
be both space- and time-efficient in online phase. 



Speeding up P in “Muggles” [GKR08] 
   No offline phase needed if multilinear extensions of wiring 

predicate can be evaluated quickly. 
   This holds for a class of "reasonably regular" circuits, 

including: 
1.  FFT 

2.  Frequency moments 
3.  Pattern matching 
4.  Matrix multiplication 
5.  Circuits from [GKR08] used for simulating space-

bounded Turing Machines. 



Protocol Engineering: 
More Types of Gates 
  Also extended [GKR08] to allow for more general kinds of 

gates in C.  
  In particular, “exponentiation” and “sum with big fan-in” gates – 

reduces the depth of the computation. 
  Another use:  computing xp-1 mod p gives 1 when x is not zero mod p and 

0 otherwise by Fermat’s Little Theorem.  This is a common primitive e.g. 
it lets you test vectors for equality. 

  Many protocols terminate by computing a big sum of values, even just 
once at the end. 

  Smaller depth means fewer rounds of communication, but 
larger communication size per round.  Optimize for the sweet 
spot in practice.  



Protocol Engineering: 
The Right Field 
  We work over Fp for p = 261 – 1. 
  Keeps values in a single 64-bit data type. 
  Miniscule probability of error for practical purposes. 

  Errors proportional to 1/p. 

  Reducing modulo p can be done with a bit shift and a bit-
wise AND operation. 
 About an order of magnitude faster than standard mod 

operation.   



“Muggles” Implementation 

Experimental results with general-purpose implementation, 
when run on streams with universe size 217=131,072. 

Problem
 Gates
 Size (gates)
 P time
 V time
 Rounds
 Comm 


F2
 +, ×
 0.4M
 8.5 s
 .01 s
 986
 11.5 KB

F2
 +, ×, ⊕
 0.2M
 6.5 s
 .01 s
 118
 2.5 KB

F0
 +, ×
 16M
 552.6 s
 .01 s
 3730
 87.4 KB

F0
 +, ×, ̂ 8, ⊕
 8.2M
 432.6 s
 .01 s
 1310
 51.0 KB

F0
 +, ×, ̂ 16, ⊕
 6.2M
 441.2 s
 .01 s
 1024
 56.8 KB


PMwW
 +, ×, ̂ 8, ⊕
 9.6M
 482.2 s
 .01 s
 1513
 56.1 KB




Second Prong: Specialized Protocols 



Protocol Engineering: 
Smart FFTs 
  [CCM 09/CCMT 12], [CMT 11] develop non-interactive 

protocols achieving optimal tradeoffs between proof length 
and V’s space for a wide variety of streaming problems. 
  Practical: P can send proof via email, or post it on a website for 

V to retrieve at her convenience.  

  Fundamental building block in most of these protocols is an 
optimal protocol for the second frequency moment, or F2,  

problem from [CCM 09/CCMT 12].  



Protocol Engineering: 
Smart FFTs 
  The F2 protocol requires P to evaluate the low-degree 

extension of the input at many points. 
 Naively computing each point independently requires Ω(n3/2) 

time, doesn’t scale to large streams. 
 Using FFT techniques, we can reduce this to O(n log n) time. 

  Cooley-Tukey DFT algorithm lets us do this over the 
complex numbers, with the right amount of bit precision. 
  But this is slow, requires care in handling precision issues. 
 Well over 64 bits precision needed. 
 Only works for power-of-two sized inputs; a lot of padding may 

be needed.   



Protocol Engineering: 
Smart FFTs 
  Used Prime Factor Algorithm instead. This works well over 

certain finite fields Fp (p=261-1 in particular) and allows us to 
avoid precision issues entirely.  

  Achieved an implementation of P processing 250,000-750,000 
updates per second across all stream lengths. 



F2 Experiments 

Multi-round P from [CTY11] vs. Non-interactive P 
with and without FFT techniques 



Matrix-Vector Multiplication Experiments 

Results for single-round matrix-vector multiplication protocol from [CMT10]  
with FFT techniques on 10,000 x 10,000 matrix (768 MBs of data). 

α 
 V Space
 Comm
 V Time
 P Time

1
 78 KB
 78 KB
 4.3 s
 1.6 s


.85
 20 KB
 469 KB
 3.0 s
 33.9 s


.80
 12 KB
 938 KB
 2.8 s
 58.9 s


.75
 8 KB
 1.5 MB
 2.6 s
 61.0 s




Follow-up Work [TRMP 12] 
•  Both P and V’s computations in our implementation are massively parallel. 

•  Implemented on GPU (massively parallel hardware) and obtained 
robust speedups (40x-100x for P, 100x for V) relative to the sequential 
implementation just described. 

•  Parallel P is roughly 100-1000 times slower than unverifiable sequential 
algorithms for benchmark problems like matrix multiplication and 
pattern matching. 

•  For a superlinear-time problem like matrix multiplication, even 
sequential V is 100s of times faster than doing computation locally. 

• Also achieve 50x speedups for special-purpose protocols using GPU 
processing, relative to sequential implementation. 



Open Questions 
  Non-interactive protocols: 

1.   Proving any specific problem requires max(h, v)>√n requires novel 
communication complexity techniques. 

2.  Improved protocols for sparse graphs? 

  Interactive/General Purpose protocols:  
1.  Ultimate goal is a general-purpose compiler that takes as input any 

computer program and outputs a specification of a protocol for 
running the program verifiably. 

  Existing compilers (e.g. Fairplay) construct a boolean circuit operating on 
individual bits, and arithmetize it to get an arithmetic one. But this will lead to 
impractically large circuits, even for “algebraic” problems which possess small 
arithmetic circuits. 

2.  Improved protocols for “non-algebraic” problems, which may have 
no small arithmetic circuits. 



Thank you! 



Why study F2 ? 
Omitted: 

Connectivity, 
Counting Triangles, 

Shortest s-t path. 


