
Lecture 9

Recap

• Last lecture we finished describing the GKR protocol.
• This interactive proof forces the prover to evaluate a layered arithmetic circuit

gate-by-gate.
• The verifier’s runtime is O(n + D log S), where n is input size, D is circuit depth,

and S is circuit size.
• The prover can be implemented in time O(S), though we did not cover details

of how to achieve this.

• Any computation can be represented as an arithmetic circuit, but the
circuit may be deep and/or large, and hence applying the GKR
protocol to that circuit may not save the verifier time compared to
just solving the problem with no prover.

Today’s topics

• The Fiat-Shamir transformation: turning any public-coin interactive proof
into a publicly-verifiable non-interactive argument.

• Front-ends: turning computer programs into circuits.
• Key points to understand:

1. Any algorithm running in time T can be turned into an arithmetic circuit of size not too
much bigger than T (at most O(T^2 * polylog(T))).
• But T^2 size is impractical, and the circuit may be deep.

2. Fast parallel algorithms turn into small-depth circuits (parallel runtime ≈ circuit depth)
3. Some algorithms running in time T naturally turn into small-depth circuits of size O(T) (e.g.,

naïve matrix multiplication)
4. Any algorithm running time time T can be turned into an equivalent circuit satisfiability

instance of size O(T * polylog(T)) and depth O(polylog(T)).

The Fiat-Shamir Transform
[FS86]

In a nutshell: Awesome technique for minimizing
interaction in public-coin interactive protocols.

Fascinating both in theory and in practice.

* Original goal was transforming ID schemes into signature schemes.
Slide due to Ron Rothblum

(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)

Interactive Argument [BCC88]

𝑥 ∈ 𝐿?

.

.

.

• Completeness: 𝑃 convinces 𝑉 to accept 𝑥 ∈ 𝐿.

• Computational Soundness: no computationally bounded
cheating prover can convince 𝑉 to accept 𝑥 ∉ 𝐿 (except
with negligible probability).

Prover 𝑷 Verifier ࢂ

Public-coin if all 𝑉 does is
flip coins and send the

result

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)

Intuition

• Recall from the course reading that V’s messages to P in an interactive
proof are predictable, then the proof can be rendered non-interactive.
• The non-interactive proof is just an “accepting transcript” of the interactive proof.
• Intuitively, there is no reason for V to send a message to P if the prover can predict

what the message will be.
• P can just pretend the verifier sent the message, without V bothering to actually send it.

• Fiat-Shamir attempts to mimic this process even when the verifier’s
messages are unpredictable.
• First Idea: let the P choose V’s challenges, which are supposed to just be

random coins.
• Problem: no way to force P to really choose the challenges uniformly at random,

independent of the preceding messages in the protocol.

The Fiat-Shamir Transform

Hash Function 𝐻𝑷 ࢂ
…

Public-Coin
Interactive Argument

(Each 𝛽௜ uniformly random)

Non-Interactive
Argument

generically

𝛼ଵ
𝛽ଵ

𝛼௥ିଵ
𝛽௥ିଵ
𝛼௥

𝛼ଵ, … , 𝛼௥

𝛽ଵ ൌ 𝐻ሺ𝑥, 𝛼ଵሻ

𝑷𝑭ࡿ ࡿ𝑭ࢂ

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)

The Fiat-Shamir Transform

Hash Function 𝐻𝑷 ࢂ
…

Public-Coin
Interactive Argument

(Each 𝛽௜ uniformly random)

Non-Interactive
Argument

generically

𝛼ଵ
𝛽ଵ

𝛼௥ିଵ
𝛽௥ିଵ
𝛼௥

𝛼ଵ, … , 𝛼௥

𝛽ଵ ൌ 𝐻ሺ𝑥, 𝛼ଵሻ

, 𝛼ଶ
𝑷𝑭ࡿ ࡿ𝑭ࢂ

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)

The Fiat-Shamir Transform

Hash Function 𝐻𝑷 ࢂ
…

Public-Coin
Interactive Argument

(Each 𝛽௜ uniformly random)

Non-Interactive
Argument

generically

𝛼ଵ
𝛽ଵ

𝛼௥ିଵ
𝛽௥ିଵ
𝛼௥

𝛼ଵ, … , 𝛼௥

𝛽௜ ൌ 𝐻ሺ𝑥, 𝛼ଵ, … , 𝛼௜ሻ

𝑷𝑭ࡿ ࡿ𝑭ࢂ

𝛽ଶ ൌ 𝐻ሺ𝑥, 𝛼ଵ,𝛼ଶሻ
𝛽ଵ ൌ 𝐻ሺ𝑥, 𝛼ଵሻ

…

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)

Extremely influential methodology.

Powerful:We know that interaction buys a lot.
FS makes interaction free.

Practical: Very low overhead.

Expressive: Efficient Signature, CS proofs,
(zk-)SNARGs, STARKs…

The Fiat-Shamir Transform

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)

Security of Fiat-Shamir

The Random Oracle Model [BR93]

The random oracle model simply means that all
parties are given blackbox access to a fully
random function ܴ: 0,ͳ ఒ ՜ 0,ͳ ఒ.

Security should hold whp over the choice of ܴ.

Q: How should we view protocols secure in ROM?
A: TBD.Protocols secure in the ROM are widely viewed as

“secure in practice” by practitioners.

Slide due to Ron Rothblum (but answer to Q has been edited)
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)

FS in the ROM

Random Oracle 𝑅𝑷 ࢂ
…

Public-Coin
Interactive Argument

(Each 𝛽௜ uniformly random)

Non-Interactive
Argument

generically

𝛼ଵ
𝛽ଵ

𝛼௥ିଵ
𝛽௥ିଵ
𝛼௥

𝛼ଵ, … , 𝛼௥

𝛽௜ ൌ 𝑅ሺ𝑥, 𝛼ଵ, … ,𝛼௜ሻ

𝑷𝑭ࡿ ࡿ𝑭ࢂ

𝛽ଶ ൌ 𝑅ሺ𝑥, 𝛼ଵ, 𝛼ଶሻ
𝛽ଵ ൌ 𝑅ሺ𝑥, 𝛼ଵሻ

…

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)

Recent Theoretical Results on Fiat-Shamir

• Recent theoretical results show that applying the Fiat-Shamir
transformation to all of the interactive proofs we have seen in this course
so far leads to a sound argument in the Random Oracle Model (previously
soundness in the Random Oracle Model was known for constant-round
protocols).

• Furthermore, recent results show that even when instantiating the
Random Oracle with a concrete hash function satisfying a property called
correlation intractability, the resulting argument is sound.
• Still wide-open whether similar results are true when applying Fiat-Shamir to the

public-coin arguments we will see later in this course.

• Still wide-open whether similar results are true when applying Fiat-Shamir to the
public-coin arguments we will see later in this course.

Recent Theoretical Results on Fiat-Shamir

• Recent theoretical results show that applying the Fiat-Shamir
transformation to all of the interactive proofs we have seen in this course
so far leads to a sound argument in the Random Oracle Model (previously
soundness in the Random Oracle Model was known for constant-round
protocols).

• Furthermore, recent results show that even when instantiating the
Random Oracle with a concrete hash function satisfying a property called
correlation intractability, the resulting argument is sound.
• Still wide-open whether similar results are true when applying Fiat-Shamir to the

public-coin arguments we will see later in this course.

• Still wide-open whether similar results are true when applying Fiat-Shamir to the
public-coin arguments we will see later in this course.

Recent Theoretical Results on Fiat-Shamir

• Recent theoretical results show that applying the Fiat-Shamir
transformation to all of the interactive proofs we have seen in this course
so far leads to a sound argument in the Random Oracle Model (previously
soundness in the Random Oracle Model was known for constant-round
protocols).

• Furthermore, recent results show that even when instantiating the
Random Oracle with a concrete hash function satisfying a property called
correlation intractability, the resulting argument is sound.
• Still wide-open whether similar results are true when applying Fiat-Shamir to the

public-coin arguments we will see later in this course.

• Still wide-open whether similar results are true when applying Fiat-Shamir to the
public-coin arguments we will see later in this course.

Intuition for Security

• In any round ! of the sum-check protocol, if P knew what V’s next message
"# would be, P could cheat.
• Let $# be the polynomial P is supposed to send in round !, and %# be the polynomial

the prover actually sends.

• Suppose P knows the value "# that V will send in round !.
• Then P can choose %# so that %# ≠ $#, yet %#("#) = $#("#).

• In the Fiat-Shamir transformation, "# is set to be:
R(the transcript up to to round !, which includes %#).

• So P cannot run the above attack unless it can find an (%#, "#) pair such that
R(the transcript up to to round !, which includes %#)= "# *+, %#("#) = $#("#).
• Correlation-intractability is defined to ensure finding such a pair is

intractable.

Turning Computer Programs
into Circuits

Example 1: Squaring the entries
of a vector and then summing

the results

Matrix multiplication: one !-dimensional vector vector a over #, desired output is∑%&'()%*

Naïve algorithm (sequential):
Initialize + to be 0.
For , in 1, 2, … , ! do:

+ ← + +)3*

Naïve algorithm (parallel):
For , in 1, 2, … , ! in parallel do:

43 ←)3*
For , in 1, 2, … , ! in parallel do:

c ← ∑3&'(4%

Corresponding Circuits

Example 2: Matrix
Multiplication

Matrix multiplication: input is two ! x ! matrices #, % over &, desired output is # ∗ %

Naïve algorithm (sequential):
Initialize (to be an ! x ! matrix with all entries equal to 0.
For) in 1, 2, … , ! do:

For - in 1, 2, … , ! do:
For . in 1, 2, … , ! do:

(/,0 ← (/,0 + #/,3 ∗ %3,0

Naïve algorithm (parallel):
For), -, . in 1, 2, … , ! in parallel do:

4/,0,3 ← #/,3 ∗ %3,0
For), - in 1, 2, … , ! in parallel do:

(/,0 ← ∑3678 4/,0,3

A11 A12 A21 A22 B11 B12 B21 B22

× × × × × × × ×

+ + + +

