
Lecture 9



Recap

• Last lecture we finished describing the GKR protocol. 
• This interactive proof forces the prover to evaluate a layered arithmetic circuit 

gate-by-gate. 
• The verifier’s runtime is O(n + D log S), where n is input size, D is circuit depth, 

and S is circuit size. 
• The prover can be implemented in time O(S), though we did not cover details 

of how to achieve this.

• Any computation can be represented as an arithmetic circuit, but the 
circuit may be deep and/or large, and hence applying the GKR 
protocol to that circuit may not save the verifier time compared to 
just solving the problem with no prover.



Today’s topics

• The Fiat-Shamir transformation: turning any public-coin interactive proof 
into a publicly-verifiable non-interactive argument.

• Front-ends: turning computer programs into circuits.
• Key points to understand: 

1. Any algorithm running in time T can be turned into an arithmetic circuit of size not too 
much bigger than T (at most O(T^2 * polylog(T))).
• But T^2 size is impractical, and the circuit may be deep.

2. Fast parallel algorithms turn into small-depth circuits (parallel runtime ≈ circuit depth)
3. Some algorithms running in time T naturally turn into small-depth circuits of size O(T) (e.g., 

naïve matrix multiplication)
4. Any algorithm running time time T can be turned into an equivalent circuit satisfiability

instance of size O(T * polylog(T)) and depth O(polylog(T)).



The Fiat-Shamir Transform
[FS86]

In a nutshell: Awesome technique for minimizing 
interaction in public-coin interactive protocols.

Fascinating both in theory and in practice.

* Original goal was transforming ID schemes into signature schemes.
Slide due to Ron Rothblum

(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)



Interactive Argument [BCC88]

𝑥 ∈ 𝐿?

.

.

.

• Completeness: 𝑃 convinces 𝑉 to accept 𝑥 ∈ 𝐿.

• Computational Soundness: no computationally bounded 
cheating prover can convince 𝑉 to accept 𝑥 ∉ 𝐿 (except 
with negligible probability).

Prover 𝑷 Verifier ࢂ

Public-coin if all 𝑉 does is 
flip coins and send the 

result

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)



Intuition

• Recall from the course reading that V’s messages to P in an interactive 
proof are predictable, then the proof can be rendered non-interactive.
• The non-interactive proof is just an “accepting transcript” of the interactive proof.
• Intuitively, there is no reason for V to send a message to P if the prover can predict 

what the message will be. 
• P can just pretend the verifier sent the message, without V bothering to actually send it.

• Fiat-Shamir attempts to mimic this process even when the verifier’s
messages are unpredictable.
• First Idea: let the P choose V’s challenges, which are supposed to just be 

random coins. 
• Problem: no way to force P to really choose the challenges uniformly at random, 

independent of the preceding messages in the protocol.



The Fiat-Shamir Transform
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Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)
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Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)
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Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)



Extremely influential methodology.

Powerful:We know that interaction buys a lot. 
FS makes interaction free.

Practical: Very low overhead.

Expressive: Efficient Signature, CS proofs, 
(zk-)SNARGs, STARKs…

The Fiat-Shamir Transform

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)



Security of Fiat-Shamir



The Random Oracle Model [BR93]

The random oracle model simply means that all 
parties are given blackbox access to a fully 
random function ܴ: 0,ͳ ఒ ՜ 0,ͳ ఒ.

Security should hold whp over the choice of ܴ.

Q: How should we view protocols secure in ROM? 
A: TBD.Protocols secure in the ROM are widely viewed as 

“secure in practice” by practitioners.

Slide due to Ron Rothblum (but answer to Q has been edited)
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)



FS in the ROM

Random Oracle 𝑅𝑷 ࢂ
…

Public-Coin
Interactive Argument

(Each 𝛽௜ uniformly random)

Non-Interactive
Argument

generically

𝛼ଵ
𝛽ଵ

𝛼௥ିଵ
𝛽௥ିଵ
𝛼௥

𝛼ଵ, … , 𝛼௥

𝛽௜ ൌ 𝑅ሺ𝑥, 𝛼ଵ, … ,𝛼௜ሻ

𝑷𝑭ࡿ ࡿ𝑭ࢂ

𝛽ଶ ൌ 𝑅ሺ𝑥, 𝛼ଵ, 𝛼ଶሻ
𝛽ଵ ൌ 𝑅ሺ𝑥, 𝛼ଵሻ

…

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7-_fiat_shamir_basic.pdf)



Recent Theoretical Results on Fiat-Shamir

• Recent theoretical results show that applying the Fiat-Shamir 
transformation to all of the interactive proofs we have seen in this course 
so far leads to a sound argument in the Random Oracle Model (previously 
soundness in the Random Oracle Model was known for constant-round 
protocols).

• Furthermore, recent results show that even when instantiating the
Random Oracle with a concrete hash function satisfying a property called 
correlation intractability, the resulting argument is sound.
• Still wide-open whether similar results are true when applying Fiat-Shamir to the 

public-coin arguments we will see later in this course.
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Intuition for Security 

• In any round ! of the sum-check protocol, if P knew what V’s next message 
"# would be, P could cheat.
• Let $# be the polynomial P is supposed to send in round !, and %# be the polynomial 

the prover actually sends.

• Suppose P knows the value "# that V will send in round !.
• Then P can choose %# so that %# ≠ $#, yet %#("#) = $#("#). 

• In the Fiat-Shamir transformation, "# is set to be:
R(the transcript up to to round !, which includes %#). 

• So P cannot run the above attack unless it can find an (%#, "#) pair such that 
R(the transcript up to to round !, which includes %#)= "# *+, %#("#) = $#("#). 
• Correlation-intractability is defined to ensure finding such a pair is 

intractable.



Turning Computer Programs 
into Circuits



Example 1: Squaring the entries 
of a vector and then summing 

the results



Matrix multiplication: one !-dimensional vector vector a over #, desired output is∑%&'( )%*

Naïve algorithm (sequential):
Initialize + to be 0.
For , in 1, 2, … , ! do:

+ ← + + )3*

Naïve algorithm (parallel):
For , in 1, 2, … , ! in parallel do:

43 ← )3*
For , in 1, 2, … , ! in parallel do:

c ← ∑3&'( 4%



Corresponding Circuits



Example 2: Matrix 
Multiplication



Matrix multiplication: input is two ! x ! matrices #, % over &, desired output is # ∗ %

Naïve algorithm (sequential):
Initialize ( to be an ! x ! matrix with all entries equal to 0.
For ) in 1, 2, … , ! do:

For - in 1, 2, … , ! do:
For . in 1, 2, … , ! do:

(/,0 ← (/,0 + #/,3 ∗ %3,0

Naïve algorithm (parallel):
For ), -, . in 1, 2, … , ! in parallel do:

4/,0,3 ← #/,3 ∗ %3,0
For ), - in 1, 2, … , ! in parallel do:

(/,0 ← ∑3678 4/,0,3



A11 A12 A21 A22 B11 B12 B21 B22

× × × × × × × ×

+ + + +


