Lecture 9



Recap

e Last lecture we finished describing the GKR protocol.

* This interactive proof forces the prover to evaluate a layered arithmetic circuit
gate-by-gate.

* The verifier’s runtime is O(n + D log S), where n is input size, D is circuit depth,
and S is circuit size.

* The prover can be implemented in time O(S), though we did not cover details
of how to achieve this.

* Any computation can be represented as an arithmetic circuit, but the
circuit may be deep and/or large, and hence applying the GKR
protocol to that circuit may not save the verifier time compared to
just solving the problem with no prover.



Today’s topics

* The Fiat-Shamir transformation: turning any public-coin interactive proof
into a publicly-verifiable non-interactive argument.

* Front-ends: turning computer programs into circuits.
e Key points to understand:

1. Any algorithm runningin time T can be turned into an arithmetic circuit of size not too
much bigger than T (at most O(T*2 * polylog(T))).
* But TA2 size is impractical, and the circuit may be deep.

2. Fast parallel algorithms turn into small-depth circuits (parallel runtime = circuit depth)

3. Some algorithms running in time T naturally turn into small-depth circuits of size O(T) (e.g.,
naive matrix multiplication)

4. Any algorithm running time time T can be turned into an equivalent circuit satisfiability
instance of size O(T * polylog(T)) and depth O(polylog(T)).



The Fiat-Shamir Transform
[FS86]

In a nutshell: Awesome technique for minimizing
interaction in public-coin interactive protocols.

Fascinating both in theory and in practice.

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7- fiat_shamir_basic.pdf)




Interactive Argument [BCC88]

X € L?

Prover P Verifier V

Public-coin if all V does is
 Completeness: P convince flip coins and send the

: result
 Computational Soundness

cheating prover can convincew
with negligible probability).

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7- fiat_shamir_basic.pdf)




Intultion

* Recall from the course reading that \V's messages to P in an interactive
proof are predictable, then the proof can be rendered non-interactive.
* The non-interactive proof is just an “accepting transcript” of the interactive proof.

* Intuitively, there is no reason for VV to send a message to P if the prover can predict
what the message will be.

* P can just pretend the verifier sent the message, without V bothering to actually send it.

* Fiat-Shamir attempts to mimic this process even when the verifier’s
messages are unpredictable.

* First Idea: let the P choose V’s challenges, which are supposed to just be
random coins.

* Problem: no way to force P to really choose the challenges uniformly at random,
independent of the preceding messages in the protocol.



The Fiat-Shamir Transform

Public-Coin o
Interactive Argument

Non-Interactive
Argument

Hash Function H

P @V i Pgs
By ; o
a"‘m—l i pr = H(x,ay)
By ;
a, E

(Each B; uniformly random)

Slide due to Ron Rothblum

(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7- fiat_shamir_basic.pdf)




The Fiat-Shamir Transform

Public-Coin o
Interactive Argument

Non-Interactive
Argument

Hash Function H

P “ , Vi P
ﬁl E al ) 6(2
a"‘m—l E pr = H(x,ay)
By ;
a, :

(Each B; uniformly random)

Slide due to Ron Rothblum

(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7- fiat_shamir_basic.pdf)




The Fiat-Shamir Transform

Public-Coin o
Interactive Argument

Non-Interactive
Argument

Hash Function H

B; = H(x,aq, ..., a;)

P “ .V i Pgg Vs
b1 E Ay ey Ay
a"‘m—l E pr = H(x,ay)
Br—1 E B, = H(x,ay,a;)
a -

(Each B; uniformly random)

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7- fiat_shamir_basic.pdf)




The Fiat-Shamir Transform

Extremely influential methodology.

Powerful: We know that interaction buys a lot.

FS makes interaction free.

Practical: Very low overhead.

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7- fiat_shamir_basic.pdf)




Security of Fiat-Shamir



The Random Oracle Model [BRS3]

The random oracle model simply means that all
parties are given blackbox access to a fully
random function R: {0,1}* — {0,1}4.

Security should hold whp over the choice of R.

Q: How should we view protocols secure in ROM?
A: Protocols secure in the ROM are widely viewed as
“secure in practice” by practitioners.

Slide due to Ron Rothblum (but answer to Q has been edited)
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7- fiat_shamir_basic.pdf)




FS in the ROM

Public-Coin o
Interactive Argument

Non-Interactive
Argument

Random Oracle R

f; = R(x,aq, ..., q;)

P “ .V i Pgg Vs
b1 E Ay ey Ay
a"‘m—l E p1 = R(x, aq)
Br—1 E B, = R(x,ay,a3)
a -

(Each B; uniformly random)

Slide due to Ron Rothblum
(http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-7- fiat_shamir_basic.pdf)




Recent Theoretical Results on Fiat-Shamir

* Recent theoretical results show that applying the Fiat-Shamir
transformation to all of the interactive proofs we have seen in this course
so far leads to a sound argument in the Random Oracle Model (previously

soundness in the Random Oracle Model was known for constant-round
protocols).



Recent Theoretical Results on Fiat-Shamir

* Recent theoretical results show that applying the Fiat-Shamir
transformation to all of the interactive proofs we have seen in this course
so far leads to a sound argument in the Random Oracle Model (previously

soundness in the Random Oracle Model was known for constant-round
protocols).

* Furthermore, recent results show that even when instantiating the
Random Oracle with a concrete hash function satisfying a property called
correlation intractability, the resulting argument is sound.



Recent Theoretical Results on Fiat-Shamir

* Recent theoretical results show that applying the Fiat-Shamir
transformation to all of the interactive proofs we have seen in this course
so far leads to a sound argument in the Random Oracle Model (previously

soundness in the Random Oracle Model was known for constant-round
protocols).

* Furthermore, recent results show that even when instantiating the
Random Oracle with a concrete hash function satisfying a property called
correlation intractability, the resulting argument is sound.

* Still wide-open whether similar results are true when applying Fiat-Shamir to the
public-coin arguments we will see later in this course.



Intuition for Security

* In any round i of the sum-check protocol, if P knew what V’s next message
r; would be, P could cheat.

* Let g; be the polynomial P is supposed to send in round i, and s; be the polynomial
the prover actually sends.

* Suppose P knows the value r; that V will send in round i.
* Then P can choose s; so that s; # g;, yet s;(1;) = g;(ry).
* In the Fiat-Shamir transformation, r; is set to be:
R(the transcript up to to round i, which includes s;).
* So P cannot run the above attack unless it can find an (s;, 7;7) pair such that
R(the transcript up to to round i, which includes s;)=1; and s;(r;) = g;(1y).

e Correlation-intractability is defined to ensure finding such a pair is
intractable.



Turning Computer Programs
Into Circuits



Example 1: Squaring the entries
of a vector and then summing
the results



Matrix multiplication: one n-dimensional vector vector a over F, desired output isY.r_; az

Naive algorithm (sequential):

Initialize ¢ to be 0.

Foriin{l,2,...,n}do:
c—c+ al-2

Naive algorithm (parallel):

Foriin{1,2,...,n}in parallel do:
T; < a?

Foriin{1,2,...,n}in parallel do:

ce X Tk



Corresponding Circuits



Example 2: Matrix
Multiplication



Matrix multiplication: input is two n x n matrices A, B over F, desired outputis A * B

Naive algorithm (sequential):
Initialize C to be an n x n matrix with all entries equal to O.
Foriin{l,2,..,n} do:
Forjin{1,2,...,n}do:
Fork in{1,2,...,n}do:
Cij < Cijj+Ajx * By

Naive algorithm (parallel):

For (i,j,k) in{1,2, ...,n} in parallel do:
Tijk < Ajg * By j

For (i,j)in{1,2,...,n}in parallel do:
Cijj < 2k=1Tijx






