Lecture 6

Recap

* Two lectures ago: Our first application of the sum-
check protocol.
* An IP for #SAT with a polynomial-time verifier.
* Pranin time exponential in the input size.

e But the fastest known algorithm for this problem requires
exponential time.
* So can’t really hope for a faster prover for this problem.

* Last lecture we saw some doubly-efficient IPs.
* Vrunsin linear time.

* P runsin polynomial time.
* |n fact, we achieved “super-efficiency”.

* meaning P ran the fastest known algorithm for the problem, and
then did a low-order amount of additional work to prove
correctness.

e Counting triangles, matrix multiplication.

Today: A General-Purpose
Doubly-Efficient Interactive
Proof

General-Purpose Interactive Proof and Argument
Implementations

e Start with a computer program written in high-level
programming language (C, Java, etc.)

e Step 1: Turn the program into an equivalent model
amenable to probabilistic checking.
* Typically some type of arithmetic circuit.
* Called the Front End of the system.

 Step 2: Run an interactive proof or argument on the
circuit.

* Called the Back End of the system.

/\

» Front End » N N

£ 1t 11 1

P and V run interactive proof or
argument system (back end) on
circuit

Sources of Prover Overhead in VC

Systems
Source of P Overhead vs. Native Slowdown Depends On...
Overhead (Crude Estimate)
Front End (ratio of circuit size to e How amenable is the
(overhead due | number of machine steps high-level computer
to using a circuit of original program) program is to
representation 1x-10,000x representation via
of the circuits?
computation) * What type of circuits can
the back-end handle?
Back-End (ratio of P time to e Varies by back-end and
evaluating circuit gate- computation structure
by-gate) (e.g., data parallel?)
10x-1,000x

The GKR Protocol

A General-Purpose Doubly-Efficient
Interactive Proof

The GKR Protocol: Overview

Layer 1 /\
o N N
IR & S

F, circuit

The GKR Protocol: Overview

Layer 1 < P starts the
T~ conversation with
Laver 2 an answer (output).
Layer 3

ittt 1 1

Layer 4

F, circuit

The GKR Protocol: Overview

Layer 1
Layer V sends series of
challenges. P
Layer 3 responds with info
about next circuit
Layer 4 level.

F, circuit

The GKR Protocol: Overview

Layer 1
Layer 2
<«—Challenges continue,
Layer 3
layer by layer down

Layer 4 @ @ @ @ to the the input.

F, circuit

The GKR Protocol: Overview

Layer 1

Layer 2

Layer 3 .
Finally, P says

Layer 4 @ @ @ tj <«— something about
the (multilinear
extension of the)
input.

F, circuit

Notation

* Assume layers i and i + 1 of C have S gates each.
* Assign each gate a binary label (log S bits).

* Let W;(a): {0,1}1°85— F output the value of gate a at layer i.

Notation

* Assume layers i and i + 1 of C have S gates each.
* Assign each gate a binary label (log S bits).

* Let W;(a): {0,1}1°85— F output the value of gate a at layer i.
» Let add;(a, b, ¢): {0,1}31°8 5 F output 1 iff
(b,c) = (in1 (a),in, (a)) and gate a at layer i is an addition gate.

Notation

* Assume layers i and i + 1 of C have S gates each.
* Assign each gate a binary label (log S bits).

* Let W;(a): {0,1}1°85— F output the value of gate a at layer i.
» Let add;(a, b, ¢): {0,1}31°8 5 F output 1 iff

(b,c) = (in1 (a),in, (a)) and gate a at layer i is an addition gate.
e Let mult;(a, b, ¢): {0,1}31°85— F output 1 iff

(b,c) = (in1 (a),in, (a)) and gate a at layer i is a multiplication gate.

The GKR Protocol: Overview

add,(0,(0,0),(0,1)) =1
add,(1,(1,0),(1,1)) =1

F, circuit

The GKR Protocol: Overview

Layer 1

Layer 2
Layer 3 mult3((0,0), (0,0), (0,0)) = 1
mult;((0,1), (0,1),(0,1)) =1

Layer 4 b d b @ mult;((1,0), (1,0),(1,0)) =1

mult;((1,1),(1,1),(1,1)) =1

F, circuit

GKR Protocol: Goal of Iteration i

* lteration i starts with a claim from P about W;(r;) for a random point r; €
Flog S_

* Goal: Reduce this to a claim about W, () for a random point r, € F'°85,
* Observation: W;(a) =
2 pceqoyos sladdi(a b, €)(Wiy1(b) + Wiy, (c))+ mult;(a, b, €) (W1 (b) - Wii1(0))]

* Hence, the following equality holds as formal polynomials:
N Wi(a) =
2p,cefo,yoe sladdi(a, b, ©) (Wi 1 (b) + Wiy (c))+mult;(a, b, €)(Wii1(b) - Wii1(c))]

GKR Protocol: Goal of Iteration i

* So V applies sum-check protocol to compute
« Wi(ry) = Yp.ceqo,nyog s 9(b, €), where:
g(b,c) = add;(ry, b, €) (W41 (b) + W;,1(c))
+mult;(ry, b, €) (W11 (b) - Wiy (€))

GKR Protocol: Goal of Iteration i

* So V applies sum-check protocol to compute
« Wi(ry) = Yp.ceqo,nyog s 9(b, €), where:
g(b,c) = add;(ry, b, €) (W41 (b) + W;,1(c))
+mult;(ry, b, €) (W11 (b) - Wiy (€))

* At end of sum-check protocol, V must evaluate g(r,, 13).

GKR Protocol: Goal of Iteration i

So V applies sum-check protocol to compute
W;(ry) = Yp.ceqo,nyog s 9(b, €), where:
g(b,c) = add;(ry, b, €) (W41 (b) + W;,1(c))
+mult;(ry, b, €) (W11 (b) - Wiy (€))

At end of sum-check protocol, V must evaluate g(r,, r3).

Let us assume V can compute add; (74, 7, 73) and
mult; (11, 75, 13) unaided in time polylog(n).

* Then V only needs to know W;,(r,) and W;,,(r3) to
complete this check.

GKR Protocol: Goal of Iteration i

* So V applies sum-check protocol to compute
« Wi(ry) = Yp.ceqo,nyog s 9(b, €), where:
g(b,c) = add;(ry, b, €) (W41 (b) + W;,1(c))
+mult;(ry, b, €) (W11 (b) - Wiy (€))
* At end of sum-check protocol, V must evaluate g(r,, 13).

* Let us assume V can compute add; (71, 75, 73) and
mult; (11, r,, 13) unaided in time polylog(n).

* Then V only needs to know W;,(r,) and W;,,(r3) to
complete this check.

* |teration i 4+ 1 is devoted to computing these values.

Remaining Issue: Reducing to
Verification of a Single Point

* There is one remaining problem: we don’t want to have to
separately verify both W;,,(r,) and W;,,(r3) in iteration i +1.

 Solution: Reduce verifying both of the above values to verifying
W;,1(r,) for a single point 1.

Remaining Issue: Reducing to
Verification of a Single Point

* There is one remaining problem: we don’t want to have to
separately Werjfy hoth w ., (r,) and in iteration i +1.

 Solution: Reduce verifying both of the above values to verifying

Wi+1(l'4) for a single poift € =S,
Wiss

Witq
/Boolean Hypercube
{013

\xtended Hypercube

FlogS

Remaining Issue: Reducing to
Verification of a Single Point

* There is one remaining problem: we don’t want to have to
separately Werjfy hoth w ., (r,) and in iteration i +1.

 Solution: Reduce verifying both of the above values to verifying

Wi+1(l'4) for a single poift € =S,
Wiss

Witq ° L
/Boolean Hypercube
{013

e, \xtended Hypercube

FlogS

Remaining Issue: Reducing to
Verification of a Single Point

* There is one remaining problem: we don’t want to have to
separately Werjfy hoth w ., (r,) and in iteration i +1.

 Solution: Reduce verifying both of the above values to verifying

Wi+1(l'4) for a single poift € =S,

w; ,
L Challenge line A
Wi+1 ‘\ rz//
/Boolean Hypercube

{O, l}logS

\xtended Hypercube

FlogS

Remaining Issue: Reducing to
Verification of a Single Point

* There is one remaining problem: we don’t want to have to
separately Werjfy hoth w ., (r,) and in iteration i +1.

 Solution: Reduce verifying both of the above values to verifying

Wi+1(l'4) for a single poift € =S,

W.
e Challenge line A
Wi+1 ‘\‘ rz//
\ /Boolean Hypercube
\‘l'4 {O,l}logS
\
or \
\‘3 xtended Hypercube
“ FlogS
|

Costs of the GKR protocol

* Vtimeis O(n + D logS) where n is input
size, D is circuit depth, and § is circuit size.

* Assumes V can compute add, i(ry,ry,r3)
and mult; (1, 7,,73) unalded in time

polylog(n)
* Communication cost is O(D log S).

Costs of the GKR protocol

* Vtimeis O(n + D logS) where n is input
size, D is circuit depth, and § is circuit size.

* Assumes V can compute add, i(ry,ry,r3)
and mult; (1, 7,,73) unalded in time

polylog(n)
* Communication cost is O(D log S).

* Ptimeis O(S).
* A naive implementation of P takes Q(S3)
time, where S is circuit size.

* A sequence of works has brought this
down to O(S), for arbitrary circuits
[CMT12, Thaler13, WJBSTWW17,
XZZPS19]

GKR Prover Runtime: Details

Recall: Core of the GKR protocol is applying sum-check to
compute Zb,ce{o’l}logs g(b, c) where

g(b,c) = aﬁdi(rl, b, C)(Wiﬂ(b) + Wi+1(¢'))
+ mult; (14, b, €)(Wi41(b) - Wi41(c))

GKR Prover Runtime: Details

Recall: Core of the GKR protocol is applying sum-check to
compute Zb,ce{o’l}logs g(b, c) where

g(b,c) = aﬁdi(rl, b, C)(Wiﬂ(b) + Wi+1(¢'))
+ mult; (14, b, €)(Wi41(b) - Wi41(c))

* A naive implementation of P takes Q(S3) time, where S is
circuit size.

 Same idea as prover implementation for #SAT protocol.

* i.e., P evaluates g in each round of sum-check at all 0(52/2")
necessary points z, taking 0(S) time per point.

GKR Prover Runtime: Details

Recall: Core of the GKR protocol is agp

Igin sum-check to
compute Zb,ce{o,1}10g59(c) where

g(b,c) = aﬁdi(rl, b, c) (mZiﬂ(b) +Wi+1(¢'))
+mult; (14, b, €)(Wi41(b) - Wit1(c))
* A naive implementation of P takes ((S3) time, where S is
circuit size.
* Same idea as prover implementation for #SAT protocol.
* i.e., P evaluates g in each round of sum-check at all 0(52/2")
necessary points z, taking 0(S) time per point.
* [CMT12]: P time is O(S log S).

* Exploit structure in multilinear extensions add; and

mult;. Ensures that each gate of C contributes to g(z) for 0(1)
relevant points z in each round.

GKR Prover Runtime: Details

Recall: Core of the GKR protocol is agp

Igin sum-check to
compute Zb,ce{o,1}10g59(c) where

g(b,c) = aﬁdi(rl, b, c) (mZiﬂ(b) +Wi+1(¢'))
+mult; (14, b, €)(Wi41(b) - Wit1(c))
* A naive implementation of P takes ((S3) time, where S is
circuit size.
* Same idea as prover implementation for #SAT protocol.
* i.e., P evaluates g in each round of sum-check at all 0(52/2")
necessary points z, taking 0(S) time per point.
* [CMT12]: P time is O(S log S).

* Exploit structure in multilinear extensions add; and

mult;. Ensures that each gate of C contributes to g(z) for 0(1)
relevant points z in each round.

* All subsequent works seek to bring “Approach 3” to bear
on the GKR protocol, letting P reuse work across rounds.

GKR Prover Runtime: Details

e [Thaler13]:
1. Ptime O(S) for circuits with “nice” wiring patterns.
2. Ptime O(SlogS") for data parallel circuits

i.e., that apply the same subcomputation (of size S')
independently to different pieces of data

GKR Prover Runtime: Details

e [Thaler13]:
1. Ptime O(S) for circuits with “nice” wiring patterns.
2. Ptime O(SlogS") for data parallel circuits

i.e., that apply the same subcomputation (of size S')
independently to different pieces of data

« [WIBSTWW17] improved the data parallel time to
O(S + S'logS’").

GKR Prover Runtime: Details

e [Thaler13]:
1. Ptime O(S) for circuits with “nice” wiring patterns.

2. Ptime O(SlogS") for data parallel circuits

i.e., that apply the same subcomputation (of size S')
independently to different pieces of data

« [WIBSTWW17] improved the data parallel time to
O(S + S'logS’").

 [ZGKPP18] extends to data parallel computations
where each subcomputation may not be the same.

GKR Prover Runtime: Details

e [Thaler13]:
1. Ptime O(S) for circuits with “nice” wiring patterns.
2. Ptime O(SlogS") for data parallel circuits

i.e., that apply the same subcomputation (of size S')
independently to different pieces of data

« [WIBSTWW17] improved the data parallel time to
O(S + S'logS’").

 [ZGKPP18] extends to data parallel computations
where each subcomputation may not be the same.

« [XZZPS19] achieved O(S) time for general circuits.

Rumination on Generality Vs.
Efficiency

Generality vs. Efficiency

* The GKR protocol for circuit evaluation has now been
rendered optimally efficient for P (up to constant
factors).

* Any computation can be represented as a circuit
evaluation (or satisfiability) problem.
e But this can introduce tremendous overheads.

* The GKR protocol forces the prover to compute the
output in a prescribed manner, which may be far from
optimal (gate-by-gate evaluation of a circuit).

* To achieve scalability, the gold standard is really
super-efficiency.
* i.e., P computed the right answer directly using the

fastest known algorithm, and did a low-order amount
of extra work to prove correctness

