Lecture 6

Recap

- Two lectures ago: Our first application of the sumcheck protocol.
 - An IP for #SAT with a polynomial-time verifier.
 - P ran in time exponential in the input size.
 - But the fastest known algorithm for this problem requires exponential time.
 - So can't really hope for a faster prover for this problem.
- Last lecture we saw some doubly-efficient IPs.
 - V runs in **linear** time.
 - P runs in polynomial time.
 - In fact, we achieved "super-efficiency".
 - meaning P ran the fastest known algorithm for the problem, and then did a low-order amount of additional work to prove correctness.
 - Counting triangles, matrix multiplication.

Today: A General-Purpose Doubly-Efficient Interactive Proof

General-Purpose Interactive Proof and Argument Implementations

- Start with a computer program written in high-level programming language (C, Java, etc.)
- Step 1: Turn the program into an equivalent model amenable to probabilistic checking.
 - Typically some type of arithmetic circuit.
 - Called the Front End of the system.
- Step 2: Run an interactive proof or argument on the circuit.
 - Called the **Back End** of the system.

Sources of Prover Overhead in VC Systems

Source of Overhead	P Overhead vs. Native (Crude Estimate)	Slowdown Depends On
Front End (overhead due to using a circuit representation of the computation)	(ratio of circuit size to number of machine steps of original program) 1x-10,000x	 How amenable is the high-level computer program is to representation via circuits? What type of circuits can the back-end handle?
Back-End	(ratio of P time to evaluating circuit gate- by-gate) 10x-1,000x	 Varies by back-end and computation structure (e.g., data parallel?)

The GKR Protocol

A General-Purpose Doubly-Efficient Interactive Proof

Notation

- Assume layers i and i + 1 of C have S gates each.
 - Assign each gate a binary label (log *S* bits).
- Let $W_i(\boldsymbol{a}): \{0,1\}^{\log S} \to \boldsymbol{F}$ output the value of gate \boldsymbol{a} at layer i.

Notation

- Assume layers i and i + 1 of C have S gates each.
 - Assign each gate a binary label (log *S* bits).
- Let $W_i(\boldsymbol{a}): \{0,1\}^{\log S} \to \boldsymbol{F}$ output the value of gate \boldsymbol{a} at layer i.
- Let $\operatorname{add}_i(a, b, c): \{0, 1\}^{3 \log S} \to F$ output 1 iff

 $(b, c) = (in_1(a), in_2(a))$ and gate a at layer i is an addition gate.

Notation

- Assume layers i and i + 1 of C have S gates each.
 - Assign each gate a binary label (log *S* bits).
- Let $W_i(\boldsymbol{a}): \{0,1\}^{\log S} \to \boldsymbol{F}$ output the value of gate \boldsymbol{a} at layer i.
- Let $\operatorname{add}_i(a, b, c): \{0, 1\}^{3 \log S} \to F$ output 1 iff

 $(\mathbf{b}, \mathbf{c}) = (in_1(\mathbf{a}), in_2(\mathbf{a}))$ and gate \mathbf{a} at layer i is an addition gate.

• Let $\operatorname{mult}_i(a, b, c): \{0, 1\}^{3 \log S} \to F$ output 1 iff

 $(\mathbf{b}, \mathbf{c}) = (in_1(\mathbf{a}), in_2(\mathbf{a}))$ and gate \mathbf{a} at layer i is a multiplication gate.

 $add_2(0, (0, 0), (0, 1)) = 1$ $add_2(1, (1, 0), (1, 1)) = 1$

F₂ circuit

$$\begin{split} & \text{mult}_3\big((0,0),(0,0),(0,0)\big) = 1 \\ & \text{mult}_3\big((0,1),(0,1),(0,1)\big) = 1 \\ & \text{mult}_3\big((1,0),(1,0),(1,0)\big) = 1 \\ & \text{mult}_3\big((1,1),(1,1),(1,1)\big) = 1 \end{split}$$

- Iteration *i* starts with a claim from P about $\widetilde{W}_i(r_1)$ for a random point $r_1 \in \mathbf{F}^{\log S}$.
- Goal: Reduce this to a claim about $\widetilde{W}_{i+1}(r_2)$ for a random point $r_2 \in F^{\log S}$.
- Observation: $W_i(a) =$

 $\sum_{b,c \in \{0,1\}^{\log S}} [add_i(a, b, c)(W_{i+1}(b) + W_{i+1}(c)) + mult_i(a, b, c)(W_{i+1}(b) \cdot W_{i+1}(c))]$

• Hence, the following equality holds as formal polynomials: $\widetilde{W}_{i}(\boldsymbol{a}) = \sum_{\boldsymbol{b},\boldsymbol{c}\in\{0,1\}^{\log S}} [\widetilde{\mathrm{add}}_{i}(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c})) + \widetilde{\mathrm{mult}}_{i}(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) \cdot \widetilde{W}_{i+1}(\boldsymbol{c}))]$

• So V applies sum-check protocol to compute

•
$$\widetilde{W}_{i}(\boldsymbol{r}_{1}) = \sum_{\boldsymbol{b},\boldsymbol{c}\in\{0,1\}^{\log S}} g(\boldsymbol{b},\boldsymbol{c})$$
, where:
 $g(\boldsymbol{b},\boldsymbol{c}) = \widetilde{\mathrm{add}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$
 $+ \widetilde{\mathrm{mult}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) \cdot \widetilde{W}_{i+1}(\boldsymbol{c}))$

• So V applies sum-check protocol to compute

•
$$\widetilde{W}_{i}(\boldsymbol{r}_{1}) = \sum_{\boldsymbol{b}, \boldsymbol{c} \in \{0,1\}^{\log S}} g(\boldsymbol{b}, \boldsymbol{c})$$
, where:
 $g(\boldsymbol{b}, \boldsymbol{c}) = \widetilde{\operatorname{add}}_{i}(\boldsymbol{r}_{1}, \boldsymbol{b}, \boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$
 $+ \widetilde{\operatorname{mult}}_{i}(\boldsymbol{r}_{1}, \boldsymbol{b}, \boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) \cdot \widetilde{W}_{i+1}(\boldsymbol{c}))$

• At end of sum-check protocol, V must evaluate $g(r_2, r_3)$.

So V applies sum-check protocol to compute

•
$$\widetilde{W}_{i}(\boldsymbol{r}_{1}) = \sum_{\boldsymbol{b},\boldsymbol{c}\in\{0,1\}^{\log S}} g(\boldsymbol{b},\boldsymbol{c})$$
, where:
 $g(\boldsymbol{b},\boldsymbol{c}) = \widetilde{\operatorname{add}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$
 $+ \widetilde{\operatorname{mult}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) \cdot \widetilde{W}_{i+1}(\boldsymbol{c}))$

- At end of sum-check protocol, V must evaluate $g(r_2, r_3)$.
- Let us assume V can compute $\widetilde{\text{add}}_i(r_1, r_2, r_3)$ and $\widetilde{\text{mult}}_i(r_1, r_2, r_3)$ unaided in time $\operatorname{polylog}(n)$.
- Then V only needs to know $\widetilde{W}_{i+1}(r_2)$ and $\widetilde{W}_{i+1}(r_3)$ to complete this check.

So V applies sum-check protocol to compute

•
$$\widetilde{W}_{i}(\boldsymbol{r}_{1}) = \sum_{\boldsymbol{b},\boldsymbol{c}\in\{0,1\}^{\log S}} g(\boldsymbol{b},\boldsymbol{c})$$
, where:
 $g(\boldsymbol{b},\boldsymbol{c}) = \widetilde{\mathrm{add}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$
 $+ \widetilde{\mathrm{mult}}_{i}(\boldsymbol{r}_{1},\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) \cdot \widetilde{W}_{i+1}(\boldsymbol{c}))$

- At end of sum-check protocol, V must evaluate $g(r_2, r_3)$.
- Let us assume V can compute $\widetilde{\text{add}}_i(r_1, r_2, r_3)$ and $\widetilde{\text{mult}}_i(r_1, r_2, r_3)$ unaided in time $\operatorname{polylog}(n)$.
- Then V only needs to know $\widetilde{W}_{i+1}(r_2)$ and $\widetilde{W}_{i+1}(r_3)$ to complete this check.
- Iteration i + 1 is devoted to computing these values.

- There is one remaining problem: we don't want to have to separately verify both $\widetilde{W}_{i+1}(r_2)$ and $\widetilde{W}_{i+1}(r_3)$ in iteration i + 1.
- Solution: Reduce verifying both of the above values to verifying $\widetilde{W}_{i+1}(r_4)$ for a single point r_4 .

- There is one remaining problem: we don't want to have to separately $\widetilde{W}_{i+1}(\mathbf{r}_{2})$ oth $\widetilde{W}_{i+1}(\mathbf{r}_{3})$ and in iteration i + 1.
- Solution: Reduce verifying both of the above values to verifying

 $\widetilde{W}_{i+1}(\mathbf{r}_4)$ for a single point $\mathbf{c} \in \mathbf{F}^{\log S}$.

- There is one remaining problem: we don't want to have to separately $\widetilde{W}_{i+1}(\mathbf{r}_{2})$ oth $\widetilde{W}_{i+1}(\mathbf{r}_{3})$ and in iteration i + 1.
- Solution: Reduce verifying both of the above values to verifying

 $\widetilde{W}_{i+1}(\mathbf{r}_4)$ for a single point $\mathbf{c}_4 \in \mathbf{F}^{\log S}$.

- There is one remaining problem: we don't want to have to separately $\widetilde{W}_{i+1}(\mathbf{r}_{2})$ oth $\widetilde{W}_{i+1}(\mathbf{r}_{3})$ and in iteration i + 1.
- Solution: Reduce verifying both of the above values to verifying

 $\widetilde{W}_{i+1}(\mathbf{r}_4)$ for a single point $\mathbf{c} \in \mathbf{F}^{\log S}$.

- There is one remaining problem: we don't want to have to separately $\widetilde{W}_{i+1}(\mathbf{r}_{2})$ oth $\widetilde{W}_{i+1}(\mathbf{r}_{3})$ and in iteration i + 1.
- Solution: Reduce verifying both of the above values to verifying

 $\widetilde{W}_{i+1}(\mathbf{r}_4)$ for a single point $\mathbf{c} \in \mathbf{F}^{\log S}$.

Costs of the GKR protocol

- V time is O(n + D log S) where n is input size, D is circuit depth, and S is circuit size.
 - Assumes ∨ can compute add_i(r₁, r₂, r₃) and mult_i(r₁, r₂, r₃) unaided in time polylog(n)
- Communication cost is $O(D \log S)$.

Costs of the GKR protocol

- V time is *O*(*n* + *D* log *S*) where *n* is input size, *D* is circuit depth, and *S* is circuit size.
 - Assumes ∨ can compute add_i(r₁, r₂, r₃) and mult_i(r₁, r₂, r₃) unaided in time polylog(n)
- Communication cost is $O(D \log S)$.

- P time is O(S).
 - A naïve implementation of P takes $\Omega(S^3)$ time, where S is circuit size.
 - A sequence of works has brought this down to O(S), for arbitrary circuits [CMT12, Thaler13, WJBSTWW17, XZZPS19]

Recall: Core of the GKR protocol is applying sum-check to compute $\sum_{\boldsymbol{b}, \boldsymbol{c} \in \{0,1\}^{\log S}} g(\boldsymbol{b}, \boldsymbol{c})$ where $g(\boldsymbol{b}, \boldsymbol{c}) = \widetilde{\mathrm{add}}_i(\boldsymbol{r}_1, \boldsymbol{b}, \boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$ $+ \widetilde{\mathrm{mult}}_i(\boldsymbol{r}_1, \boldsymbol{b}, \boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) \cdot \widetilde{W}_{i+1}(\boldsymbol{c}))$

Recall: Core of the GKR protocol is applying sum-check to
compute
$$\sum_{\boldsymbol{b}, \boldsymbol{c} \in \{0,1\}^{\log S}} g(\boldsymbol{b}, \boldsymbol{c})$$
 where
 $g(\boldsymbol{b}, \boldsymbol{c}) = \widetilde{\mathrm{add}}_i(\boldsymbol{r}_1, \boldsymbol{b}, \boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$
 $+ \widetilde{\mathrm{mult}}_i(\boldsymbol{r}_1, \boldsymbol{b}, \boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) \cdot \widetilde{W}_{i+1}(\boldsymbol{c}))$

- A naïve implementation of P takes $\Omega(S^3)$ time, where S is circuit size.
 - Same idea as prover implementation for #SAT protocol.
 - i.e., P evaluates g in each round of sum-check at all $O(S^2/2^i)$ necessary points Z, taking O(S) time per point.

Recall: Core of the GKR protocol is applying sum-check to
compute
$$\sum_{\boldsymbol{b}, \boldsymbol{c} \in \{0,1\}^{\log S}} g(\boldsymbol{b}, \boldsymbol{c})$$
 where
 $g(\boldsymbol{b}, \boldsymbol{c}) = \widetilde{\mathrm{add}}_i(\boldsymbol{r}_1, \boldsymbol{b}, \boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$
 $+ \widetilde{\mathrm{mult}}_i(\boldsymbol{r}_1, \boldsymbol{b}, \boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) \cdot \widetilde{W}_{i+1}(\boldsymbol{c}))$

- A naïve implementation of P takes $\Omega(S^3)$ time, where S is circuit size.
 - Same idea as prover implementation for #SAT protocol.
 - i.e., P evaluates g in each round of sum-check at all $O(S^2/2^i)$ necessary points Z, taking O(S) time per point.
- [CMT12]: P time is $O(S \log S)$.
 - Exploit structure in **multilinear** extensions add_i and $mult_i$. Ensures that each gate of C contributes to g(z) for O(1) relevant points z in each round.

Recall: Core of the GKR protocol is applying sum-check to
compute
$$\sum_{\boldsymbol{b},\boldsymbol{c}\in\{0,1\}^{\log S}} g(\boldsymbol{b},\boldsymbol{c})$$
 where
 $g(\boldsymbol{b},\boldsymbol{c}) = \widetilde{\mathrm{add}}_i(\boldsymbol{r}_1,\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b}) + \widetilde{W}_{i+1}(\boldsymbol{c}))$
 $+ \widetilde{\mathrm{mult}}_i(\boldsymbol{r}_1,\boldsymbol{b},\boldsymbol{c})(\widetilde{W}_{i+1}(\boldsymbol{b})\cdot\widetilde{W}_{i+1}(\boldsymbol{c}))$

- A naïve implementation of P takes $\Omega(S^3)$ time, where S is circuit size.
 - Same idea as prover implementation for #SAT protocol.
 - i.e., P evaluates g in each round of sum-check at all $O(S^2/2^i)$ necessary points Z, taking O(S) time per point.
- [CMT12]: P time is $O(S \log S)$.
 - Exploit structure in **multilinear** extensions add_i and $mult_i$. Ensures that each gate of C contributes to g(z) for O(1) relevant points z in each round.
- All subsequent works seek to bring "Approach 3" to bear on the GKR protocol, letting P reuse work across rounds.

- [Thaler13]:
 - **1.** P time O(S) for circuits with "nice" wiring patterns.
 - 2. P time $O(S \log S')$ for data parallel circuits
 - i.e., that apply the same subcomputation (of size S') independently to different pieces of data

- [Thaler13]:
 - **1.** P time O(S) for circuits with "nice" wiring patterns.
 - 2. P time $O(S \log S')$ for data parallel circuits
 - i.e., that apply the same subcomputation (of size S') independently to different pieces of data
- [WJBSTWW17] improved the data parallel time to $O(S + S' \log S')$.

- [Thaler13]:
 - **1.** P time O(S) for circuits with "nice" wiring patterns.
 - 2. P time $O(S \log S')$ for data parallel circuits
 - i.e., that apply the same subcomputation (of size S') independently to different pieces of data
- [WJBSTWW17] improved the data parallel time to $O(S + S' \log S')$.
- [ZGKPP18] extends to data parallel computations where each subcomputation may not be the same.

- [Thaler13]:
 - **1.** P time O(S) for circuits with "nice" wiring patterns.
 - 2. P time $O(S \log S')$ for data parallel circuits
 - i.e., that apply the same subcomputation (of size S') independently to different pieces of data
- [WJBSTWW17] improved the data parallel time to $O(S + S' \log S')$.
- [ZGKPP18] extends to data parallel computations where each subcomputation may not be the same.
- [XZZPS19] achieved O(S) time for general circuits.

Rumination on Generality Vs. Efficiency

Generality vs. Efficiency

- The GKR protocol for circuit evaluation has now been rendered optimally efficient for P (up to constant factors).
- Any computation can be represented as a circuit evaluation (or satisfiability) problem.
 - But this can introduce tremendous overheads.
 - The GKR protocol **forces** the prover to compute the output in a prescribed manner, which may be far from optimal (gate-by-gate evaluation of a circuit).
- To achieve scalability, the gold standard is really **super-efficiency**.
 - i.e., P computed the right answer directly using the fastest known algorithm, and did a low-order amount of extra work to prove correctness