
Lecture 6



Recap
• Two lectures ago: Our first application of the sum-

check protocol.
• An IP for #SAT with a polynomial-time verifier.
• P ran in time exponential in the input size.
• But the fastest known algorithm for this problem requires 

exponential time.
• So can’t really hope for a faster prover for this problem.

• Last lecture we saw some doubly-efficient IPs.
• V runs in linear time.
• P runs in polynomial time.

• ln fact, we achieved “super-efficiency”.
• meaning P ran the fastest known algorithm for the problem, and 

then did a low-order amount of additional work to prove 
correctness.

• Counting triangles, matrix multiplication.



Today: A General-Purpose 
Doubly-Efficient Interactive 

Proof



General-Purpose Interactive Proof and Argument
Implementations

• Start with a computer program written in high-level 
programming language (C, Java, etc.)
• Step 1: Turn the program into an equivalent model 

amenable to probabilistic checking.
• Typically some type of arithmetic circuit.
• Called the Front End of the system.

• Step 2: Run an interactive proof or argument on the 
circuit.
• Called the Back End of the system.



Front End
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The GKR Protocol: Overview 

F2 circuit 

P and V run interactive proof or 
argument system (back end) on 

circuit



Sources of Prover Overhead in VC 
Systems

Source of 
Overhead

P Overhead vs. Native 
(Crude Estimate)

Slowdown Depends On…

Front End
(overhead due 

to using a circuit 
representation 

of the 
computation)

(ratio of circuit size to
number of machine steps 

of original program)
1x-10,000x

• How amenable is the 
high-level computer 

program is to 
representation via 

circuits?
• What type of circuits can 

the back-end handle?
Back-End (ratio of P time to 

evaluating circuit gate-
by-gate)

10x-1,000x

• Varies by back-end and 
computation structure 
(e.g., data parallel?)



The GKR Protocol
A General-Purpose Doubly-Efficient 

Interactive Proof
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conversation with 
an answer (output).
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V sends series of  
challenges. P
responds with info 
about next circuit 
level. 
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Challenges continue,
layer by layer down
to the the input. 
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The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4
Finally, P says 
something about 
the (multilinear
extension of the) 
input. 



Notation
• Assume layers ! and ! + 1 of $ have % gates each.
• Assign each gate a binary label (log % bits).

• Let )*(,): {0,1}345 6→ 8 output the value of gate , at layer !.
• Let add*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff
;, < = inA , , inB , and gate , at layer ! is an addition gate.

• Let mult*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff
;, < = inA , , inB , and gate , at layer ! is a multiplication gate.
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add# 0, 0, 0 , 0, 1 = 1
add# 1, 1, 0 , 1, 1 = 1
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The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

mult% (0,0), 0, 0 , 0, 0 = 1
mult% (0,1), 0, 1 , 0, 1 = 1
mult% (1,0), 1, 0 , 1, 0 = 1
mult% (1,1), 1, 1 , 1, 1 = 1



GKR Protocol: Goal of Iteration i
• Iteration ! starts with a claim from P about "#$(&') for a random point &' ∈
*+,- ..
• Goal: Reduce this to a claim about "#$/'(&0) for a random point &0 ∈ *+,- ..
• Observation: #$ 1 =
∑4,6∈{8,'}:;< =[add$(1,4,6)(#$/' 4 +#$/' 6 )+ mult$(1,4,6)(#$/' 4 F#$/' 6 )]

• Hence, the following equality holds as formal polynomials: 
"#$ 1 =

∑4,6∈{8,'}:;< =[ Hadd$(1, 4, 6)( "#$/' 4 + "#$/' 6 )+Imult$(1, 4, 6)( "#$/' 4 F "#$/' 6 )]



GKR Protocol: Goal of Iteration i
• So V applies sum-check protocol to compute
• !"# $% = ∑(,*∈{-,%}/01 2 3((, *),	where:

3 (, * = <add#($%, (, *)( !"#?% ( + !"#?% * )
+ Amult#($%, (, *)( !"#?% ( F !"#?% * )

At end of sum-check protocol, V must evaluate 3($G, $H).
Let us assume V can compute <add# $%, $G, $H and 
Amult# $%, $G, $H unaided in polylog(M)
Then V only needs to know !"#?% $G and !"#?% $H to 
complete this check.  
Iteration N + 1 is devoted to computing these values.
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Remaining Issue: Reducing to 
Verification of a Single Point
• There is one remaining problem: we don’t want to have to 

separately verify both !"#$% &' and !"#$% &( in iteration ) +1.
• Solution: Reduce verifying both of the above values to verifying
!"#$% &* for a single point &*.
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Costs of the GKR protocol
• V time is ! " + $ log ( where " is input 

size, $ is circuit depth, and ( is circuit size.
• Assumes V can compute )add, -., -0, -1

and 2mult, -., -0, -1 unaided in time 
polylog(")

• Communication cost is !($ log ().

P time is ! ( .
A naïve implementation of P takes Ω (1
time, where ( is circuit size.
A sequence of works has brought this down 
to ! ( , for arbitrary circuits [CMT12, 
Thaler13, WBSTWW17, WTSTW18, XZZPS19] 
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GKR Prover Runtime: Details
Recall: Core of the GKR protocol is applying sum-check to 

compute ∑",$∈{',(}*+, - .(", $) where
. ", $ = 2add5(6(, ", $)( 7859( " + 7859( $ )

+ ;mult5(6(, ", $)( 7859( " @ 7859( $ )
A naïve implementation of P takes Ω BC time, where B is c   
ircuit size.

Same idea as “Approach 1” from the MatMult protocol.
i.e., P evaluates . in each round of sum-check at all O BE/25

necessary points H, taking O(B) time per point.
[CMT12]: P time is I B log B .

Achieved via “Approach 2” from the MatMult protocol: each gate 
of M contributes to .(H) for I 1 relevant points H in each round.

All subsequent works seek to bring “Approach 3” to bear 
on the GKR protocol, letting P reuse work across rounds.
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• [WJBSTWW17] improved the data parallel time to 
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[ZGKPP18] extends to data parallel computations where 
each subcomputation may not be the same.

[XZZPS19] achieved ! " time for general circuits.
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Rumination on Generality Vs. 
Efficiency



Generality vs. Efficiency
• The GKR protocol for circuit evaluation has now been 

rendered optimally efficient for P (up to constant 
factors).
• Any computation can be represented as a circuit 

evaluation (or satisfiability) problem.
• But this can introduce tremendous overheads. 
• The GKR protocol forces the prover to compute the 

output in a prescribed manner, which may be far from 
optimal (gate-by-gate evaluation of a circuit).

• To achieve scalability, the gold standard is really 
super-efficiency.
• i.e., P computed the right answer directly using the 

fastest known algorithm, and did a low-order amount 
of extra work to prove correctness


