
Lecture 6

Recap
• Two lectures ago: Our first application of the sum-

check protocol.
• An IP for #SAT with a polynomial-time verifier.
• P ran in time exponential in the input size.
• But the fastest known algorithm for this problem requires

exponential time.
• So can’t really hope for a faster prover for this problem.

• Last lecture we saw some doubly-efficient IPs.
• V runs in linear time.
• P runs in polynomial time.

• ln fact, we achieved “super-efficiency”.
• meaning P ran the fastest known algorithm for the problem, and

then did a low-order amount of additional work to prove
correctness.

• Counting triangles, matrix multiplication.

Today: A General-Purpose
Doubly-Efficient Interactive

Proof

General-Purpose Interactive Proof and Argument
Implementations

• Start with a computer program written in high-level
programming language (C, Java, etc.)
• Step 1: Turn the program into an equivalent model

amenable to probabilistic checking.
• Typically some type of arithmetic circuit.
• Called the Front End of the system.

• Step 2: Run an interactive proof or argument on the
circuit.
• Called the Back End of the system.

Front End

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

F2 circuit

P and V run interactive proof or
argument system (back end) on

circuit

Sources of Prover Overhead in VC
Systems

Source of
Overhead

P Overhead vs. Native
(Crude Estimate)

Slowdown Depends On…

Front End
(overhead due

to using a circuit
representation

of the
computation)

(ratio of circuit size to
number of machine steps

of original program)
1x-10,000x

• How amenable is the
high-level computer

program is to
representation via

circuits?
• What type of circuits can

the back-end handle?
Back-End (ratio of P time to

evaluating circuit gate-
by-gate)

10x-1,000x

• Varies by back-end and
computation structure
(e.g., data parallel?)

The GKR Protocol
A General-Purpose Doubly-Efficient

Interactive Proof

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

P starts the
conversation with
an answer (output).

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

V sends series of
challenges. P
responds with info
about next circuit
level.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

Challenges continue,
layer by layer down
to the the input.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4
Finally, P says
something about
the (multilinear
extension of the)
input.

Notation
• Assume layers ! and ! + 1 of $ have % gates each.
• Assign each gate a binary label (log % bits).

• Let)*(,): {0,1}345 6→ 8 output the value of gate , at layer !.
• Let add*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff
;, < = inA , , inB , and gate , at layer ! is an addition gate.

• Let mult*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff
;, < = inA , , inB , and gate , at layer ! is a multiplication gate.

Notation
• Assume layers ! and ! + 1 of $ have % gates each.
• Assign each gate a binary label (log % bits).

• Let)*(,): {0,1}345 6→ 8 output the value of gate , at layer !.
• Let add*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff
;, < = inA , , inB , and gate , at layer ! is an addition gate.

• Let mult*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff
;, < = inA , , inB , and gate , at layer ! is a multiplication gate.

Notation
• Assume layers ! and ! + 1 of $ have % gates each.
• Assign each gate a binary label (log % bits).

• Let)*(,): {0,1}345 6→ 8 output the value of gate , at layer !.
• Let add*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff
;, < = inA , , inB , and gate , at layer ! is an addition gate.

• Let mult*(,, ;, <): {0,1}= 345 6→ 8 output 1 iff
;, < = inA , , inB , and gate , at layer ! is a multiplication gate.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

add# 0, 0, 0 , 0, 1 = 1
add# 1, 1, 0 , 1, 1 = 1

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

mult% (0,0), 0, 0 , 0, 0 = 1
mult% (0,1), 0, 1 , 0, 1 = 1
mult% (1,0), 1, 0 , 1, 0 = 1
mult% (1,1), 1, 1 , 1, 1 = 1

GKR Protocol: Goal of Iteration i
• Iteration ! starts with a claim from P about "#$(&') for a random point &' ∈
*+,- ..
• Goal: Reduce this to a claim about "#$/'(&0) for a random point &0 ∈ *+,- ..
• Observation: #$ 1 =
∑4,6∈{8,'}:;< =[add$(1,4,6)(#$/' 4 +#$/' 6)+ mult$(1,4,6)(#$/' 4 F#$/' 6)]

• Hence, the following equality holds as formal polynomials:
"#$ 1 =

∑4,6∈{8,'}:;< =[Hadd$(1, 4, 6)("#$/' 4 + "#$/' 6)+Imult$(1, 4, 6)("#$/' 4 F "#$/' 6)]

GKR Protocol: Goal of Iteration i
• So V applies sum-check protocol to compute
• !"# $% = ∑(,*∈{-,%}/01 2 3((, *),	where:

3 (, * = <add#($%, (, *)(!"#?% (+ !"#?% *)
+ Amult#($%, (, *)(!"#?% (F !"#?% *)

At end of sum-check protocol, V must evaluate 3($G, $H).
Let us assume V can compute <add# $%, $G, $H and
Amult# $%, $G, $H unaided in polylog(M)
Then V only needs to know !"#?% $G and !"#?% $H to
complete this check.
Iteration N + 1 is devoted to computing these values.

GKR Protocol: Goal of Iteration i
• So V applies sum-check protocol to compute
• !"# $% = ∑(,*∈{-,%}/01 2 3((, *),	where:

3 (, * = <add#($%, (, *)(!"#?% (+ !"#?% *)
+ Amult#($%, (, *)(!"#?% (F !"#?% *)

• At end of sum-check protocol, V must evaluate 3($G, $H).
Let us assume V can compute <add# $%, $G, $H and
Amult# $%, $G, $H unaided in polylog(M)
Then V only needs to know !"#?% $G and !"#?% $H to
complete this check.
Iteration N + 1 is devoted to computing these values.

GKR Protocol: Goal of Iteration i
• So V applies sum-check protocol to compute
• !"# $% = ∑(,*∈{-,%}/01 2 3((, *),	where:

3 (, * = <add#($%, (, *)(!"#?% (+ !"#?% *)
+ Amult#($%, (, *)(!"#?% (F !"#?% *)

• At end of sum-check protocol, V must evaluate 3($G, $H).
• Let us assume V can compute <add# $%, $G, $H and
Amult# $%, $G, $H unaided in time polylog(M).

• Then V only needs to know !"#?% $G and !"#?% $H to
complete this check.

Iteration O + 1 is devoted to computing these values.

GKR Protocol: Goal of Iteration i
• So V applies sum-check protocol to compute
• !"# $% = ∑(,*∈{-,%}/01 2 3((, *),	where:

3 (, * = <add#($%, (, *)(!"#?% (+ !"#?% *)
+ Amult#($%, (, *)(!"#?% (F !"#?% *)

• At end of sum-check protocol, V must evaluate 3($G, $H).
• Let us assume V can compute <add# $%, $G, $H and
Amult# $%, $G, $H unaided in time polylog(M).

• Then V only needs to know !"#?% $G and !"#?% $H to
complete this check.
• Iteration O + 1 is devoted to computing these values.

Remaining Issue: Reducing to
Verification of a Single Point
• There is one remaining problem: we don’t want to have to

separately verify both !"#$% &' and !"#$% &(in iteration) +1.
• Solution: Reduce verifying both of the above values to verifying
!"#$% &* for a single point &*.

Remaining Issue: Reducing to
Verification of a Single Point
• There is one remaining problem: we don’t want to have to

separately verify both and in iteration ! +1.
• Solution: Reduce verifying both of the above values to verifying

for a single point

Wi+1(r2) Wi+1(r3)
~ ~

Wi+1(r4)
~ r4 ∈ F

logS.

Extended Hypercube
FlogS

Boolean Hypercube
{0,1}logS

"#$%&

#$%&

Remaining Issue: Reducing to
Verification of a Single Point
• There is one remaining problem: we don’t want to have to

separately verify both and in iteration ! +1.
• Solution: Reduce verifying both of the above values to verifying

for a single point

Wi+1(r2) Wi+1(r3)
~ ~

Wi+1(r4)
~ r4 ∈ F

logS.

Extended Hypercube
FlogS

Boolean Hypercube
{0,1}logS

r3

r2

"#$%&

#$%&

Remaining Issue: Reducing to
Verification of a Single Point
• There is one remaining problem: we don’t want to have to

separately verify both and in iteration ! +1.
• Solution: Reduce verifying both of the above values to verifying

for a single point

Wi+1(r2) Wi+1(r3)
~ ~

Wi+1(r4)
~ r4 ∈ F

logS.

Extended Hypercube
FlogS

Boolean Hypercube
{0,1}logS

Challenge line λ
r2

r3

"#$%&

#$%&

Remaining Issue: Reducing to
Verification of a Single Point
• There is one remaining problem: we don’t want to have to

separately verify both and in iteration ! +1.
• Solution: Reduce verifying both of the above values to verifying

for a single point

Wi+1(r2) Wi+1(r3)
~ ~

Wi+1(r4)
~ r4 ∈ F

logS.

Extended Hypercube
FlogS

Boolean Hypercube
{0,1}logS

r2

r3

Challenge line λ

r4

"#$%&

#$%&

Costs of the GKR protocol
• V time is ! " + $ log (where " is input

size, $ is circuit depth, and (is circuit size.
• Assumes V can compute)add, -., -0, -1

and 2mult, -., -0, -1 unaided in time
polylog(")

• Communication cost is !($ log ().

P time is ! (.
A naïve implementation of P takes Ω (1
time, where (is circuit size.
A sequence of works has brought this down
to ! (, for arbitrary circuits [CMT12,
Thaler13, WBSTWW17, WTSTW18, XZZPS19]

Costs of the GKR protocol
• V time is ! " + $ log (where " is input

size, $ is circuit depth, and (is circuit size.
• Assumes V can compute)add, -., -0, -1

and 2mult, -., -0, -1 unaided in time
polylog(")

• Communication cost is !($ log ().

• P time is ! (.
• A naïve implementation of P takes Ω (1

time, where (is circuit size.
• A sequence of works has brought this

down to ! (, for arbitrary circuits
[CMT12, Thaler13, WJBSTWW17,
XZZPS19]

GKR Prover Runtime: Details
Recall: Core of the GKR protocol is applying sum-check to

compute ∑",$∈{',(}*+, - .(", $) where
. ", $ = 2add5(6(, ", $)(7859(" + 7859($)

+ ;mult5(6(, ", $)(7859(" @ 7859($)
A naïve implementation of P takes Ω BC time, where B is c
ircuit size.

Same idea as “Approach 1” from the MatMult protocol.
i.e., P evaluates . in each round of sum-check at all O BE/25

necessary points H, taking O(B) time per point.
[CMT12]: P time is I B log B .

Achieved via “Approach 2” from the MatMult protocol: each gate
of M contributes to .(H) for I 1 relevant points H in each round.

All subsequent works seek to bring “Approach 3” to bear
on the GKR protocol, letting P reuse work across rounds.

GKR Prover Runtime: Details
Recall: Core of the GKR protocol is applying sum-check to

compute ∑",$∈{',(}*+, - .(", $) where

. ", $ = 2add5(6(, ", $)(7859(" + 7859($)
+ ;mult5(6(, ", $)(7859(" @ 7859($)

• A naïve implementation of P takes Ω BC time, where B is
circuit size.
• Same idea as prover implementation for #SAT protocol.
• i.e., P evaluates . in each round of sum-check at all O BE/25

necessary points H, taking O(B) time per point.

[CMT12]: P time is I B log B .
Achieved via “Approach 2” from the MatMult protocol: each gate
of M contributes to .(H) for I 1 relevant points H in each round.

All subsequent works seek to bring “Approach 3” to bear
on the GKR protocol, letting P reuse work across rounds.

GKR Prover Runtime: Details
Recall: Core of the GKR protocol is applying sum-check to

compute ∑",$∈{',(}*+, - .(", $) where

. ", $ = 2add5(6(, ", $)(7859(" + 7859($)
+ ;mult5(6(, ", $)(7859(" @ 7859($)

• A naïve implementation of P takes Ω BC time, where B is
circuit size.
• Same idea as prover implementation for #SAT protocol.
• i.e., P evaluates . in each round of sum-check at all O BE/25

necessary points H, taking O(B) time per point.
• [CMT12]: P time is I B log B .
• Exploit structure in multilinear extensions 2add5 and
;mult5. Ensures that each gate of M contributes to .(H) for I 1
relevant points H in each round.

All subsequent works seek to bring “Approach 3” to bear
on the GKR protocol, letting P reuse work across rounds.

GKR Prover Runtime: Details
Recall: Core of the GKR protocol is applying sum-check to

compute ∑",$∈{',(}*+, - .(", $) where

. ", $ = 2add5(6(, ", $)(7859(" + 7859($)
+ ;mult5(6(, ", $)(7859(" @ 7859($)

• A naïve implementation of P takes Ω BC time, where B is
circuit size.
• Same idea as prover implementation for #SAT protocol.
• i.e., P evaluates . in each round of sum-check at all O BE/25

necessary points H, taking O(B) time per point.
• [CMT12]: P time is I B log B .
• Exploit structure in multilinear extensions 2add5 and
;mult5. Ensures that each gate of M contributes to .(H) for I 1
relevant points H in each round.

• All subsequent works seek to bring “Approach 3” to bear
on the GKR protocol, letting P reuse work across rounds.

GKR Prover Runtime: Details
• [Thaler13]:

1. P time ! " for circuits with “nice” wiring patterns.
2. P time ! " log "′ for data parallel circuits

i.e., that apply the same subcomputation (of size "′)
independently to different pieces of data

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Aggrega1on$

GKR Prover Runtime: Details
• [Thaler13]:

1. P time ! " for circuits with “nice” wiring patterns.
2. P time ! " log "′ for data parallel circuits

i.e., that apply the same subcomputation (of size "′)
independently to different pieces of data

• [WJBSTWW17] improved the data parallel time to
! " + "′ log "′ .

[ZGKPP18] extends to data parallel computations where
each subcomputation may not be the same.

[XZZPS19] achieved ! " time for general circuits.

GKR Prover Runtime: Details
• [Thaler13]:

1. P time ! " for circuits with “nice” wiring patterns.
2. P time ! " log "′ for data parallel circuits

i.e., that apply the same subcomputation (of size "′)
independently to different pieces of data

• [WJBSTWW17] improved the data parallel time to
! " + "′ log "′ .

• [ZGKPP18] extends to data parallel computations
where each subcomputation may not be the same.

[XZZPS19] achieved ! " time for general circuits.

GKR Prover Runtime: Details
• [Thaler13]:

1. P time ! " for circuits with “nice” wiring patterns.
2. P time ! " log "′ for data parallel circuits

i.e., that apply the same subcomputation (of size "′)
independently to different pieces of data

• [WJBSTWW17] improved the data parallel time to
! " + "′ log "′ .

• [ZGKPP18] extends to data parallel computations
where each subcomputation may not be the same.

• [XZZPS19] achieved ! " time for general circuits.

Rumination on Generality Vs.
Efficiency

Generality vs. Efficiency
• The GKR protocol for circuit evaluation has now been

rendered optimally efficient for P (up to constant
factors).
• Any computation can be represented as a circuit

evaluation (or satisfiability) problem.
• But this can introduce tremendous overheads.
• The GKR protocol forces the prover to compute the

output in a prescribed manner, which may be far from
optimal (gate-by-gate evaluation of a circuit).

• To achieve scalability, the gold standard is really
super-efficiency.
• i.e., P computed the right answer directly using the

fastest known algorithm, and did a low-order amount
of extra work to prove correctness

