Lecture 6



Recap

* Two lectures ago: Our first application of the sum-
check protocol.
* An IP for #SAT with a polynomial-time verifier.
* Pranin time exponential in the input size.

e But the fastest known algorithm for this problem requires
exponential time.
* So can’t really hope for a faster prover for this problem.

* Last lecture we saw some doubly-efficient IPs.
* Vrunsin linear time.

* P runsin polynomial time.
* |n fact, we achieved “super-efficiency”.

* meaning P ran the fastest known algorithm for the problem, and
then did a low-order amount of additional work to prove
correctness.

e Counting triangles, matrix multiplication.



Today: A General-Purpose
Doubly-Efficient Interactive
Proof



General-Purpose Interactive Proof and Argument
Implementations

e Start with a computer program written in high-level
programming language (C, Java, etc.)

e Step 1: Turn the program into an equivalent model
amenable to probabilistic checking.
* Typically some type of arithmetic circuit.
* Called the Front End of the system.

 Step 2: Run an interactive proof or argument on the
circuit.

* Called the Back End of the system.
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Sources of Prover Overhead in VC

Systems
Source of P Overhead vs. Native Slowdown Depends On...
Overhead (Crude Estimate)
Front End (ratio of circuit size to e How amenable is the
(overhead due | number of machine steps high-level computer
to using a circuit of original program) program is to
representation 1x-10,000x representation via
of the circuits?
computation) * What type of circuits can
the back-end handle?
Back-End (ratio of P time to e Varies by back-end and
evaluating circuit gate- computation structure
by-gate) (e.g., data parallel?)
10x-1,000x




The GKR Protocol

A General-Purpose Doubly-Efficient
Interactive Proof
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Layer 1
Layer V sends series of
challenges. P
Layer 3 responds with info
about next circuit
Layer 4 level.
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* Let W;(a): {0,1}1°85— F output the value of gate a at layer i.



Notation

* Assume layers i and i + 1 of C have S gates each.
* Assign each gate a binary label (log S bits).

* Let W;(a): {0,1}1°85— F output the value of gate a at layer i.
» Let add;(a, b, ¢): {0,1}31°8 5 F output 1 iff
(b,c) = (in1 (a),in, (a)) and gate a at layer i is an addition gate.



Notation

* Assume layers i and i + 1 of C have S gates each.
* Assign each gate a binary label (log S bits).

* Let W;(a): {0,1}1°85— F output the value of gate a at layer i.
» Let add;(a, b, ¢): {0,1}31°8 5 F output 1 iff

(b,c) = (in1 (a),in, (a)) and gate a at layer i is an addition gate.
e Let mult;(a, b, ¢): {0,1}31°85— F output 1 iff

(b,c) = (in1 (a),in, (a)) and gate a at layer i is a multiplication gate.
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add,(0,(0,0),(0,1)) =1
add,(1,(1,0),(1,1)) =1
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The GKR Protocol: Overview

Layer 1

Layer 2
Layer 3 mult3((0,0), (0,0), (0,0)) = 1
mult;((0,1), (0,1),(0,1)) =1

Layer 4 b d b @ mult;((1,0), (1,0),(1,0)) =1

mult;((1,1),(1,1),(1,1)) =1

F, circuit



GKR Protocol: Goal of Iteration i

* lteration i starts with a claim from P about W;(r;) for a random point r; €
Flog S_

* Goal: Reduce this to a claim about W, () for a random point r, € F'°85,
* Observation: W;(a) =
2 pceqoyos sladdi(a b, €)(Wiy1(b) + Wiy, (c))+ mult;(a, b, €) (W1 (b) - Wii1(0))]

* Hence, the following equality holds as formal polynomials:
N Wi(a) =
2p,cefo,yoe sladdi(a, b, ©) (Wi 1 (b) + Wiy (c))+mult;(a, b, €)(Wii1(b) - Wii1(c))]
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* So V applies sum-check protocol to compute
« Wi(ry) = Yp.ceqo,nyog s 9(b, €), where:
g(b,c) = add;(ry, b, €) (W41 (b) + W;,1(c))
+mult;(ry, b, €) (W11 (b) - Wiy (€))
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GKR Protocol: Goal of Iteration i

* So V applies sum-check protocol to compute
« Wi(ry) = Yp.ceqo,nyog s 9(b, €), where:
g(b,c) = add;(ry, b, €) (W41 (b) + W;,1(c))
+mult;(ry, b, €) (W11 (b) - Wiy (€))
* At end of sum-check protocol, V must evaluate g(r,, 13).

* Let us assume V can compute add; (71, 75, 73) and
mult; (11, r,, 13) unaided in time polylog(n).

* Then V only needs to know W;,(r,) and W;,,(r3) to
complete this check.

* |teration i 4+ 1 is devoted to computing these values.



Remaining Issue: Reducing to
Verification of a Single Point

* There is one remaining problem: we don’t want to have to
separately verify both W;,,(r,) and W;,,(r3) in iteration i +1.

 Solution: Reduce verifying both of the above values to verifying
W;,1(r,) for a single point 1.



Remaining Issue: Reducing to
Verification of a Single Point

* There is one remaining problem: we don’t want to have to
separately Werjfy hoth w ., (r,) and in iteration i +1.

 Solution: Reduce verifying both of the above values to verifying

Wi+1(l'4) for a single poift € =S,
Wiss

Witq
/Boolean Hypercube
{013

\xtended Hypercube

FlogS




Remaining Issue: Reducing to
Verification of a Single Point

* There is one remaining problem: we don’t want to have to
separately Werjfy hoth w ., (r,) and in iteration i +1.

 Solution: Reduce verifying both of the above values to verifying

Wi+1(l'4) for a single poift € =S,
Wiss

Witq ° L
/Boolean Hypercube
{013

e, \xtended Hypercube

FlogS




Remaining Issue: Reducing to
Verification of a Single Point

* There is one remaining problem: we don’t want to have to
separately Werjfy hoth w ., (r,) and in iteration i +1.

 Solution: Reduce verifying both of the above values to verifying

Wi+1(l'4) for a single poift € =S,

w; ,
L Challenge line A
Wi+1 ‘\ rz//
/Boolean Hypercube

{O, l}logS

\xtended Hypercube

FlogS




Remaining Issue: Reducing to
Verification of a Single Point

* There is one remaining problem: we don’t want to have to
separately Werjfy hoth w ., (r,) and in iteration i +1.

 Solution: Reduce verifying both of the above values to verifying

Wi+1(l'4) for a single poift € =S,

W.
e Challenge line A
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Costs of the GKR protocol

* Vtimeis O(n + D logS) where n is input
size, D is circuit depth, and § is circuit size.

* Assumes V can compute add, i(ry,ry,r3)
and mult; (1, 7,,73) unalded in time

polylog(n)
* Communication cost is O(D log S).




Costs of the GKR protocol

* Vtimeis O(n + D logS) where n is input
size, D is circuit depth, and § is circuit size.

* Assumes V can compute add, i(ry,ry,r3)
and mult; (1, 7,,73) unalded in time

polylog(n)
* Communication cost is O(D log S).

* Ptimeis O(S).
* A naive implementation of P takes Q(S3)
time, where S is circuit size.

* A sequence of works has brought this
down to O(S), for arbitrary circuits
[CMT12, Thaler13, WJBSTWW17,
XZZPS19]
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Recall: Core of the GKR protocol is agp

Igin sum-check to
compute Zb,ce{o,1}10g59( c) where

g(b,c) = aﬁdi(rl, b, c) (mZiﬂ(b) +Wi+1(¢'))
+mult; (14, b, €)(Wi41(b) - Wit1(c))
* A naive implementation of P takes ((S3) time, where S is
circuit size.
* Same idea as prover implementation for #SAT protocol.
* i.e., P evaluates g in each round of sum-check at all 0(52/2")
necessary points z, taking 0(S) time per point.
* [CMT12]: P time is O(S log S).

* Exploit structure in multilinear extensions add; and

mult;. Ensures that each gate of C contributes to g(z) for 0(1)
relevant points z in each round.

* All subsequent works seek to bring “Approach 3” to bear
on the GKR protocol, letting P reuse work across rounds.
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GKR Prover Runtime: Details

e [Thaler13]:
1. Ptime O(S) for circuits with “nice” wiring patterns.
2. Ptime O(SlogS") for data parallel circuits

i.e., that apply the same subcomputation (of size S')
independently to different pieces of data

« [WIBSTWW17] improved the data parallel time to
O(S + S'logS’").

 [ZGKPP18] extends to data parallel computations
where each subcomputation may not be the same.

« [XZZPS19] achieved O(S) time for general circuits.



Rumination on Generality Vs.
Efficiency



Generality vs. Efficiency

* The GKR protocol for circuit evaluation has now been
rendered optimally efficient for P (up to constant
factors).

* Any computation can be represented as a circuit
evaluation (or satisfiability) problem.
e But this can introduce tremendous overheads.

* The GKR protocol forces the prover to compute the
output in a prescribed manner, which may be far from
optimal (gate-by-gate evaluation of a circuit).

* To achieve scalability, the gold standard is really
super-efficiency.
* i.e., P computed the right answer directly using the

fastest known algorithm, and did a low-order amount
of extra work to prove correctness



