
Lecture 4



Talk Outline
1. Recap: The Sum-Check Protocol
2. An Interactive Proof for #SAT 



The Sum-Check Protocol [LFKN90]



Sum-Check Protocol [LFKN90]
� Input: V given oracle access to a ℓ-variate polynomial "

over field #.
� Goal: compute the quantity: 

$
%&∈{),+}

$
%-∈{),+}

… $
%ℓ∈{),+}

"(0+, … , 0ℓ).



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P. 
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ).



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� V picks <" at random from = and sends <" to P. 
� Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
� Round ℓ (Final round): P sends univariate polynomial 4ℓ(5ℓ) claimed to equal 

6ℓ ∶= /(<", … , <ℓ@", 5ℓ). 
� V checks that 4ℓ@"(<ℓ@") = 4ℓ 0 + 4ℓ 1 .
� V picks <ℓ at random, and needs to check that 4ℓ <ℓ = /(<", … , <ℓ). 

� No need for more rounds. V can perform this check with one oracle query.



Example Execution of Sum-Check with
Honest Prover

Let $ %, ', ( = %*'*(
Note: ∑,-∈{0,1} ∑,3∈{0,1} ∑,4∈{0,1} $(61, 6*, 67) = 1.



� Recall ! ", $, % = "'$'%.
� Start: P sends claimed answer () = 1.
� Round 1: P sends univariate polynomial ,)(") claimed to equal: 

/) " := 1
23∈{6,)}

1
23∈ 6,)

!(", 8', 89)

= "' : 0' : 0 + "' : 0' : 1 + "' : 1' : 0 + "' : 1' : 1 = "'.
� V checks that () = ,) 0 + ,) 1 (i.e., that 1 = 0' + 1').
V picks =) at random from > and sends =) to P. Let’s say =) = 3.
Round 2: P sends univariate polynomial ,'($) claimed to equal: 

∑2A∈ 6,) !(3, $, 89) = 9 : $' : 0 + 9 : $' : 1 = 9 : $'.

V checks that ,)(3) = ,' 0 + ,' 1 (i.e., that 3' = 9 : 0' + 9 : 1').
V picks =' at random from > and sends =' to P. Let’s say =) = 5.
Round 3: P sends univariate polynomial ,9(%) claimed to equal: 

!(3, 5, %) = 3' : 5' : % = 225 : %.
V checks that ,'(5) = ,9 0 + ,9 1 (i.e., that 9 : 5' = 225 : 0' + 225 : 1')
V picks =9 at random from >, say =9 = 2.
V checks that ,9 2 = !(3, 5,2) (i.e., that 225 : 2 = 3' : 5': 2).
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� Recall ! ", $, % = "'$'%.
� Start: P sends claimed answer () = 1.
� Round 1: P sends univariate polynomial ,)(") claimed to equal: 

/) " := 1
23∈{6,)}

1
23∈ 6,)

!(", 8', 89)

= "' : 0' : 0 + "' : 0' : 1 + "' : 1' : 0 + "' : 1' : 1 = "'.
� V checks that () = ,) 0 + ,) 1 (i.e., that 1 = 0' + 1').
� V picks =) at random from > and sends =) to P. Let’s say =) = 3.
� Round 2: P sends univariate polynomial ,'($) claimed to equal: 

∑2A∈ 6,) !(3, $, 89) = 9 : $' : 0 + 9 : $' : 1 = 9 : $'.

� V checks that ,)(3) = ,' 0 + ,' 1 (i.e., that 3' = 9 : 0' + 9 : 1').
� V picks =' at random from > and sends =' to P. Let’s say =' = 5.
� Round 3: P sends univariate polynomial ,9(%) claimed to equal: 

!(3, 5, %) = 3' : 5' : % = 225 : %.
� V checks that ,'(5) = ,9 0 + ,9 1 (i.e., that 9 : 5' = 225 : 0' + 225 : 1')
� V picks =9 at random from >, say =9 = 2.
� V checks that ,9 2 = !(3, 5,2) (i.e., that 225 : 2 = 3' : 5': 2).



Example Execution of Sum-Check with
Dishonest Prover

Let $ %, ', ( = %*'*(
Note: ∑,-∈{0,1} ∑,3∈{0,1} ∑,4∈{0,1} $(61, 6*, 67) = 1.



� Recall ! ", $, % = "'$'%.
� Start: P sends claimed answer () = 2.
Round 1: P sends univariate polynomial ,) " = 2" claimed to equal: 

-) " := /
01∈{4,)}

/
01∈ 4,)

!(", 7', 78)

= "' : 0' : 0 + "' : 0' : 1 + "' : 1' : 0 + "' : 1' : 1 = "'.

V checks that () = ,) 0 + ,) 1 (i.e., that 2 = 0' + 2 : 1').
V picks >) at random from ? and sends >) to P. As long a >) is not in {0, 2} then ,) >) ≠ -) >) .
Let’s say >) = 3.
Round 2: P sends univariate polynomial ,'($) = 6$ claimed to equal: 

∑0D∈ 4,) !(3, $, 78) = 9 : $' : 0 + 9 : $' : 1 = 9 : $'.

V checks that ,)(3) = ,' 0 + ,' 1 (i.e., that 2 : 3 = 6 : 0 + 6 : 1).
V picks >' at random from ? and sends >' to P. As long a >' is not in {0, 2 : 3F)} then ,' >' ≠
-' >' . Let’s say >' = 5.
Round 3: P sends univariate polynomial ,8 % = 30 : % claimed to equal: 

!(3, 5, %) = 3' : 5' : % = 225 : %.

V checks that ,'(5) = ,8 0 + ,8 1 (i.e., that 6 : 5 = 30 : 0 + 30 : 1.
V picks >8 at random from ?.As long a >8 ≠ 0, then ,8 >8 ≠ -8 >8 . Let’s say >8 = 2.
V checks that ,8 2 = !(3, 5,2) (i.e., that 30 : 2 = 3' : 5': 2). Check fails.



� Recall ! ", $, % = "'$'%.
� Start: P sends claimed answer () = 2.
� Round 1: P sends univariate polynomial ,) " = 2" claimed to equal: 

-) " := /
01∈{4,)}

/
01∈ 4,)

!(", 7', 78)

= "' : 0' : 0 + "' : 0' : 1 + "' : 1' : 0 + "' : 1' : 1 = "'.

� V checks that () = ,) 0 + ,) 1 (i.e., that 2 = 0' + 2 : 1').
V picks >) at random from ? and sends >) to P. As long a >) is not in {0, 2} then ,) >) ≠ -) >) .
Let’s say >) = 3.
Round 2: P sends univariate polynomial ,'($) = 6$ claimed to equal: 

∑0D∈ 4,) !(3, $, 78) = 9 : $' : 0 + 9 : $' : 1 = 9 : $'.

V checks that ,)(3) = ,' 0 + ,' 1 (i.e., that 2 : 3 = 6 : 0 + 6 : 1).
V picks >' at random from ? and sends >' to P. As long a >' is not in {0, 2 : 3F)} then ,' >' ≠
-' >' . Let’s say >' = 5.
Round 3: P sends univariate polynomial ,8 % = 30 : % claimed to equal: 

!(3, 5, %) = 3' : 5' : % = 225 : %.

V checks that ,'(5) = ,8 0 + ,8 1 (i.e., that 6 : 5 = 30 : 0 + 30 : 1.
V picks >8 at random from ?.As long a >8 ≠ 0, then ,8 >8 ≠ -8 >8 . Let’s say >8 = 2.
V checks that ,8 2 = !(3, 5,2) (i.e., that 30 : 2 = 3' : 5': 2). Check fails.
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-) " := /
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01∈ 4,)

!(", 7', 78)

= "' : 0' : 0 + "' : 0' : 1 + "' : 1' : 0 + "' : 1' : 1 = "'.

� V checks that () = ,) 0 + ,) 1 (i.e., that 2 = 0' + 2 : 1').
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-) >) . Let’s say >) = 3.
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-' >' . Let’s say >' = 5.
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Costs of the Sum-Check Protocol
� Total communication is ! "ℓ field elements. 

� P sends ℓ messages, each a univariate polynomial of degree at 
most ".V sends ℓ − 1 messages, each consisting of one field 
elements.

� V’s runtime is:
! "ℓ + [)*+, -,./*-," )0 ,123/2), 4 2) 05, 60*5)] .

� P’s runtime is at most:
! " 8 2ℓ 8 [)*+, -,./*-," )0 ,123/2), 4 2) 05, 60*5)] .



First Application of Sum-Check: 
An IP For #SAT [LFKN]



#SAT Problem
� Let ! be a Boolean formula of size " over # variables. 

x1 x2 x3 x4

¬

∧
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#SAT Problem
� Let ! be a Boolean formula of size " over # variables. 
� Goal: count the number of satisfying assignments of !.

� i.e., Compute ∑%∈{(,*}, !(.). 
� In the sum above, we are viewing ! as a function mapping 
{0,1}2→ 0, 1 . (0 interpreted as FALSE, 1 as TRUE).

Protocol: Apply sum-check to an extension polynomial g of
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#SAT Problem
� Let ! be a Boolean formula of size " over # variables. 
� Goal: Compute ∑%∈{(,*}, !(.).                     

Protocol: 

Let 0 be an extension polynomial of !.
Apply the sum-check protocol to compute ∑%∈{(,*}, 0 . ..

Note: in final round of sum-check, V needs to compute 0(2) for 
some randomly chosen 2 in 34.
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P can be computed in space poly(c(n)), as x 2 L if and only if this acceptance probability is larger 1/3 for
some P . Eliding some details, this acceptance probability for any prover strategy P can be computed by
enumerating over every possible setting of the verifier’s random coins and computing the fraction of settings
that lead the verifier to accept.

The more challenging direction is to show that PSPACE ✓ IP. The #SAT protocol of Lund et al.
[LFKN92] described above already contains the main ideas necessary to prove this. Shamir [Sha92] ex-
tended the #SAT protocol to solve the PSPACE-complete language TQBF, and Shen [She92] gave a simpler
proof (the cost of Shamir’s and Shen’s protocols are similar to those of the #SAT protocol described above).
We do not cover Shamir or Shen’s extensions here, since Lecture 2 will provide a different and quantitatively
stronger proof that PSPACE ✓ IP.

Open Problem: On The Power of the Prover, or Are Sum-Check Techniques Really Necessary to Solve
Languages in coNP? The prover in the protocol for the PSPACE-complete problem TQBF can itself be
implemented in PSPACE. Similarly, the prover in the #P-complete problem #SAT protocol can itself be
implemented via polynomially many calls to a function in #P. However, there is no known interactive for
the coNP-complete language ¯3SAT in which the prover need not solve #P-complete problems. Is there
a protocol for ¯3SAT with a prover that can be implemented in, say, PNP? Under plausible complexity
assumptions, PNP is powerful enough to approximate the number of satisfying assignments to a factor of
1±1/poly(n),4, but is not believed to be powerful enough to exactly count them, as can be done in #P.

1.7 A Second Application of Sum-Check: An Optimal Interactive Proof for Matrix Multi-
plication

This section describes a highly optimized IP protocol for matrix multiplication (MATMULT) from [Tha13].
While this MATMULT protocol is of interest in its own right, it is included here for didactic reasons: it
displays, in a clean and unencumbered setting, all of the algorithmic insights that are exploited later in this
survey to give more general IP and MIP protocols.

4See e.g. http://mathoverflow.net/questions/2218/characterize-pnp
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Transforming a Boolean formula ! of size " into an arithmetic 
circuit computing an extension # of !.

Note: deg # ≤ ", and # can be evaluated at any input, gate by 
gate, in time ) " .

Summary of Arithmetization



Costs of #SAT Protocol Applied to !
� Let " be a Boolean formula of size # over $ variables, ! the 

extension obtained by arithmetizing ".
Rounds Communication V Time P Time

$ P sends a degree #
polynomial in reach round, 
V sends one field element 

in each round

& # ' $
field elements sent in 

total.

•& # time to process each 
of the $ messages of P
•& # time to evaluate 
!())

& # ' $ time total

P evaluates ! at 
& # ' 2, points 
to determine each 

message 

& # ' $ ' 2, time 
in total.

⇒ ⇒⇒



IP=PSPACE
� #SAT is a #P-complete problem. 

� Hence, the protocol we just saw implies every problem in #P has an 
interactive proof with a polynomial time verifier.

� It is not much harder to show that this in fact holds for every 
problem in PSPACE [LFKN, Shamir].

But is this a practical result? 
No. The main reason: P’s runtime.
When applying the protocols of [LFKN, Shamir] even to very simple 
problems, the honest prover would require superpolynomial time. 
The #SAT prover took time at least 2". 

This is unavoidable for #SAT, since we don’t know how to even solve the 
problem in less than 2" time.
But we can hope to solve “easier” problems without turning those problems into 
#SAT instances. 



IP=PSPACE
� #SAT is a #P-complete problem. 

� Hence, the protocol we just saw implies every problem in #P has an 
interactive proof with a polynomial time verifier.

� It is not much harder to show that this in fact holds for every 
problem in PSPACE [LFKN, Shamir].

� But is this a practical result? 
No. The main reason: P’s runtime.
When applying the protocols of [LFKN, Shamir] even to very simple 
problems, the honest prover would require superpolynomial time. 
The #SAT prover took time at least 2". 

This is unavoidable for #SAT, since we don’t know how to even solve the 
problem in less than 2" time.
But we can hope to solve “easier” problems without turning those problems into 
#SAT instances. 



IP=PSPACE
� #SAT is a #P-complete problem. 

� Hence, the protocol we just saw implies every problem in #P has an 
interactive proof with a polynomial time verifier.

� It is not much harder to show that this in fact holds for every 
problem in PSPACE [LFKN, Shamir].

� But is this a practical result? 
� No. The main reason: P’s runtime.
When applying the protocols of [LFKN, Shamir] even to very simple 
problems, the honest prover would require superpolynomial time. 
The #SAT prover took time at least 2". 

This is unavoidable for #SAT, since we don’t know how to even solve the 
problem in less than 2" time.
But we can hope to solve “easier” problems without turning those problems into 
#SAT instances. 



IP=PSPACE
� #SAT is a #P-complete problem. 

� Hence, the protocol we just saw implies every problem in #P has an 
interactive proof with a polynomial time verifier.

� It is not much harder to show that this in fact holds for every 
problem in PSPACE [LFKN, Shamir].

� But is this a practical result? 
� No. The main reason: P’s runtime.
� When applying the protocols of [LFKN, Shamir] even to very simple 

problems, the honest prover would require superpolynomial time. 
The #SAT prover took time at least 2". 

This is unavoidable for #SAT, since we don’t know how to even solve the 
problem in less than 2" time.
But we can hope to solve “easier” problems without turning those problems into 
#SAT instances. 



IP=PSPACE
� #SAT is a #P-complete problem. 

� Hence, the protocol we just saw implies every problem in #P has an 
interactive proof with a polynomial time verifier.

� It is not much harder to show that this in fact holds for every 
problem in PSPACE [LFKN, Shamir].

� But is this a practical result? 
� No. The main reason: P’s runtime.
� When applying the protocols of [LFKN, Shamir] even to very simple 

problems, the honest prover would require superpolynomial time. 
� The #SAT prover took time at least 2". 

� This seems unavoidable for #SAT, since we don’t know how to even solve the 
problem in less than 2" time.

� But we can hope to solve “easier” problems without turning those problems 
into #SAT instances. 


