Lecture 4

Talk Outline

1. Recap: The Sum-Check Protocol
2. An Interactive Proof for #SAT

| QUIET
WAIT! NALL.

HAMMER

Sum-Check Protocol [LFKN9O]

* Input:V given oracle access to a £-variate polynomial g

over field F .
® Goal: compute the quantity:

2 z 2 g(by, ., bp).

ble{O,l} b2 E{O,l} ng{O,l}

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

-

Start: P sends claimed answer C; . The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

Round 1: P sends univariate polynomial 51 (X1) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} by€{0,1}

V checks that C; = s1(0) + s4(1).
V picks 77 at random from F and sends 17 to P
Round 2: They recursively check that 51(17) = Hy(17).

i.e., that S;(1y) = sze{o,1} Zb{;e{o,l}g(rl' b,, ..., by).
Round ¢ (Final round): P sends univariate polynomial Sp(X,) claimed to equal

Hp = g(ry, ..., Tp—1, Xp).

V checks that Sp_1 (1p_1) = 5,(0) + s,(1).
V picks 7y at random, and needs to check that S,(17) = g (7, ..., 7).

® No need for more rounds. V can perform this check with one oracle query.

Example Execution of Sum-Check with

Honest Prover

Let g(X,Y,Z) = X2Y2Z

Note: Zble{o,l}ZbZE{O,l}Zbge{o,l}g(bl' b,, b3) = 1.

4 e Recalg(X,Y,Z) = X?Y?Z.
e Start: P sends claimed answer C; = 1.
* Round 1: P sends univariate polynomial 51 (X) claimed to equal:
HOO:=)) g(Xbybs)
b,€{0,1} b,€{0,1}
=X%-0%-0+X%-0%2-14+X%-1%-0+X%-1% -1 =X~
® V checks that C; = 51(0) + 57(1) (i.e., that 1 = 0% + 12).

4 e Recalg(X,Y,Z) = X?Y?Z.
e Start: P sends claimed answer C; = 1.
* Round 1: P sends univariate polynomial 51 (X) claimed to equal:
HOO:=)) g(Xbybs)
b,€{0,1} b,€{0,1}

=X%-0°-0+X%-0°-14+X%-1%-0+X%-1% -1 =X~

® V checks that C; = 51(0) + 57(1) (i.e., that 1 = 0% + 12).

® V picks 17 at random from F and sends 77 to P. Let’s say 1, = 3.

e Round 2: P sends univariate polynomial 55 (Y) claimed to equal:

Yoy d(3.Y,b3) =9-Y2-0+9-Y2-1=9-Y2

4 e Recalg(X,Y,Z) = X?Y?Z.
e Start: P sends claimed answer C; = 1.
* Round 1: P sends univariate polynomial 51 (X) claimed to equal:
HOO:=)) g(Xbybs)
b,€{0,1} b,€{0,1}
=X%-0%-0+X%-0%-14+X%-12-0+X%-1% -1 =X~
e V checks that C; = 51(0) + 57(1) (i.e., that 1 = 0% + 12).
® V picks 17 at random from F and sends 77 to P. Let’s say 1, = 3.
e Round 2: P sends univariate polynomial 55 (Y) claimed to equal:
Yb.e01393Y,b3) =9-Y?-0+9-Y?-1=9-72
V checks that §1(3) = 5,(0) + s,(1) (i.e., that 32 = 9. 0% + 9 - 12).

4 e Recalg(X,Y,Z) = X?Y?Z.
e Start: P sends claimed answer C; = 1.
* Round 1: P sends univariate polynomial 51 (X) claimed to equal:
HOO:=)) g(Xbybs)
b,€{0,1} b,€{0,1}
=X%-0%-0+X%-0%-14+X%-12-0+X%-1% -1 =X~
e V checks that C; = 51(0) + 57(1) (i.e., that 1 = 0% + 12).
® V picks 17 at random from F and sends 77 to P. Let’s say 1, = 3.
e Round 2: P sends univariate polynomial 55 (Y) claimed to equal:
Yb.e01393Y,b3) =9-Y?-0+9-Y?-1=9-72
e V checks that 51(3) = 55(0) + 5,(1) (i.e., that 32 = 9 - 02 + 9 - 1?).
® V picks 13 at random from F and sends 1 to P. Let’s say 1, = 5.
* Round 3: P sends univariate polynomial 53(Z) claimed to equal:
9(3,5,Z) =3%-5%.7=225-7.
e V checks that 5,(5) = s3(0) + s3(1) d.e., that 9 - 52 = 225 0% + 225 - 1?)

4 e Recalg(X,Y,Z) = X?Y?Z.
e Start: P sends claimed answer C; = 1.
* Round 1: P sends univariate polynomial 51 (X) claimed to equal:
HOOi=) > g(Xbybs)
b,€{0,1} b,€{0,1}
=X%-0%-0+X%-0%-14+X%-12-0+X%-1% -1 =X~
e V checks that C; = 51(0) + 57(1) (i.e., that 1 = 0% + 12).
® V picks 17 at random from F and sends 77 to P. Let’s say 1, = 3.
e Round 2: P sends univariate polynomial 55 (Y) claimed to equal:
Yb.e01393Y,b3) =9-Y?-0+9-Y?-1=9-72
e V checks that 51(3) = 55(0) + 5,(1) (i.e., that 32 = 9 - 02 + 9 - 1?).
® V picks 13 at random from F and sends 1 to P. Let’s say 1, = 5.
* Round 3: P sends univariate polynomial 53(Z) claimed to equal:
9(3,5,Z) =3%-5%.7=225-7.
e V checks that 5,(5) = s3(0) + s3(1) d.e., that 9 - 52 = 225 0% + 225 - 1?)
* V picks 13 at random from F, say 13 = 2.
_ * Vchecks that 53(2) = g(3,5,2) (i.c., that 225 - 2 = 32.52.2).

Example Execution of Sum-Check with

Dishonest Prover

Let g(X,Y,Z) = X2Y2Z

Note: Zble{o,l}ZbZE{O,l}Zbge{o,l}g(bl' b,, b3) = 1.

/ e Recall g(X,Y,Z) = X?Y?Z.

e Start: P sends claimed answer C; = 2.

/ e Recall g(X,Y,Z) = X?Y?Z.

Start: P sends claimed answer C; = 2.

Round 1: P sends univariate polynomial $1(X) = 2X claimed to equal:

Hi@X):= Y > g(Xbsby)

b,€{0,1} sz{O,l}
=X%-0°-04+X*-0%-1+X%-12-04+X%-1% -1 =X2
V checks that C; = 51(0) + 5;(1) (i.e., that 2 = 0%+ 2- 12).

/ e Recall g(X,Y,Z) = X?Y?Z.

Start: P sends claimed answer C; = 2.

Round 1: P sends univariate polynomial $1(X) = 2X claimed to equal:

Hi@X):= Y > g(Xbsby)

b,€{0,1} sz{O,l}
=X%-0°-04+X*-0%-1+X%-12-04+X%-1% -1 =X2
e V checks that C; = 51(0) + 5;(1) (i.e., that 2 = 0%+ 2- 12).

 V picks 77 at random from F and sends 77 to P. As long a 7y is not in {0, 2} then $; (ry) #
Hi(11). Let'ssayry; = 3.

° Round 2: P sends univariate polynomial 5, (Y) = 6Y claimed to equal:
Zng{O,l}g(g’ Y,b3) =9-Y2.-0+9-Y%2.1=9.Y2

/ e Recall g(X,Y,Z) = X?Y?Z.

Start: P sends claimed answer C; = 2.

Round 1: P sends univariate polynomial $1(X) = 2X claimed to equal:

Hi@X):= Y > g(Xbsby)

b,€{0,1} sz{O,l}
=X%-0°-04+X*-0%-1+X%-12-04+X%-1% -1 =X2
e V checks that C; = 51(0) + 5;(1) (i.e., that 2 = 0%+ 2- 12).

 V picks 77 at random from F and sends 77 to P. As long a 7y is not in {0, 2} then $; (ry) #
Hi(11). Let'ssayry; = 3.

° Round 2: P sends univariate polynomial 5, (Y) = 6Y claimed to equal:
Zng{O,l}g(g’ Y,b3) =9-Y2.-0+9-Y%2.1=9.Y2
* V checks that ${(3) = 5,(0) + s5,(1) (i.e.,that2:3=6-0+6-1).

/ e Recall g(X,Y,Z) = X?Y?Z.

Start: P sends claimed answer C; = 2.

Round 1: P sends univariate polynomial $1(X) = 2X claimed to equal:

Hi@X):= Y > g(Xbsby)

b,€{0,1} sz{O,l}
=X%-0°-04+X*-0%-1+X%-12-04+X%-1% -1 =X2
e V checks that C; = 51(0) + 5;(1) (i.e., that 2 = 0%+ 2- 12).

 V picks 77 at random from F and sends 77 to P. As long a 7y is not in {0, 2} then $; (ry) #
Hi(11). Let'ssayry; = 3.

° Round 2: P sends univariate polynomial 5, (Y) = 6Y claimed to equal:
Zng{O,l}g(g’ Y,b3) =9-Y2.-0+9-Y%2.1=9.Y2
* V checks that ${(3) = 5,(0) + s5,(1) (i.e.,that2:3=6-0+6-1).

* V picks 7, at random from F and sends 7, to P. As long a 7 is not in {0, 2 - 3_1} then s, (1) #
Hy(1y). Let’s say 1, = 5.

* Round 3: P sends univariate polynomial S3 (Z) = 30 + Z claimed to equal:
g(3,5,Z)=3%-5%2.7=225-27.

/ e Recall g(X,Y,Z) = X?Y?Z.

Start: P sends claimed answer C; = 2.

Round 1: P sends univariate polynomial $1(X) = 2X claimed to equal:

Hi@X):= Y > g(Xbsby)

b,€{0,1} sz{O,l}
=X%-0°-04+X*-0%-1+X%-12-04+X%-1% -1 =X2
e V checks that C; = 51(0) + 5;(1) (i.e., that 2 = 0%+ 2- 12).

 V picks 77 at random from F and sends 77 to P. As long a 7y is not in {0, 2} then $; (ry) #
Hi(11). Let'ssayry; = 3.

° Round 2: P sends univariate polynomial 5, (Y) = 6Y claimed to equal:
Zng{O,l}g(g’ Y,b3) =9-Y2.-0+9-Y%2.1=9.Y2
* V checks that ${(3) = 5,(0) + s5,(1) (i.e.,that2:3=6-0+6-1).

* V picks 7, at random from F and sends 7, to P. As long a 7 is not in {0, 2 - 3_1} then s, (1) #
Hy(1y). Let’s say 1, = 5.

* Round 3: P sends univariate polynomial S3 (Z) = 30 + Z claimed to equal:
g(3,5,Z)=3%-5%2.7=225-27.
* V checks that 5,(5) = s3(0) + s3(1) (i.e.,that 6:5=30-0+ 30 1.

-

Recall g(X,Y,Z) = X?Y?*Z.
Start: P sends claimed answer C; = 2.
Round 1: P sends univariate polynomial $1(X) = 2X claimed to equal:

Hi@X):= Y > g(Xbsby)

b,€{0,1} sz{O,l}
=X%-0°-04+X*-0%-1+X%-12-04+X%-1% -1 =X2
V checks that C; = 51(0) + 5;(1) (i.e., that 2 = 0%+ 2- 12).

V picks 17 at random from F and sends 77 to P. Aslonga 77 isnot in {0, 2} then $; (ry) #
Hi(11). Let'ssayry; = 3.

Round 2: P sends univariate polynomial s, (Y) = 6V claimed to equal:
Zng{O,l}g(g’ Y,b3) =9-Y2.-0+9-Y%2.1=9.Y2
V checks that §{(3) = 5,(0) + s,(1) (ie.,that2:3=6-0+6-1).

V picks 7, at random from F and sends 1, to P. As long a 7 is not in {0, 2 - 3_1} then s, (1) #
Hy(1y). Let’s say 1, = 5.

Round 3: P sends univariate polynomial $3(Z) = 30 - Z claimed to equal:
9(3,5,7) =32-52.7 =225-7.
V checks that S, (5) = s3(0) + s3(1) G.e.,that6-5=30-0+30-1.
V picks 73 at random from F.Aslong a 13 # 0, then s3(13) # H3(73). Let’s say 13 = 2.
V checks that s3(2) = g(3,5,2) (i.e., that 30 - 2 = 32 - 52- 2). Check fails.

/

-

Recall g(X,Y,Z) = X?Y?*Z.
Start: P sends claimed answer C; = 2.
Round 1: P sends univariate polynomial $1(X) = 2X claimed to equal:

Hi@X):= Y > g(Xbsby)

b,€{0,1} sz{O,l}
=X%-0°-04+X*-0%-1+X%-12-04+X%-1% -1 =X2
V checks that C; = 51(0) + 5;(1) (i.e., that 2 = 0%+ 2- 12).

V picks 17 at random from F and sends 77 to P. Aslonga 77 isnot in {0, 2} then $; (ry) #
Hi(11). Let'ssayry; = 3.

Round 2: P sends univariate polynomial s, (Y) = 6V claimed to equal:
Zng{O,l}g(g’ Y,b3) =9-Y2.-0+9-Y%2.1=9.Y2
V checks that §{(3) = 5,(0) + s,(1) (ie.,that2:3=6-0+6-1).

V picks 7, at random from F and sends 1, to P. As long a 7 is not in {0, 2 - 3_1} then s, (1) #
Hy(1y). Let’s say 1, = 5.

Round 3: P sends univariate polynomial $3(Z) = 30 - Z claimed to equal:
9(3,5,7) =32-52.7 =225-7.
V checks that S, (5) = s3(0) + s3(1) G.e.,that6-5=30-0+30-1.
V picks 73 at random from F.Aslong a 13 # 0, then s3(13) # H3(73). Let’s say 13 = 2.
V checks that s3(2) = g(3,5,2) (i.e., that 30 - 2 = 32 - 52- 2). Check fails.

/

Costs of the Sum-Check Protocol

* Total communication is O (d¥) field elements.

® P sends € messages, each a univariate polynomial of degree at

most d.V sends £ — 1 messages, each consisting of one field

elements.
® V’s runtime is:

O(d? + [time required to evaluate g at one point]).

® P’s runtime is at most:

O(d . 2¢ . [time required to evaluate g at one point]).

/

First Application of Sum-Check:

An IP For #SAT [LFKN]

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

O

a@ 9

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{o,l}n (p(x)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{0,1}" (,O(X)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

Q@
C

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{0,1}" (,O(X)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

®
OQ V)

0 O O ©

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{0,1}" (,O(X)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

Q@
L

9 @O @O C

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{0,1}" (,O(X)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

®
30 V)

90 @O @O C

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{0,1}" (,O(X)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

®
09 O

0 O O ©

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{0,1}" (,O(X)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

(L
GG (U

9 @O @O C

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

* Goal: Compute er{o’l}n ©(x).

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

* Goal: Compute X yerg 130 @ (X).

® Protocol:
® Let g be an extension polynomial of .

* Apply the sum-check protocol to compute D xefo,1n 9 (x).

#SAT Problem

Let ¢ be a Boolean formula of size S over 1 variables.

Goal: Compute Yy e 13n @ ().

Protocol:
Let g be an extension polynomial of ¢.

Apply the sum-check protocol to compute D xefo,1n 9 (x).

* Note: in final round of sum-check, V needs to compute g(r) for

some randomly chosen 7 in F™,

To control V’s runtime, we need this to be fast.

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

* Goal: Compute er{o,l}n ©(x).

® Protocol:
® Let g be an extension polynomial of .

* Apply the sum-check protocol to compute D xefo,1n 9 (x).
* Note: in final round of sum-check, V needs to compute g(r) for
some randomly chosen 7 in F™.

To control V’s runtime, we need this to be fast.

® To control communication and P and V’s runtime, we need g to

be “low—degree”.

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

* Goal: Compute er{o,l}n ©(x).

® Protocol:
® Let g be an extension polynomial of .

* Apply the sum-check protocol to compute D xefo,1n 9 (x).
* Note: in final round of sum-check, V needs to compute g(r) for
some randomly chosen 7 in F™.

To control V’s runtime, we need this to be fast.

® To control communication and P and V’s runtime, we need g to

be “low—degree”.

* Key question: how to construct the extension polynomial g7)

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.

NOT(x)=> 1 —x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.

NOT(x)=> 1 —x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

®
D ® —s

© @O @ ©

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

N
(A V) —>

© @O @ ©

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

N
() V) —>

0 O @ @

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y

(x)
OR(x,y)=¥x+y —x-y ()
ORAC R Q¢
¢ - N\ X
O 000 00 00 O,

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y

(x)
OR(x,y)=¥x+y —x-y ()
(1) . D —> < °‘°
o 2N\ XN
OO0 00 60 O,

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y

(%)
OR(x,y)=¥x+y —x-y (1)
(L) . D —> = 0‘0
0 2N\ XN
O 000 OO0 O O,

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y

(%)
OR(x,y)=¥x+y —x-y (1)
@ . D —> = 0‘0
C 2N\ XN
@ OO0 00 00 O,

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

(1)
(1) 90

9 O @O @

g

Summary of Arithmetization

Transforming a Boolean formula @ of size § into an arithmetic

circuit computing an extension g of @.

Note: deg(g) < S, and g can be evaluated at any input, gate by
gate, in time 0(S).

Costs of #SAT Protocol Applied to g

® Let @ be a Boolean formula of size S over 1 variables, g the

extension obtained by arithmetizing .

Rounds

Communication

V Time

P Time

P sendsa degree S
polynomial in reach round,
V sends one field element

in each round

—
O(S-n)
field elements sent in
total.

0 (S) time to process each
of the 11 messages of P
*0(S) time to evaluate

g(r)

O(S - n) time total

P evaluates g at
O(S . Zn) points
to determine each

message

—
O(S-n- 2") time

in total.

|P=PSPACE

o #SAT isa #P—complete problem.

* Hence, the protocol we just saw implies every problem in #P has an

interactive proof with a polynomial time verifier.

® [t is not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

|P=PSPACE

o #SAT isa #P—complete problem.

* Hence, the protocol we just saw implies every problem in #P has an

interactive proof with a polynomial time verifier.

® [t is not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

e But is this a practical result?

|P=PSPACE

o #SAT isa #P—complete problem.

* Hence, the protocol we just saw implies every problem in #P has an

interactive proof with a polynomial time verifier.
® Itis not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

e But is this a practical result?

® No.The main reason: P’s runtime.

|P=PSPACE

o #SAT is a #P-complete problem.
* Hence, the protocol we just saw implies every problem in #P has an

interactive proof with a polynomial time verifier.

® [t is not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

e Butis this a practical result?
® No. The main reason: P’s runtime.

® When applying the protocols of [LFKN, Shamir] even to very simple

problems, the honest prover would require superpolynomial time.

|P=PSPACE

o #SAT is a #P-complete problem.
* Hence, the protocol we just saw implies every problem in #P has an

interactive proof with a polynomial time verifier.

® |t is not much harder to show that this in fact holds for every

problem in PSPACE [LFKN, Shamir].

e Butis this a practical result?
® No. The main reason: P’s runtime.

® When applying the protocols of [LFKN, Shamir] even to very simple

problems, the honest prover would require superpolynomial time.

e The #SAT prover took time at least 2™

This seems unavoidable for #SAT, since we don’t know how to even solve the

problem in less than 2™ time.

But we can hope to solve “easier”’ problems without turning those problems
P P g P
into #SAT instances.

