Lecture 3




Recap of last lecture

1. Reed-Solomon Fingerprinting,

® Lets Alice and Bob determine whether their input vectors are equal,

using communication that is logarithmic in the length of the vectors.

2. Freivalds’ Protocol for Verifying Matrix Products.

® | ets a verifier check that a matrix C equals the product of two

matrices A and B.
e Runtime of the verifier is linear in the size of the matrices.

° Significantly faster than the best known algorithms for multiplying A

and B).
3. Schwartz-Zippel lemma: Let p # q be £-variate polynomials of
d
total degree at most d. Then PrreF{) Ip(r) = q(r)] < F

/




Today

© Low—degree and multilinear extension polynomials.

® Qur first interactive proof . the sum-check protocol.




Low-Degree and Multilinear Extensions

* Definition [Extensions]. Given a function f: {0,1}£—> F,
a ¥-variate polynomial g over F is said to extend f if f(x) =
g(x) forall x € {O,l}f.

® Definition [Multilinear Extensions]. Any function
f: {0,1}€—> F has a unique multilinear extension (MLE),

denoted f :




Low-Degree and Multilinear Extensions

* Definition [Extensions]. Given a function f: {0,1}£—> F,
a ¥-variate polynomial g over F is said to extend f if f(x) =
g(x) forall x € {0,1}8.

® Definition [Multilinear Extensions]. Any function
f: {0,1}€—> F has a unique multilinear extension (MLE),

denoted f :

e Multilinear means the polynomial has degree at most 1 in each

variable.

e (1 —x9)(1 — x5 ) is multilinear, x12 X is not.




£:{0,}* >F

1 2 l

8 10|




f:F*—F

4?

38

30

26

8 ||| 10 fl| 12 ||| 14 []| 16 18|
15 || 18 ||| 21 [I| 24 ||| 27 30',.,

34
29 34 39 ||| 44 ||| 49 56 l

22

36 ||| 42 48 54 60 ||| 68 l




g

Flxy,x) = (1 —x)(1—x5) +2(1 — x1)x,+ 8x1(1 — x,)+10x,x,

1 2 3 4 5 6
8 10 12 14 16 18
15 18 21 24 27 30
22 26 30 34 38 42
29 34 39 ||| 44 ||| 49 56
36 ||| 42 48 54 60 68

Can check:
o0 /(0,0)=1
f(0,1) =2
f(1,0) =8
f(1,1) =10

™




Another (non-multilinear) extension of f :
glxy, %) = —x2 + x1x,+8x; + x, + 1

1 2 3 4 5 6

8 10 12 14 16 18

Can check:
Bl tel[l1off|22]] 25| 28 || o@@ 9(0.0) =1
g(0,1) =2
16 | 20 Ul 24 [l 28 Il 32 Ul| 36 g(1,0) =8
g(1,1)=10

17 22 27 32 37 || 42

16 || 22 Nl 28 [I| 34 ||| 40 ||| 44




Low-Degree and Multilinear Extensions

® Fact [VSBW13]: Given as input all 2¢ evaluations of a function
f: {0,1}€—> F, for any point 1 € F? there is an 0(2£)—time
algorithm for evaluating f (1).

* Note: If f is “structured”, there may extensions g for which
g (1) can be evaluated much faster than O (23)—time.




Low-Degree and Multilinear Extensions

® Fact [VSBW13]: Given as input all 2¢ evaluations of a function
f: {0,1}€—> F, for any point 1 € F? there is an 0(2£)—time
algorithm for evaluating f (1).

* Note: If f is “structured”, there may extensions g for which

g (7) can be evaluated much faster than O (23)—time.

e We will see an example later when covering arithmetization of

Boolean formulae.




| QUIET
WAIT!  NALL.

HAMMER




Sum-Check Protocol [LFKN9O]

* Input:V given oracle access to a £-variate polynomial g

over field F .
® Goal: compute the quantity:

2 z 2 g(by, ., bp).

ble{O,l} b2 E{O,l} ng{O,l}




g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1}  b,€{0,1}




g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1}  b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

2 z 9(X:, by, ., by)

b,€{0,1} b,€{0,1}




g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1}  b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} b,€{0,1}




g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1}  b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
® V checks that C; = s;(0) + s;(1).




Start: P sends claimed answer C; . The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1}  b,€{0,1}

Round 1: P sends univariate polynomial 51 (X1) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
V checks that C; = s;1(0) + s;(1).

If this check passes, it is safe for V to believe that C; is the correct answer, so long
asV believes that ;= H.

How to check this? Just check that $; and H; agree at a random point 77 !




Start: P sends claimed answer C; . The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1}  b,€{0,1}

Round 1: P sends univariate polynomial 51 (X1) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
V checks that C; = s;1(0) + s;(1).

If this check passes, it is safe for V to believe that C; is the correct answer, so long
asV believes that ;= H.

How to check this? Just check that $; and H; agree at a random point 77 !

V can compute S; (77) directly from P’s first message, but not Hy (7).




g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1}  b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
® V checks that C; = s;(0) + s;(1).
® V picks 17 at random from F and sends 17 to P.
* Round 2:They recursively check that §; (ry) = Hy{(ry).




g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1}  b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
® V checks that C; = s;(0) + s;(1).

® V picks 17 at random from F and sends 17 to P.
e Round 2: They recursively check that s1(17) = Hy(17).

l.e., that S1 (7"1) = ZDZE{O,l} bee{o’l}g(rl, bz, cee b,g)




-

Start: P sends claimed answer C; . The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1}  b,€{0,1}

Round 1: P sends univariate polynomial 51 (X1) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1}  by€{0,1}

V checks that C; = s1(0) + s4(1).
V picks 77 at random from F and sends 17 to P
Round 2: They recursively check that 51(17) = Hy(17).

i.e., that S;(1y) = sze{o,1} Zb{;e{o,l}g(rl' b,, ..., by).
Round ¢ (Final round): P sends univariate polynomial Sp(X,) claimed to equal

Hp = g(ry, ..., Tp—1, Xp).

V checks that Sp_1 (1p_1) = 5,(0) + s,(1).
V picks 7y at random, and needs to check that S,(17) = g (7, ..., 7).

® No need for more rounds. V can perform this check with one oracle query.




Analysis of the Sum-Check Protocol




Completeness and Soundness
® Completeness holds by design: If P sends the prescribed

messages, then all of Vs checks will pass.




Completeness and Soundness
® Completeness holds by design: If P sends the prescribed

messages, then all of Vs checks will pass.

® Soundness: If P does not send the prescribed messages,
£-d
then V rejects with probability at least 1- m , where d is

the maximum degree of g in any variable.

® Proofis by induction on the number of variables £.




Completeness and Soundness
® Completeness holds by design: If P sends the prescribed

messages, then all of Vs checks will pass.

® Soundness: It P does not send the prescribed messages,

f-d
then V rejects with probability at least 1- —, where d is

the maximum degree of g in any Variable.

® Proofis by induction on the number of variables £.

® Base case: £ = 1. In this case, P sends a single message Sq (X1)
claimed to equal g (X1).V picks 77 at random, checks that

s1(r1) = g(r1).

® By Fact, if s; # g, then Pry. ep[s; (r1) = g()] < |F|




e

Soundness: Inductive Case

* Inductive case: £ > 1.
® Recall: P’s first message S (X1) is claimed to equal
Hy (X1) = Lp,e(0,1) = Zbsefo,1} I X1, bz, v, by).

® ThenV picks a random 77 and sends 77 to P. They (recursively) invoke sum-
check to confirm that s,(ry) = H,(1y).




e
Soundness: Inductive Case

* Inductive case: £ > 1.
® Recall: P’s first message S (X1) is claimed to equal
Hy (X1) = Lp,e(0,1) = Zbsefo,1} I X1, bz, v, by).

® ThenV picks a random 77 and sends 77 to P. They (recursively) invoke sum-
check to confirm that s,(ry) = H,(1y).

. d
* By Fact, if s; # Hy, then Pry. cp[s1(r7) = H(ry)] < T




e
Soundness: Inductive Case

e Inductive case: £ > 1.

® Recall: P’s first message S (X1) is claimed to equal
Hy (X1) = Lp,e(0,1) = Zbsefo,1} I X1, bz, v, by).

® ThenV picks a random 77 and sends 77 to P. They (recursively) invoke sum-
check to confirm that s,(ry) = H,(1y).

. d
* By Fact, if s; # Hy, then Pry. cp[s1(r7) = H(ry)] < T

o Ifs1(r1) # H(ry), P is left to prove a false claim in the recursive call.




4 ™
Soundness: Inductive Case

e Inductive case: £ > 1.

® Recall: P’s first message S (X1) is claimed to equal
Hy (X1) = Lp,e(0,1) = Zbsefo,1} I X1, bz, v, by).

® ThenV picks a random 77 and sends 77 to P. They (recursively) invoke sum-
check to confirm that s,(ry) = H,(1y).

. d
* By Fact, if s; # Hy, then Pry. cp[s1(r7) = H(ry)] < T

o Ifs1(r1) # H(ry), P is left to prove a false claim in the recursive call.
® The recursive call applies sum-check to g(11, X5, ..., Xp), which is £-1 variate.

® By induction, P fails to convince V in the recursive call with probability at least

| _ 4=
|F|




4 ™
Soundness: Inductive Case

e Inductive case: £ > 1.

® Recall: P’s first message S (X1) is claimed to equal
Hy (X1) = Lp,e(0,1) = Zbsefo,1} I X1, bz, v, by).

® ThenV picks a random 77 and sends 77 to P. They (recursively) invoke sum-
check to confirm that s,(ry) = H,(1y).

. d
* By Fact, if s; # Hy, then Pry. cp[s1(r7) = H(ry)] < T

o Ifs1(r1) # H(ry), P is left to prove a false claim in the recursive call.
® The recursive call applies sum-check to g(11, X5, ..., Xp), which is £-1 variate.

® By induction, P fails to convince V in the recursive call with probability at least

| _ 4=
|F|

* Summary:if S; # Hy, the probability V accepts is at most:
Pryer[s1(r1) = H(r1)] + Pry, - ,er[V accepts|s;(r1) # H(ry)]
< d n d(f-1) < dt

\_ — |F| IF|  — IFI -




Costs of the Sum-Check Protocol

* Total communication is O (d¥) field elements.

® P sends ¥ messages, each a univariate polynomial of degree at
most d.V sends £ — 1 messages, each consisting of one field

elements.




Costs of the Sum-Check Protocol

* Total communication is O (d¥) field elements.

® P sends € messages, each a univariate polynomial of degree at

most d.V sends £ — 1 messages, each consisting of one field

elements.
® V’s runtime is:

O(d? + [time required to evaluate g at one point]).




Costs of the Sum-Check Protocol

* Total communication is O (d¥) field elements.

® P sends € messages, each a univariate polynomial of degree at

most d.V sends £ — 1 messages, each consisting of one field

elements.
® V’s runtime is:

O(d? + [time required to evaluate g at one point]).

® P’s runtime is at most:

O(d . 2¢ . [time required to evaluate g at one point]).

/




