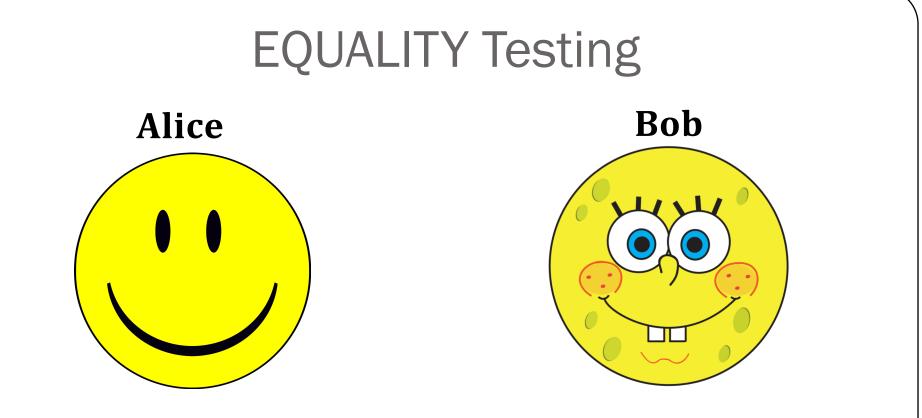
Lecture Outline

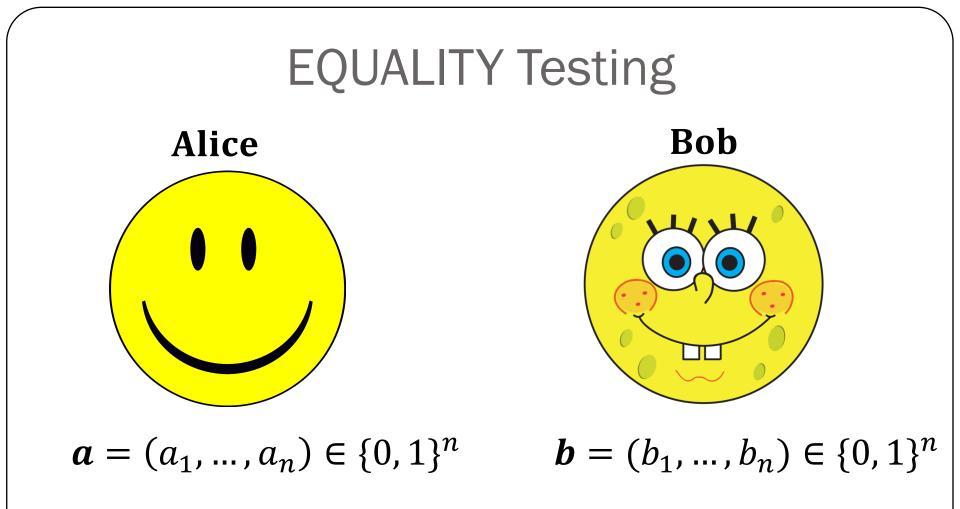
- 1. The Power of Randomness
 - Reed-Solomon Fingerprinting
 - Freivalds' Protocol for Verifying Matrix Products
- 2. Definition of Interactive Proofs
- 3. Technical Concepts: low-degree extensions

The Power of Randomness: A Demonstration

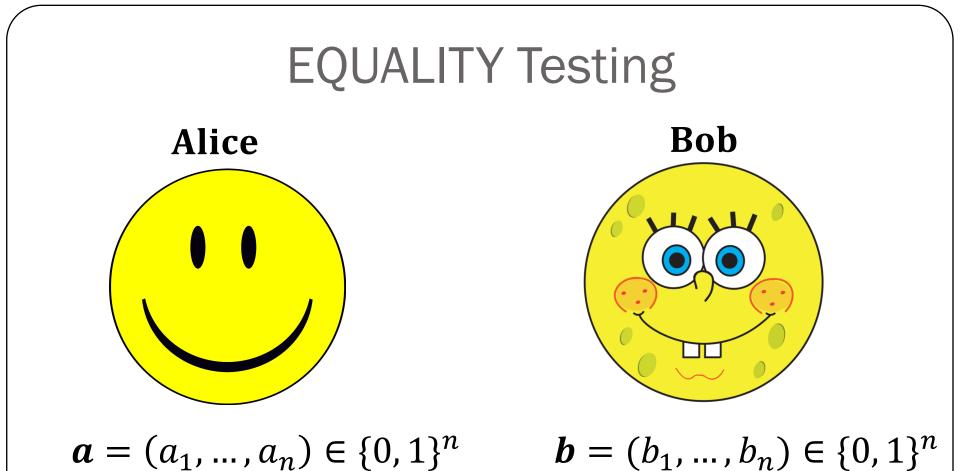


$\boldsymbol{a} = (a_1, \dots, a_n) \in \{0, 1\}^n$ $\boldsymbol{b} = (b_1, \dots, b_n) \in \{0, 1\}^n$

Alice and Bob's Goal: Determine whether $\boldsymbol{a} = \boldsymbol{b}$, while exchanging as few bits as possible.



Trivial solution: Alice sends \boldsymbol{a} to Bob, who checks whether $\boldsymbol{a} = \boldsymbol{b}$. Communication cost is \boldsymbol{n} .



Fact: Trivial solution is optimal amongst deterministic protocols.

A Logarithmic Cost Randomized Solution

- Notation:
 - Let \boldsymbol{F} be any finite field with $|\boldsymbol{F}| \ge n^2$.
 - Interpret each a_i , b_i as elements of F.
 - Let $p(x) = \sum_{i=1}^{n} a_i x^i$ and $q(x) = \sum_{i=1}^{n} b_i x^i$.

- Notation:
 - Let F be any finite field with $|F| \ge n^2$.
 - Interpret each a_i , b_i as elements of F.
 - Let $p(x) = \sum_{i=1}^{n} a_i x^i$ and $q(x) = \sum_{i=1}^{n} b_i x^i$.
 - The Protocol:
 - Alice picks a random $r \in F$ and sends (r, p(r)) to Bob.
 - Bob outputs EQUAL if p(r) = q(r). Otherwise he outputs NOT-EQUAL.

- Notation:
 - Let F be any finite field with $|F| \ge n^2$.
 - Interpret each a_i , b_i as elements of F.
 - Let $p(x) = \sum_{i=1}^{n} a_i x^i$ and $q(x) = \sum_{i=1}^{n} b_i x^i$.
- The Protocol:
 - Alice picks a random $r \in F$ and sends (r, p(r)) to Bob.
 - Bob outputs EQUAL if p(r) = q(r). Otherwise he outputs NOT-EQUAL.
- Total communication: $O(\log |F|) = O(\log n)$ bits.

- Notation:
 - Let F be any finite field with $|F| \ge n^2$.
 - Interpret each a_i , b_i as elements of F.
 - Let $p(x) = \sum_{i=1}^{n} a_i x^i$ and $q(x) = \sum_{i=1}^{n} b_i x^i$.
- The Protocol:
 - Alice picks a random $r \in F$ and sends (r, p(r)) to Bob.
 - Bob outputs EQUAL if p(r) = q(r). Otherwise he outputs NOT-EQUAL.
- Total communication: $O(\log |F|) = O(\log n)$ bits.
- Call p(r) the *Reed-Solomon fingerprint* of the vector \boldsymbol{a} at r.

• Claim 1: if a = b, then Bob outputs EQUAL with probability 1.

• Claim 2: $a \neq b$, then Bob outputs NOT-EQUAL with probability at least $1 - \frac{1}{n}$ over the choice of $r \in F$.

- Claim 1: if a = b, then Bob outputs EQUAL with probability 1.
 - Proof: Since a = b, p and q are the same polynomial, so p(r) = q(r) for all $r \in F$.
- Claim 2: $\boldsymbol{a} \neq \boldsymbol{b}$, then Bob outputs NOT-EQUAL with probability at least $1 \frac{1}{n}$ over the choice of $r \in \boldsymbol{F}$.

• Claim 2: $\mathbf{a} \neq \mathbf{b}$, then Bob outputs NOT-EQUAL with probability at least $1 - \frac{1}{n}$ over the choice of $r \in \mathbf{F}$.

• Claim 2: $\mathbf{a} \neq \mathbf{b}$, then Bob outputs NOT-EQUAL with probability at least $1 - \frac{1}{n}$ over the choice of $r \in \mathbf{F}$.

FACT: Let $p \neq q$ be univariate polynomials of degree at most n. Then p and q agree on at most n inputs. Equivalently: $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{n}{|F|}$.

• Claim 2: $a \neq b$, then Bob outputs NOT-EQUAL with probability at least $1 - \frac{1}{n}$ over the choice of $r \in F$.

FACT: Let $p \neq q$ be univariate polynomials of degree at most n. Then p and q agree on at most n inputs. Equivalently: $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{n}{|F|}$.

• If $a \neq b$, then p and q are **not** the same polynomial. By **FACT**, the probability Alice picks an r such that p(r) = q(r) is at most $\frac{n}{|F|} \leq \frac{n}{n^2} \leq \frac{1}{n}$.

Main Takeaways

- 1. Any two distinct low-degree polynomials differ almost everywhere: if $p \neq q$ then $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{n}{|F|}$ where *n* bounds the degree of *p* and *q*.
 - Corollary: If two low-degree polynomials agree at a randomly chosen input, it is "safe" to believe they are the **same** polynomial.
- 2. Interpreting inputs as low-degree polynomials is powerful.
 - If two inputs differ **at all**, then once interpreted as polynomials, they differ **almost everywhere**.

Freivalds' Protocol for Verifying Matrix Products

Demonstrating the Power of Randomness in Verifiable Computing

- Input is two matrices $A, B \in F^{n \times n}$. Goal is to compute $A \cdot B$.
- Fastest known algorithm runs in time about $n^{2.37}$.

- Input is two matrices $A, B \in F^{n \times n}$. Goal is to compute $A \cdot B$.
- Fastest known algorithm runs in time about $n^{2.37}$.
- What if an untrusted prover P claims that the answer is a matrix C? Can V verify that $C = A \cdot B$ in $O(n^2)$ time?

- Input is two matrices $A, B \in F^{n \times n}$. Goal is to compute $A \cdot B$.
- Fastest known algorithm runs in time about $n^{2.37}$.
- What if an untrusted prover P claims that the answer is a matrix C? Can V verify that $C = A \cdot B$ in $O(n^2)$ time?
- Yes!

- The Protocol:
 - 1. V picks a random $r \in F$ and lets $x = (r, r^2, ..., r^n)$.
 - 2. V computes $C \cdot x$ and (AB) $\cdot x$, accepting iff they are equal.

• The Protocol:

- 1. V picks a random $r \in F$ and lets $x = (r, r^2, ..., r^n)$.
- 2. V computes $C \cdot x$ and (AB) $\cdot x$, accepting iff they are equal.
- Runtime Analysis:
 - V's runtime dominated by computing 3 matrix-vector products, each of which takes $O(n^2)$ time.
 - $C \cdot \mathbf{x}$ is one matrix-vector multiplication.
 - (AB) $\cdot \mathbf{x} = A \cdot (B \cdot \mathbf{x})$ takes two matrix-vector multiplications.

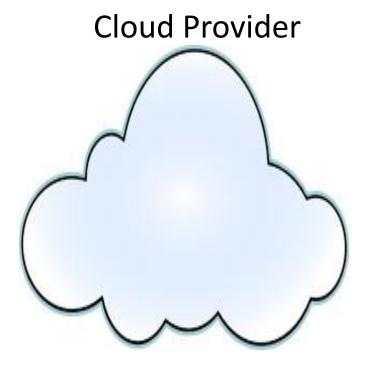
- Claim 1: If $C = A \cdot B$ then V accepts with probability 1.
- Claim 2: If $C \neq A \cdot B$, then V rejects with probability at least $1 \frac{n}{|F|} \ge 1 1/n$.

- Claim 1: If $C = A \cdot B$ then V accepts with probability 1.
- Claim 2: If $C \neq A \cdot B$, then V rejects with probability at least $1 - \frac{n}{|F|} \ge 1 - 1/n.$
 - Proof of Claim 2:
 - Recall that $\boldsymbol{x} = (r, r^2, \dots, r^n)$.
 - $(C \cdot \mathbf{x})_i = \sum_{j=1}^n C_{ij} r^j$ is the Reed-Solomon fingerprint at r of the *i*th row of C.

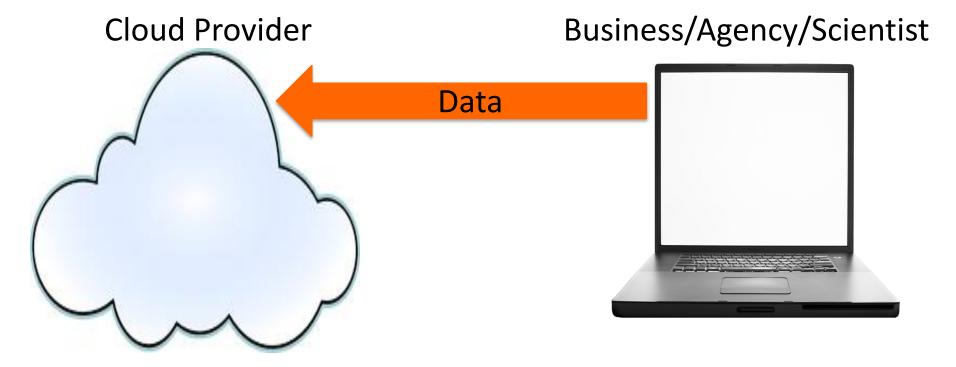
- Claim 1: If $C = A \cdot B$ then V accepts with probability 1.
- Claim 2: If $C \neq A \cdot B$, then V rejects with probability at least $1 \frac{n}{|F|} \ge 1 1/n$.
 - Proof of Claim 2:
 - Recall that $\boldsymbol{x} = (r, r^2, \dots, r^n)$.
 - $(C \cdot \mathbf{x})_i = \sum_{j=1}^n C_{ij} r^j$ is the Reed-Solomon fingerprint at r of the *i*th row of C.
 - Similarly, $((AB) \cdot x)_i$ is the Reed-Solomon fingerprint at r of the *i*th row of AB.

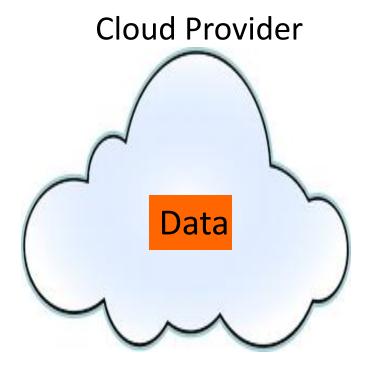
- Claim 1: If $C = A \cdot B$ then V accepts with probability 1.
- Claim 2: If $C \neq A \cdot B$, then V rejects with probability at least $1 \frac{n}{|F|} \ge 1 1/n$.
 - Proof of Claim 2:
 - Recall that $\boldsymbol{x} = (r, r^2, \dots, r^n)$.
 - $(C \cdot \mathbf{x})_i = \sum_{j=1}^n C_{ij} r^j$ is the Reed-Solomon fingerprint at r of the *i*th row of C.
 - Similarly, $((AB) \cdot x)_i$ is the Reed-Solomon fingerprint at r of the *i*th row of AB.
 - So if even one row of C does not equal the corresponding row of AB, the fingerprints for that row will differ with probability at least 1 1/n, causing V to reject.

Interactive Proofs: Motivation and Model

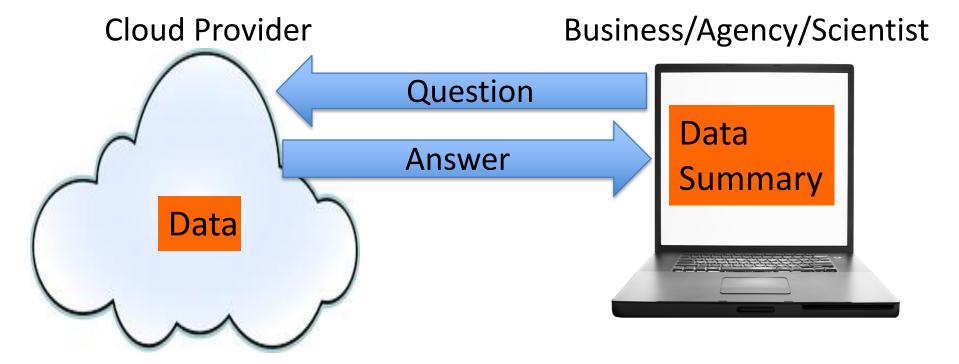


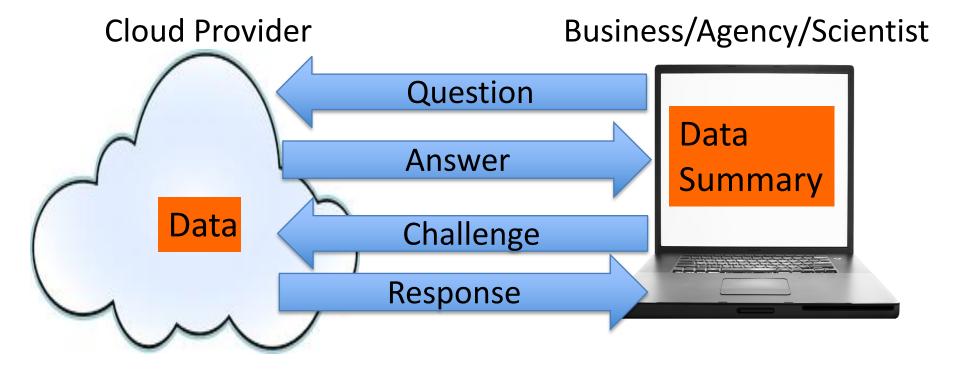
Business/Agency/Scientist

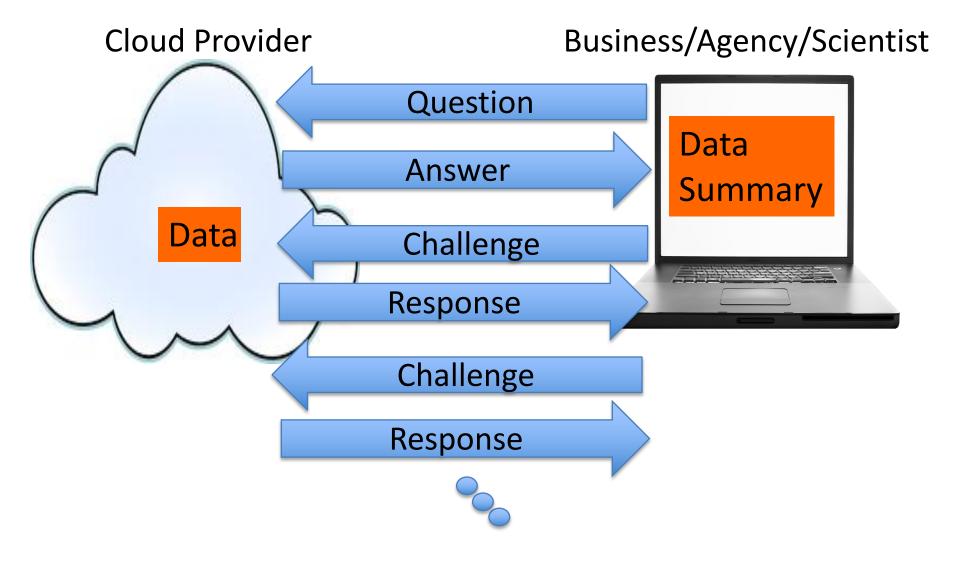


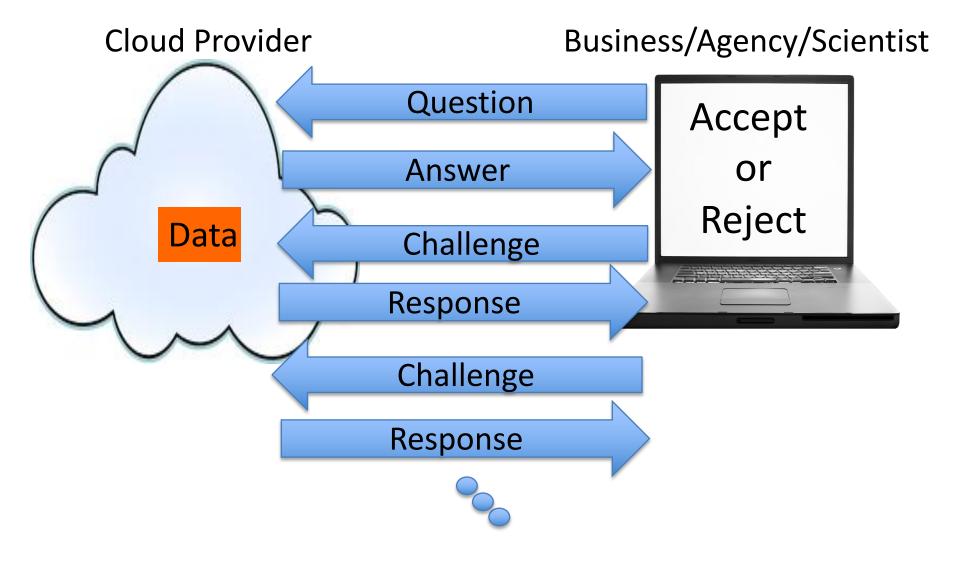


Business/Agency/Scientist









- Prover **P** and Verifier **V**.
- P solves problem, tells V the answer.
 - Then P and V have a conversation.
 - P's goal: convince V the answer is correct.
- Requirements:
 - 1. Completeness: an honest P can convince V to accept.
 - 2. Soundness: V will catch a lying P with high probability.

- Prover **P** and Verifier **V**.
- P solves problem, tells V the answer.
 - Then **P** and **V** have a conversation.
 - P's goal: convince V the answer is correct.
- Requirements:
 - 1. Completeness: an honest P can convince V to accept.
 - 2. Soundness: V will catch a lying P with high probability.
 - This must hold even if P is computationally unbounded and trying to trick V into accepting the incorrect answer.

Interactive Proof Techniques: Preliminaries

Schwartz-Zippel Lemma

• Recall **FACT:** Let $p \neq q$ be univariate polynomials of degree at most d. Then $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{d}{|F|}$.

Schwartz-Zippel Lemma

- Recall **FACT:** Let $p \neq q$ be univariate polynomials of degree at most d. Then $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{d}{|F|}$.
- The **Schwartz-Zippel lemma** is a multivariate generalization:
 - Let $p \neq q$ be ℓ -variate polynomials of total degree at most d. Then $\Pr_{r \in F^{\ell}}[p(r) = q(r)] \leq \frac{d}{|F|}$.

Schwartz-Zippel Lemma

- Recall **FACT:** Let $p \neq q$ be univariate polynomials of degree at most d. Then $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{d}{|F|}$.
- The **Schwartz-Zippel lemma** is a multivariate generalization:
 - Let $p \neq q$ be ℓ -variate polynomials of total degree at most d. Then $\Pr_{r \in F^{\ell}}[p(r) = q(r)] \leq \frac{d}{|F|}$.
 - "Total degree" refers to the maximum sum of degrees of all variables in any term. E.g., $x_1^2x_2 + x_1x_2$ has total degree 3.

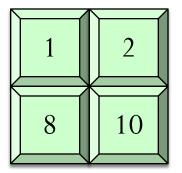
Low-Degree and Multilinear Extensions

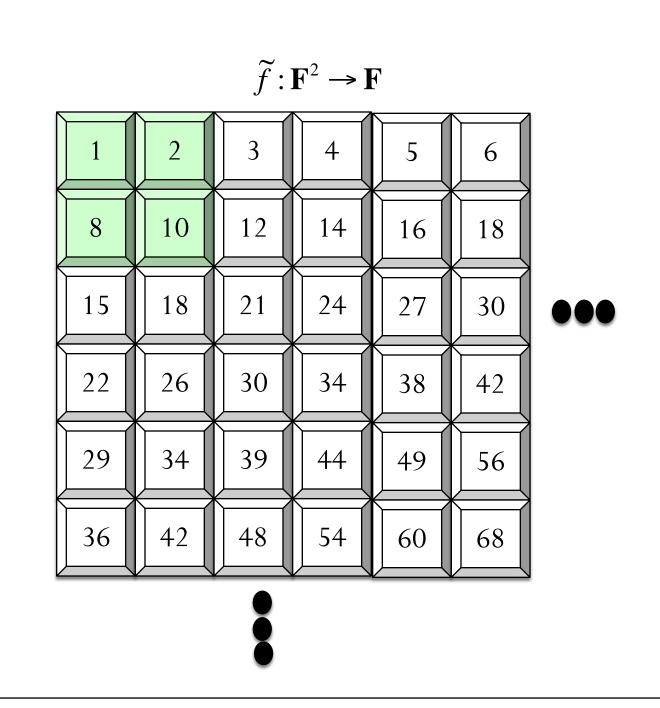
- Definition [Extensions]. Given a function $f: \{0,1\}^{\ell} \to F$, a ℓ -variate polynomial g over F is said to extend f if f(x) = g(x) for all $x \in \{0,1\}^{\ell}$.
- Definition [Multilinear Extensions]. Any function $f: \{0,1\}^{\ell} \rightarrow F$ has a unique multilinear extension (MLE), denoted \tilde{f} .

Low-Degree and Multilinear Extensions

- Definition [Extensions]. Given a function $f: \{0,1\}^{\ell} \to F$, a ℓ -variate polynomial g over F is said to extend f if f(x) = g(x) for all $x \in \{0,1\}^{\ell}$.
- Definition [Multilinear Extensions]. Any function $f: \{0,1\}^{\ell} \to F$ has a unique multilinear extension (MLE), denoted \tilde{f} .
 - Multilinear means the polynomial has degree at most 1 in each variable.
 - $(1 x_1)(1 x_2)$ is multilinear, $x_1^2 x_2$ is not.

 $f:\{0,1\}^2 \to \mathbf{F}$





 $\tilde{f}(x_1, x_2) = (1 - x_1)(1 - x_2) + 2(1 - x_1)x_2 + 8x_1(1 - x_2) + 10x_1x_2$

