CS124 Lecture6 Spring 2011

Digoint set (Union-Find)

For Kruskal's algorithm for the minimum spanning tree penl we found that we needed a data structure for

maintaining a collection of disjoint sets. That is, we neethta structure that can handle the following operations:

e MAKESET(X) - create a new set containing the single element
e UNION(x,y) - replace two sets containingandy by their union.

e FIND(x) - return the name of the set containing the element

Naturally, this data structure is useful in other situasioso we shall consider its implementation in some detalil.

Within our data structure, each set is represented by asmthat each element points to a parent in the tree.
The root of each tree will point to itself. In fact, we shalkeu$e root of the tree as the name of the set itself; hence

the name of each set is given by a canonical element, nameshptt of the associated tree.

It is convenient to add a fourth operation LINKY) to the above, where we require for LINK thratindy are
two roots. LINK changes the parent pointer of one of the rosayx, and makes it point tg. It returns the root
of the now composite treg. With this addition, we have UNIO{,y) = LINK(FIND (x),FIND(y)), so the main

problem is to arrange our data structure so that FIND opmratare very efficient.

Notice that the time to do a FIND operation on an element spwads to its depth in the tree. Hence our goal is
to keep the trees short. Two well-known heuristics for kegprees short in this setting are UNION BY RANK and
PATH COMPRESSION. We start with the UNION BY RANK heuristithe idea of UNION BY RANK is to ensure
that when we combine two trees, we try to keep the overallldepthe resulting tree small. This is implemented as
follows: the rank of an elememntis initialized to 0 by MAKESET. An element’s rank is only ugdd by the LINK
operation. Ifx andy have the same rank then invoking LINK(x,y) causes the parent pointerofo be updated to
point toy, and the rank of is then updated to+ 1. On the other hand, i andy have different rank, then when
invoking LINK(x,y) the parent point of the element with smaller rank is updabeabint to the element with larger
rank. The idea is that the rank of the root is associated vmghdepth of the tree, so this process keeps the depth

small. Exercise: Try some examples by hand with and without using the UNION BM\KK heuristic.)

6-1

Lecture 6 6-2

The idea of PATH COMPRESSION is that, once we perform a FINB@me element, we should adjust its
parent pointer so that it points directly to the root; thatywiiwe ever do another FIND on it, we start out much
closer to the root. Note that, until we do a FIND on an elemigmbjght not be worth the effort to update its parent
pointer, since we may never access it at all. Once we acceassnaphowever, we must walk through every pointer

to the root, so modifying the pointers only changes the cbgtie walk by a constant factor.

A nice way to think of PATH COMPRESSION is that it is a form o&irrance, that we're only willing to pay if
we access an item. If we access an item, we're willing to payptiate its parent pointer to point directly to the root
in case we access the item again in the future. If we don'tsscar item once, we don't bother to pay the insurance.
This way, we ensure our insurance costs us at most a conataat fmore than we would pay otherwise. That may

still seem like a high price for insurance, but in our worase analysis world, constant factors don’t matter.

procedure MAKESETX)
p(x) ==X
rank(x) :=0

end

function FIND(x)
if x # p(x) then
p(x) := FIND(p(x))
return(p(x))
end

function LINK(x,y)
if rank(x) > rank(y) thenx <y
if rank(x) = rank(y) then ranKy) := rank(y) + 1
p(x) =y
returnly)
end

procedure UNIONX,y)
LINK(FIND (x),FIND(y))
end

In our analysis, we show that any sequencendNION and FIND operations on elements take at most

O((m+n)log*n) steps, where o is the number of times you must iterate the Jdgnction onn before getting

Lecture 6 6-3

a number less than or equal to 1. (So*dg= 2,log* 16 = 3,l0og* 65536=4.) We should note that this is not the

tightest analysis possible; however, this analysis isadlyessomewhat complex!

Note that we are going to do aamortized analysis here. That is, we are going to consider the cost of the
algorithm over a sequence of steps, instead of considdnmgdst of a single operation. In fact a single UNION or
FIND operation could requir®(logn) operations. Exercise: Prove this!) Only by considering an entire sequence
of operations at once can obtain the above bound. Our argumilérequire some interesting accounting to total the

cost of a sequence of steps.

We first make a few observations about rank.

if v=£ p(v) then rankp(v)) > rank(v)

whenevem(v) is updated, ranjp(v)) increases

the number of elements with ramkis at mostE”R

the number of elements with rank at le&iss at mosty;

The first two assertions are immediate from the descriptioihe algorithm. The third assertion follows from
the fact that the rank of an elementhanges only if LINKv,w) is executed, ran) = rank'w), andv remains
the root of the combined tree; in this cage rank is incremented by 1. A simple induction then yieldatttvhen
rank(v) is incremented t, the resulting tree has at leagtélements. The last assertion then follows from the third

H 0o n_ n
assertion, a5 = -
Exercise: Show that the maximum rank an item can have islog

As soon as an element becomes a non-roat, its rank is fixedud @divide the (non-root) elements into groups
according to their ranks. Groupcontains all elements whose rankatisfies lo§gr = i. For example, elements in
group 3 have ranks in the ran@ 16|, and the range of ranks associated with groisg2 1, 22”). For convenience

we shall write this more simply by saying grogk 2] to mean the group with these ranks.

It is easy to establish the following assertions about tigeseps:

e The number of distinct groups is at most Tag (Use the fact that the maximum rank is oy

e The number of elements in the grogik 2] is at most.

Lecture 6 6-4

Let us assign '2tokens to each element in grouk, 2¢|. The total number of tokens assigned to all elements
from that group is then at mos{‘g- = n, and the total number of groups is at most*lagso the total number of

tokens given out imlog* n. We use these tokens to account for the work done by FIND tpesa

Recall that the number of steps for a FIND operation is propoal to the number of pointers that the FIND
operation must follow up the tree. We separate the pointéstivo groups, depending on the groupsucénd

p(u) =, as follows:

e Type 1: a pointer is of Type 1 ifi andv belong to different groups, aris the root.

e Type 2: a pointer is of Type 2 if andv belong to the same group.

We account for the two Types of pointers in two different walgoe 1 links are “charged” directly to the FIND
operation; Type 2 links are “charged” t9 who “pays” for the operation using one of the tokens. Letasstder

these charges more carefully.

The number of Type 1 links each FIND operation goes throudit imost log n, since there are only I6ag

groups, and the group number increases as we move up the tree.

What about Type 2 links? We charge these links directly baak tvho is supposed to pay for them with a
token. Doess have enough tokens? The point here is that each time a FINRtigpe goes through an elemant
its parent pointer is changed to the current root of the thigeRATH COMPRESSION), so the rank of its parent
increases by at least 1. ufis in the group(k, 2¢], then the rank of's parent can increase fewer thaht@nes before
it moves to a higher group. Therefore thetakens we assign to are sufficient to pay for all FIND operations that

go throughu to a parent in the same group.

We now count the total number of steps fotUNION and FIND operations. Clearly LINK requires just1)
steps, and since a UNION operation is just a LINK and 2 FINDragens, it suffices to bound the time for at most
2mFIND OPERATIONS. Each FIND operation is charged at most toigr a total ofO(mlog* n). The total number
of tokens used at mosiiog* n, and each token pays for a constant number of steps. Theréfertotal number of

steps i90((m+n)log*n).

Let us give a more equation-oriented explanation. The toted spent over the course ofUNION and FIND
operations is just

gl:) (# links passed through)
all FIND ops

Lecture 6 6-5

We split this sum up into two parts:

gb (# links in same group)- gb (# links in different groups)
all FIND ops all FIND ops

(Technically, the case where a link goes to the root shouldanelled explicitly; however, this is ju€(m) links in

total, so we don’t need to worry!) The second term is cle@{ynlog® n). The first term can be upper bounded by:

(# ranks in the group af),
all elementau

because each elemantan be charged only once for each rank in its group. (Note thartethis is because the links

to the root count in the second sum!) This last sum is bountedeaby

log*n
(# items in group- (# ranks in group < z ?2" <nlog"n.
all groups k=1
This completes the proof.
X y
UNION(X,y)
X
-
a a
b FIND(d)
c - b c d
d

Figure 6.1: Examples of UNION BY RANK and PATH COMPRESSION.

