
Tatsuya Aoyama

With texts/examples/figures from Dan Jurafsky & James Martin,
and slides from Shira Wein

April 18, 2023

ENLP Lecture 18:
Dependency Parsing

Agenda
1. What is dependency grammar?

2. Inventory of dependency relations

3. Transition-based parsing

4. (very quickly) Graph-based parsing

5. (if time) Practice!

We’ve seen something like this:
● Many intermediate layers (S, VP, NP, …)

● Relationships among words not

necessarily clear

● Can we do this differently?

But this looks very different!

So what is dependency grammar?
● Directed binary grammatical

relations between the words
● This direct encoding of the

relationship between the predicates
and their arguments (e.g., prefer takes
I and flight as its arguments) is one of
the reasons dependency grammar is
more popular than constituency
grammar in NLP!

So what is dependency grammar?
● Arcs go from heads to dependents
● Exactly 1 incoming edge for all

tokens! (but can have many
outgoing ones)

● Root is the head of the entire
structure

● Especially useful for languages with
free word order (constituency
grammar is less suited to those)

Dependency relations
● Depends on which particular framework you use

○ E.g., Universal Dependencies (UD; de Marneffe et al., 2021),

Stanford Dependencies

○ We’ll stick to UD in this lecture

● Different set of relation labels

● Different definition of “heads” (function heads, content heads)

○ UD is based on content heads!

Dependency relations
● Let’s unpack the example we saw

● root: d is the head of the entire sentence

● nsubj: d is a (nominal) subject of h

● obj: d is a direct object of h

● det: d is a determiner of h

● compound: d and h form a compound

● advmod: adverb modifier

● amod: adjective modifier

● aux: auxiliary

● case: case marker (think of this

as object of preposition)

● det: determiner

● iobj: indirect object

● nmod: noun modifier

Dependency relations
● nmod:poss: possessive modifier

● nsubj: subject

● nummod: number modifier

● obj: direct object

● obl: oblique case ("prepositionally

marked nominals functioning

adverbially")

● root: root

● advmod: adverb modifier

● amod: adjective modifier

● aux: auxiliary

● case: case marker

(think of this as object of preposition)

● det: determiner

● iobj: indirect object

● nmod: noun modifier

● nmod:poss: possessive modifier

● nsubj: subject

● nummod: number modifier

● obj: direct object

● obl: oblique case ("prepositionally marked

nominals functioning adverbially")

● root: root

Dependency relations
● My brother has a degree in biology.

● My brother has a degree in biology.

● My brother has a degree in biology.

● He walked happily.

● There is a big cat.

● I will study for the exam.

● I will study for the exam.

● I will study for the exam.

● I have two books.

● Nathan sent me an email on Monday.

● Nathan sent me an email on Monday.

● Nathan sent me an email on Monday.

Structural ambiguity (again!)

I shot the bear with a rifle

Structural ambiguity (again!)

Images from: https://www.cs.utexas.edu/~dnp/frege/subsection-178.html
https://www.istockphoto.com/vector/hunter-shoots-a-bear-gm930143498-255034331

I shot the bear with a rifle

https://www.cs.utexas.edu/~dnp/frege/subsection-178.html
https://www.istockphoto.com/vector/hunter-shoots-a-bear-gm930143498-255034331

Structural ambiguity (again!)

Images from: https://www.cs.utexas.edu/~dnp/frege/subsection-178.html
https://www.istockphoto.com/vector/hunter-shoots-a-bear-gm930143498-255034331

https://www.cs.utexas.edu/~dnp/frege/subsection-178.html
https://www.istockphoto.com/vector/hunter-shoots-a-bear-gm930143498-255034331

Dependency parsing is useful!
● Resolves attachment ambiguities that can matter for meaning

○ Grammatical structure of a sentence based on the relationships

(dependencies) between the words

● Syntactic dependencies can be close to semantic relations

● Applicable across languages

● For what types of tasks might this be useful?

Information Extraction
● Can be used in information extraction to capture relationships

● Relation extraction: mining text to find relationships between

entities

○ Who was the “doer” of the event/action? Usually nsubj!

○ Who was being acted upon? Usually obj!

○ …

Machine Translation
● When incorporated as linguistic prior during training into neural

machine translation, improves performance

○ https://www.aclweb.org/anthology/P17-2012/ (from 2017)

● (Not standard practice to incorporate dependencies in MT)

https://www.aclweb.org/anthology/P17-2012/

Before we try it ourselves, some
details on edges & heads

Projectivity
Formally:

● An arc from a head to a dependent is said to be projective if there is a

path from the head to every word that lies between the head and the

dependent in the sentence.

● A dependency tree is then said to be projective if all the arcs that

make it up are projective.

Projectivity
Is this projective?

Projectivity
This one?

Projectivity
Formally:

● An arc from a head to a dependent is said to be projective if there is a
path from the head to every word that lies between the head and the
dependent in the sentence.

● A dependency tree is then said to be projective if all the arcs that
make it up are projective.

Informally:

● A dependency tree is projective if there are no crossing edges.

Projectivity
Why care?

● Many dependency treebanks auto-converted from constituency only
allow projective trees (so the one we saw, which is a completely
well-formed tree, will not be accepted in such treebanks)

● Standard transition-based parsing algorithm only produces
projective trees
○ Some variants are capable of producing non-projective trees
○ Graph-based approach is generally more flexible

Heads
● Some dependency parse flavors

prioritize content words as heads

(auxiliaries, prepositions, etc. are

modifiers)

● Other flavors use functional heads

(prepositions head their objects,

auxiliaries head main verbs, …)

Let’s try one!
root?

Let’s try one!
Relation to She?

Let’s try one!
Relation to me?

Let’s try one!
Relation to book?

Let’s try one!
Relation to the?

Let’s try one!

Transition-based Parsing
(sort of tricky, part of A5)

Transition-based Parsing
● Process words from left to right, deciding if the two words should be

attached

● Build a dependency parse using a stack and buffer

● Input buffer: words of the sentence

● Stack: to manipulate the words

● Dependency relations: list of relations that culminate in the

dependency parse

Transition-based Parsing

She gave me a book

Stack Buffer

Transition-based Parsing

She gave me a book

Stack Buffer

Transition-based Parsing

She gave me a book

Stack Buffer

Transition-based Parsing

She gave me a book

Stack Buffer

Transition-based Parsing

She gave me a book

Stack Buffer

Transition-based Parsing

She gave me a book

Stack Buffer

Transition-based Parsing

She gave me a book

Stack Buffer

Transition-based Parsing

She gave me a book

Stack Buffer

Transition-based Parsing

She gave me a book

Stack Buffer

Transition-based Parsing

She gave me a book

Stack Buffer

Transition-based Parsing

She gave me a book

Stack Buffer

Arc-Standard Parsing
● Build relations between words using ARCS and remove word from stack once you have

identified the word’s parent
● LEFTARC

○ The word at the top of the stack is the head of the word beneath it
○ Remove second word from stack (the word you just made a dependent of the top

word)
● RIGHTARC

○ (the reverse) The second word on the stack is the head of the word on top of the
stack

○ Remove top word from stack
● SHIFT

○ Move the word from input buffer to the stack

Arc-Standard Parsing
● Some restrictions!

● The root cannot be a dependent, so LEFTARC cannot be applied when

the root is the second word in the stack

● There must be at least 2 words in the stack to apply LEFTARC or

RIGHTARC

Example

Can we add a right arc (root →
gave)?

Can we add a right arc yet?

We have (exactly) encoded the parse tree as a sequence of {S, LA, RA}
actions! Think of it as a program for building the tree structure.

(Would also need to specify relation labels in the LA, RA actions or post
hoc.)

Transition-based parsing = iteratively:
 (1) consult the Oracle (algorithm giving next action)

(2) modify the Configuration (state of stack, buffer, relations)
according to the action

Would have been a
mess if RA was

predicted!
→ arc-eager parsing

Arc-Standard Parsing
● With the 3 Arc-Standard actions {S, LA, RA}:

○ How many transitions to parse a sentence of N words?
○ 2N: for each word, once to shift + once to attach to a head and remove from

stack (LA or RA).
● Can these 3 types of actions build any tree?

○ Only projective trees: only adding edges at the top of the stack &
permanently removing a word from the stack once attaching it to its parent
ensures that all subtrees are contiguous

○ With a richer set of actions, can get non-projective trees or even graphs
● How would you implement an Oracle (choose the next action at test time)?

○ This brings us to…

Statistical Dependency Parsing

Statistical Dependency Parsing
● Can be done by training a classifier to predict each action, using data

from Treebanks

● Possible features? POS tags, word at the top of the stack, etc. — we’ll

come back to this in a second

Data
● Can automatically convert constituency treebanks (like the Penn

Treebank) to dependencies

● Or, can use dependency treebanks like Universal Dependencies

(available in many languages)

○ http://universaldependencies.org

http://universaldependencies.org

Feature-based parser
● Any feature-based classifiers, e.g.,

SVM, logistic regression, …

● Feature template:

Neural parser
● Essentially using word

embeddings as “features”!

Evaluation
● Comparing against a gold standard:

● Unlabeled Attachment Score (UAS):

% of words attached correctly

(correct head)

● Labeled Attachment Score (LAS): %

of words attached to the correct
head with the correct relation label

Graph-based Parsing
● Another popular approach to

dependency parsing is
graph-based

● Consider all possible trees
● Assign scores to all edges
● Best tree = largest sum of

scores
● Capable of creating

non-projective trees

Graph-based Parsing
● Feature-based scorer and

neural scorer

● Popular architecture: biaffine
(Dozat and Manning, 2017)

Demos
● Stanza (from Stanford): https://corenlp.run/

● AllenNLP (from Allen Institute for AI):

https://demo.allennlp.org/dependency-parsing

https://corenlp.run/
https://demo.allennlp.org/dependency-parsing%5C

Practice
● advmod: adverb modifier

● amod: adjective modifier

● aux: auxiliary

● case: case marker (think of this as

object of preposition)

● det: determiner

● iobj: indirect object

● nmod: noun modifier

● nmod:poss: possessive modifier

● nsubj: subject

● nummod: number modifier

● obj: direct object

● obl: oblique case ("prepositionally

marked nominals functioning

adverbially")

● root: root

Practice
● Root?

Practice
● Relation to friend?

Practice
● Relation to you?

Practice
● Relation to cookies?

Practice
● Relation to My?

Practice
● Relation to Japan?

Practice
● Relation to from?

Practice
● Relation to will?

Practice
● Relation to reluctantly?

Practice
● Relation to 3?

Practice
● Relation to delicious?

Practice
● Relation to Christmas?

Practice
● Relation to on?

Practice
● Relation to on?

