ENLP Lecture 18:
Dependency Parsing

Tatsuya Aoyama

With texts/examples/figures from Dan Jurafsky & James Martin,
and slides from Shira Wein
April 18,2023

SIS .

Agenda

What is dependency grammar?
Inventory of dependency relations
Transition-based parsing

(very quickly) Graph-based parsing
(if time) Practice!

We've seen something like this:

S

NP/\VP e Many intermediate layers (S, VP, NP, ...)
| AT e Relationships among words not
P‘“’ Ve‘"b /NP\ necessarily clear
I prefer Det K e Canwe do thisdifferently?
(‘1 Nom Noun

Noun flight

morning

But this looks very different!

/S\

NP VP

‘ /\
Pro Verb NP
I
I prefer Det Nom
/\
a Nom Noun

o

Noun flight

|

morning

I

Y

prefer

obJ

mornin ;2]

det

flight

So what is dependency grammar?

e Directed binary grammatical
relations between the words
e Thisdirect encoding of the

relationship between the predicates (root)

and their arguments (e.g., prefer takes (ob3)

| and flight as its arguments) is one of (det)

the reasons dependency.grammar IS (o
more popular than constituency

grammar in NLP! I prefer a morning flight

So what is dependency grammar?

Arcs go from heads to dependents
Exactly 1 incoming edge for all
tokens! (but can have many
outgoing ones)

Root is the head of the entire

det
structure det)
Especially useful for languages with

free word order (constituency ¥ . :
. . I prefer a morning flight
grammar is less suited to those)

Dependency relations

e Depends on which particular framework you use
o E.g., Universal Dependencies (UD; de Marneffe et al., 2021),
Stanford Dependencies
o WEll stick to UD in this lecture
e Different set of relation labels
e Different definition of “heads” (function heads, content heads)
o UD is based on content heads!

Dependency relations

Let’s unpack the example we saw

root: d is the head of the entire sentence
nsubj: d is a (hominal) subject of h
obj:dis adirect object of h

det: d is adeterminer of h

compound: d and h form a compound

Y

I prefer

', det}

i

a

compound

morning

flight

Dependency relations

advmod: adverb modifier
amod: adjective modifier

aux: auxiliary

case: case marker (think of this
as object of preposition)

det: determiner

iobj: indirect object

nmod: noun modifier °

nmod:poss: possessive modifier
nsubj: subject

nummod: number modifier

obj: direct object

obl: oblique case ("prepositionally
marked nominals functioning
adverbially")

root: root

Dependency relatlons

advmod: adverb modifier

amod: adjective modifier °
aux: auxiliary °
case: case marker He walked happily ¢
(think of this as object of preposition) °
det: determiner °
iobj: indirect object °
nmod: noun modifier M °
nmod:poss: possessive modifier books ¢
nsubj: subject , °
nummod: number modifier / <) Y
obj: direct object Nathan sent me an email .

obl: oblique case ("prepositionally marked
nominals functioning adverbially")
root: root

degree in biology

-
My brother has a degree in biology.
L My brother has
My brother has a degree in biology.
My brother has a degree in biology.
He walked happily. " My brother has
There is a big cat.
| will study for the exam.
| will study for the exam.
| will study for the exam. for the exam for the exam
| have two books.
Nathan sent me an email on Monday.
Nathan sent me an email on Monday.
Nathan sent me an email on Monday.
(obl)
/ = \
Nathan sent me an email on Monday

I will study

Nathan sent me

Structural ambiguity (again!)

| shot the bear with arifle

Structural ambiguity (again!)

| shot the bear with arifle

Images from: https://www.cs.utexas.edu/~dnp/frege/subsection-178.html
https://www.istockphoto.com/vector/hunter-shoots-a-bear-gm930143498-255034331

https://www.cs.utexas.edu/~dnp/frege/subsection-178.html
https://www.istockphoto.com/vector/hunter-shoots-a-bear-gm930143498-255034331

Structural ambiguity (again!)
(root)

nmod
@
N
with a rifle

I shot the bear

i b
4

I shot the bear

]
X
s N o b N

\““‘\\ﬁ\‘._.
_ﬁ(\
(=

Images from: https://www.cs.utexas.edu/~dnp/frege/subsection-178.html
ttps://www.istockphoto.com/vector/hunter-shoots-a-bear-gm930143498-255034331

h

with a rifle

https://www.cs.utexas.edu/~dnp/frege/subsection-178.html
https://www.istockphoto.com/vector/hunter-shoots-a-bear-gm930143498-255034331

Dependency parsing is useful!

Resolves attachment ambiguities that can matter for meaning
o Grammatical structure of a sentence based on the relationships
(dependencies) between the words
Syntactic dependencies can be close to semantic relations
Applicable across languages
For what types of tasks might this be useful?

Information Extraction

e Canbeusedininformation extraction to capture relationships
e Relation extraction: mining text to find relationships between
entities
o Who was the “doer” of the event/action? Usually nsubj!
o Who was being acted upon? Usually obj!
O

Machine Translation

e Whenincorporated as linguistic prior during training into neural
machine translation, improves performance

o https://www.aclweb.org/anthology/P17-2012/ (from 2017)
e (Notstandard practice to incorporate dependencies in MT)

Learning to Parse and Translate Improves Neural Machine Translation

Akiko Eriguchi’, Yoshimasa Tsuruoka’, and Kyunghyun Cho!
"The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
{eriguchi, tsuruoka}@logos.t.u-tokyo.ac.jp

iNew York University, New York, NY 10012, USA
kyunghyun.cho@nyu.edu

https://www.aclweb.org/anthology/P17-2012/

Before we try it ourselves, some
details on edges & heads

Projectivity
Formally:

e Anarcfromaheadtoadependentissaid to be projective if thereis a
path from the head to every word that lies between the head and the
dependent in the sentence.

e Adependency treeis then said to be projective if all the arcs that
make it up are projective.

Projectivity

|s this projective?

(rood)

Ob_]
Y

Jetblue canceled our flight

{ acl relcl)

which

nsubj

co
[advmo
v

was

already

late

Projectivity

This one?
{acl:relcl}

| . J \
{nsubj}

(obj) (cop}
nmod \ det [|

v \¥
Jetblue canceled our flight this morning which was already late

Y

Projectivity
Formally:

e Anarcfromaheadtoadependentissaid to be projective if thereis a

path from the head to every word that lies between the head and the
dependent in the sentence.

e Adependency treeis then said to be projective if all the arcs that
make it up are projective.

Informally:

e Adependency tree is projective if there are no crossing edges.

Projectivity

Why care?

e Many dependency treebanks auto-converted from constituency only
allow projective trees (so the one we saw, which is a completely
well-formed tree, will not be accepted in such treebanks)

e Standard transition-based parsing algorithm only produces
projective trees

o Some variants are capable of producing non-projective trees
o Graph-based approach is generally more flexible

Heads

e Some dependency parse flavors
prioritize content words as heads
(auxiliaries, prepositions, etc. are
modifiers)

e Other flavors use functional heads
(prepositions head their objects,
auxiliaries head main verbs, ...)

d

a

det
university
det prep

university

1n

n

Let’s try one!

root?

She gave me the book

Let's try one!

Relation to She? (fOOt]

She gave me the book

Let’s try one!

Relation to me? @

She gave

me

the

book

Let's try one!

Relation to book? (root)

She gave me the book

Let's try one!

Relation to the? (root)

-

iobj

Lobj)

~

She gave me the book

Let’s try one!

[root)
S
10b] det
v v

She gave me the book

Transition-based Parsing
(sort of tricky, part of As)

Transition-based Parsing

Process words from left to right, deciding if the two words should be
attached

Build a dependency parse using a stack and buffer

Input buffer: words of the sentence

Stack: to manipulate the words

Dependency relations: list of relations that culminate in the
dependency parse

Transition-based Parsing

Stack Buffer

She gave me a book

Transition-based Parsing

Stack Buffer

She gave me a book

Transition-based Parsing

Stack Buffer

She gave me a book

Transition-based Parsing

Stack Buffer

% gave me a book

Transition-based Parsing

Stack Buffer

% gave me a book

Transition-based Parsing

Stack Buffer

% gave |X a book

Transition-based Parsing

Stack Buffer

% gave |X a book

Transition-based Parsing

Stack Buffer

% gave |X a book

Transition-based Parsing

Stack Buffer

% gave |X xmbook
' >

Transition-based Parsing

mck Buffer
% gave |X x Mk

' %

Transition-based Parsing

Stack Buffer

X H K X K

Arc-Standard Parsing

Build relations between words using ARCS and remove word from stack once you have
identified the word’s parent
LEFTARC

o The word at the top of the stack is the head of the word beneath it

o Remove second word from stack (the word you just made a dependent of the top

word)
RIGHTARC
o (thereverse) The second word on the stack is the head of the word on top of the
stack
o Remove top word from stack
SHIFT

o Move the word from input buffer to the stack

Arc-Standard Parsing

Some restrictions!

The root cannot be a dependent, so LEFTARC cannot be applied when
the root is the second word in the stack

There must be at least 2 words in the stack to apply LEFTARC or
RIGHTARC

l root I
(lobj}
10b] det
\
gave me the

v
book

Step Stack | Input Buffer Action | Relation Added

)

O OO0 1 O U b WO DN =

—
o

(obj) J

She gave me the book

Step Stack | Input Buffer Action | Relation Added

)

[root] | [She, gave, me, the, book]

O OO0 1 O U b WO DN =

—
o

Ob]

She gave me the book

Step Stack | Input Buffer Action | Relation Added

)

[root] | [She, gave, me, the, book] S

O OO0 1 O U b WO DN =

—
o

Ob]

She gave me the book

Step Stack | Input Buffer Action | Relation Added
0 [root] | [She, gave, me, the, book] S
1 [root, She] [gave, me, the, book]

2
3
4
5
6
7
8
9
10

Ob]

She gave me the book

Step Stack | Input Buffer Action | Relation Added
0 [root] | [She, gave, me, the, book] S
1 [root, She] | [gave, me, the, book] S
2
3
4
5
6
7
8
9
10

Ob]

She gave me the book

Step Stack | Input Buffer Action | Relation Added
0 [root] | [She, gave, me, the, book] S
1 [root, She] [gave, me, the, book] S
2 [root, She, gave] | [me, the, book]

3
4
5
6
7
8
9
10

Ob]

She gave me the

book

Step Stack | Input Buffer Action | Relation Added

0 [root] | [She, gave, me, the, book] S

1 [root, She] | [gave, me, the, book] S

2 [root, She, gave] | [me, the, book] LA (She « gave)
3

4

5

6

A

8

)

10

Ob]

She gave me the

book

Step Stack | Input Buffer Action | Relation Added
0 [root] | [She, gave, me, the, book] S
1 [root, She] | [gave, me, the, book] S
2 [root, She, gave] | [me, the, book] LA (She « gave)
3 [root, gave] | [me, the, book]
4 /\
5
6 /)
7 Can we add a right arc (root —
8 gave)?
7 N)
10

She gave me

the

book

Step Stack | Input Buffer Action | Relation Added

0 [root] | [She, gave, me, the, book] S

1 [root, She] | [gave, me, the, book] S

2 [root, She, gave] | [me, the, book] LA (She « gave)
3 [root, gave] | [me, the, book] S

4

5

6

7

8

9

10

Ob]

She gave me the

book

Step Stack | Input Buffer Action | Relation Added
0 [root] | [She, gave, me, the, book] S
1 [root, She] [gave, me, the, book] S
2 [root, She, gave] | [me, the, book] LA (She « gave)
3 [root, gave] | [me, the, book] S
4 [root, gave, me] | [the, book]
5
6
7
8
9
10

Ob]

She gave me the

book

Step Stack | Input Buffer Action | Relation Added

0 [root] | [She, gave, me, the, book] S

1 [root, She] [gave, me, the, book] S

2 [root, She, gave] | [me, the, book] LA (She < gave)
3 [root, gave] | [me, the, book] S

4 [root, gave, me] | [the, book] RA (gave — me)
5

6

7

8

9

10

roo ObJ
) Ny AT e\

She gave me the

book

Step Stack | Input Buffer Action | Relation Added
0 [root] | [She, gave, me, the, book] S
1 [root, She] | [gave, me, the, book] S
2 [root, She, gave] | [me, the, book] LA (She < gave)
3 [root, gave] | [me, the, book] S
4 [root, gave, me] | [the, book] RA (gave — me)
B [root, gave] | [the, book] /\
6
7 /_/ N
8
9 Can we add a right arc yet?
10

roo ObJ
) Ny AT e\

She

gave me

book

Step Stack | Input Buffer Action | Relation Added

0 [root] | [She, gave, me, the, book] S

1 [root, She] [gave, me, the, book] S

2 [root, She, gave] | [me, the, book] LA (She < gave)
3 [root, gave] | [me, the, book] S

4 [root, gave, me] | [the, book] RA (gave — me)
5 [root, gave] | [the, book] S

6

7

8

9

10

roo ObJ
) Ny AT e\

She

gave me

the

book

Step Stack | Input Buffer Action | Relation Added
0 [root] | [She, gave, me, the, book] S
1 [root, She] [gave, me, the, book] S
2 [root, She, gave] | [me, the, book] LA (She < gave)
3 [root, gave] | [me, the, book] S
4 [root, gave, me] | [the, book] RA (gave — me)
5 [root, gave] | [the, book] S
6 [root, gave, the] | [book]
7
8
9
10

roo ObJ
) Ny AT e\

She

gave me

the

book

Step Stack | Input Buffer Action | Relation Added

0 [root] | [She, gave, me, the, book] S

1 [root, She] [gave, me, the, book] S

2 [root, She, gave] | [me, the, book] LA (She < gave)
3 [root, gave] | [me, the, book] S

4 [root, gave, me] | [the, book] RA (gave — me)
5 [root, gave] | [the, book] S

6 [root, gave, the] | [book] S

7

8

9

10

roo ObJ
) Ny AT e\

She

gave me

the

book

Step Stack | Input Buffer Action | Relation Added
0 [root] | [She, gave, me, the, book] S
1 [root, She] [gave, me, the, book] S
2 [root, She, gave] | [me, the, book] LA (She < gave)
3 [root, gave] | [me, the, book] S
4 [root, gave, me] | [the, book] RA (gave — me)
5 [root, gave] | [the, book] S
6 [root, gave, the] | [book] S
il [root, gave, the, book] | []
8
9
10

roo ObJ
) Ny AT e\

She gave me the book

O OO0 1 O U b WO DN =

—
o

[root, gave]

[root, gave, me]

[root, gave]

[root, gave, the]
[root, gave, the, book]

[

[

[

[me, the, book]
[the, book]
[the, book]
[book]

[

]

Stack | Input Buffer Action | Relation Added
0 [root] She, gave, me, the, book]
[root, She] gave, me, the, book]
[root, She, gave] me, the, book] (She < gave)

(gave — me)

(the < book)

roo ObJ
) Ny AT N

gave me the book

O OO0 1 O U b WO DN =

—
o

[root, gave]

[root, gave, me]

[root, gave]

[root, gave, the]
[root, gave, the, book]
[root, gave, book]

|

[

[

[me, the, book]
[the, book]
[the, book]
[book]

[
|

]
]

Stack | Input Buffer Action | Relation Added
0 [root] She, gave, me, the, book]
[root, She] gave, me, the, book]
[root, She, gave] me, the, book] (She < gave)

(gave — me)

(the < book)

roo ObJ
) Ny AT N

gave me the book

O OO0 1 O U b WO DN =

—
o

[root, gave]

[root, gave, me]

[root, gave]

[root, gave, the]
[root, gave, the, book]
[root, gave, book]

|

[

[

[me, the, book]
[the, book]
[the, book]
[book]

[
|

]
]

Stack | Input Buffer Action | Relation Added
0 [root] She, gave, me, the, book]
[root, She] gave, me, the, book]
[root, She, gave] me, the, book] (She < gave)

(gave — me)

(the < book)
(gave — book)

roo ()bj
) Ny AT N

gave me the book

O OO0 1 O U b WO DN =

—
o

Stack | Input Buffer Action | Relation Added
0 [root] She, gave, me, the, book]
[root, She] gave, me, the, book]
[root, She, gave] me, the, book] (She < gave)

[root, gave]

[root, gave, me]

[root, gave]

[root, gave, the]
[root, gave, the, book]
[root, gave, book]
[root, gave]

[

[

[

[me, the, book]
[the, book]
[the, book]
[book]

[
[
|

]
]
]

(gave — me)

(the < book)
(gave — book)

roo ()bj
) Ny AT N

She gave me the

book

Step Stack | Input Buffer Action | Relation Added
0 [root] | [She, gave, me, the, book] S
1 [root, She] [gave, me, the, book] S
2 [root, She, gave] | [me, the, book] LA (She < gave)
3 [root, gave] | [me, the, book] S
4 [root, gave, me] | [the, book] RA (gave — me)
5 [root, gave] | [the, book] S
6 [root, gave, the] | [book] S
il [root, gave, the, book] | [] LA (the < book)
8 [root, gave, book] | [] RA (gave — book)
9 [root, gave] | [] RA (root — gave)
10

00 ()bj
oSy AN N

She

gave me

the

book

Step Stack | Input Buffer Action | Relation Added
0 [root] | [She, gave, me, the, book] S
1 [root, She] [gave, me, the, book] S
2 [root, She, gave] | [me, the, book] LA (She < gave)
3 [root, gave] | [me, the, book] S
4 [root, gave, me] | [the, book] RA (gave — me)
5 [root, gave] | [the, book] S
6 [root, gave, the] | [book] S
il [root, gave, the, book] | [] LA (the < book)
8 [root, gave, book] | [] RA (gave — book)
9 [root, gave] | [] RA (root — gave)
10 [root] | [] Done

00 ()bj
oSy AN N

She

gave me

the

book

Step Stack | Input Buffer Action | Relation Added
0 [root] | [She. gave. me. the. book] S
1 / \
2 We have (exactly) encoded the parse tree as a sequence of {S, LA, RA} \ve)
3 actions! Think of it as a program for building the tree structure.
4 ne)
5 (Would also need to specify relation labels in the LA, RA actions or post
6 hoc.)
i ok)
8 Transition-based parsing = iteratively: hok)
9 (1) consult the Oracle (algorithm giving next action) wve)
10 (2) modify the Configuration (state of stack, buffer, relations)

(DS,

She gave

according to the action

/

))j_N

me

y—dety— |

the

book

Stack | Input Buffer Action | Relation Added
0 [root] | [She, gave, me, the, book] S
1 [root, She] [gave me, the, book] S
2 [root, She, gave] | | Would have been a ™ (She < gave)
3 koohipanel | | mess if RA was
4 [root, gave, me] predicted! A (gave — me)
> roalgase] — arc-eager parsing
6 [root, gave, the] | [b b
/i [root, gave, the, book] | [] LA (the < book)
8 [root, gave, book] | [] RA (gave — book)
9 [root, gave] | [] RA (root — gave)
10 [root] | [] Done

00 ()bj

She

gave me

the

book

Arc-Standard Parsing

e Withthe 3 Arc-Standard actions {S, LA, RA}:

o How many transitions to parse a sentence of N words?

o 2N:for each word, once to shift + once to attach to a head and remove from
stack (LA or RA).

e Canthese 3types of actions build any tree?

o Only projective trees: only adding edges at the top of the stack &
permanently removing a word from the stack once attaching it to its parent
ensures that all subtrees are contiguous

o With aricher set of actions, can get non-projective trees or even graphs

e How would you implement an Oracle (choose the next action at test time)?

o This brings us to...

Statistical Dependency Parsing

Statistical Dependency Parsing

Can be done by training a classifier to predict each action, using data
from Treebanks

Possible features? POS tags, word at the top of the stack, etc. — we'll
come back to this in asecond

Data

e Can automatically convert constituency treebanks (like the Penn
Treebank) to dependencies
e Or,canuse dependency treebanks like Universal Dependencies

(available in many languages) " xfﬁ:_

o http://universaldependencies.org 10 @ mwon

http://universaldependencies.org

Feature-based parser

e Any feature-based classifiers, e.g.,
SVM, logistic regression, ...
e Featuretemplate:

(s1.w,0p), (s2.w,0p)(s1.t,0p),(S2.t,0p)
<bl°W30p>7 <bl°t70p><S1'Wt70p>

(s1.w = flights,op = shift)
(s2.w = canceled,op = shift)
(s1.t = NNS,op = shift)

(s2.t = VBD,op = shift)
(b1.w = to,op = shift)
(b).t = TO,0p = shift)
(s1.wt = flightsNNS, op = shift)

Neural parser

e Essentially using word
embeddings as “features”!

Input buffer -

~
Parser Oracle
W (| ===
T w| 7 ew) ‘U Acticn Dependency
Al »| Relations
o |1 eEh =U FFN| 3 LEFTARC

5 8 RIGHTARC |wa™ w2

Stack |2 2, |e62) :U U SHIFT

ENCODER
(A A A

wl w2 w3 w4 w5 w6

10T CBER] Neural classifier for the oracle for the transition-based parser. The parser takes
the top 2 words on the stack and the first word of the buffer, represents them by their encodings

(from running the whole sentence through the encoder), concatenates the embeddings and
passes through a softmax to choose a parser action (transition).

Evaluation

e Comparing against a gold standard:

e Unlabeled Attachment Score (UAS):
% of words attached correctly
(correct head) oot

e Labeled Attachment Score (LAS): %
of words attached to the correct
head with the correct relation label

8

She gave me the book

Graph-based Parsing

T(S) = argmax Score(z, S)

Another popular approach to e

dependency parsingis
graph-based Score(z,S) = ZScore

Consider all possible trees et

Assign scores to all edges
Best tree = largest sum of

12 44\\
scores SN N\ 5
Capable of creating

non-projective trees

IOTICERBE Initial rooted, directed graph for Book that flight.

Graph-based Parsing

Feature-based scorer and

neural scorer
Popular architecture: biaffine

(Dozat and Manning, 2017)

Model

Andor et al.
Deep Biaffine

Model

Andor et al.
Deep Biaffine

Catalan
UAS LAS
92.67 89.83
94.69 92.02

English
UAS LAS
9322 91.23
9521 93.20

Chinese
UAS LAS
84.72 80.85
88.90 85.38

German
UAS LAS
90.91 89.15
93.46 91.44

Czech
UAS LAS
88.94 84.56
92.08 87.38

Spanish
UAS LAS
92.62 89.95
94.34 91.65

Table 5: Results on the CoNLL ’09 shared task datasets

score(h,head, h dep)

Biaffine

e — =
(hyhead)(“hydep) (Thy head)(_hy dep) ((hyhead) (" hydep)
YFFN7YFFN7 YFFN7YFFN7 NFFN NFFN/

‘head’ = dep = ‘headX ,dep > ‘head’ dep >
1 N A
\r1 r2 r3/
t t t
(ENCODER)
t t t
book that flight

Computing scores for a single edge (book— flight) in the biaffine parser of
Dozat and Manning (2017); Dozat et al. (2017). The parser uses distinct feedforward net-
works to turn the encoder output for each word into a head and dependent representation for
the word. The biaffine function turns the head embedding of the head and the dependent
embedding of the dependent into a score for the dependency edge.

Demos

e Stanza (from Stanford): https://corenlp.run/
e AllenNLP (from Allen Institute for Al):
https://demo.allennlp.org/dependency-parsing

https://corenlp.run/
https://demo.allennlp.org/dependency-parsing%5C

Practice

e advmod: adverb modifier e nmod:poss: possessive modifier
e amod: adjective modifier e nsubj:subject
e aux:auxiliary e nummod: number modifier
e case: case marker (think of thisas e obj: direct object
object of preposition) e obl:oblique case ("prepositionally
e det:determiner marked nominals functioning
e iobj:indirect object adverbially")
e nmod: noun modifier e root:root

My friend from Japan will reluctantly give you 3 delicious cookies on Christmas

Practice

e Root?

My friend from Japan will reluctantly give you 3 delicious cookies on Christmas

Practice

e Relationto friend?
(root)

Y

My friend from Japan will reluctantly give you 3 delicious cookies on Christmas

Practice

Relation to you?

((nsubj}

!

My friend from Japan will

<

Y

reluctantly give

you 3 delicious

cookies

on Christmas

Practice

Relation to cookies?

((nsubj}

!

My friend from Japan will

<

Y

reluctantly give

you 3 delicious

cookies

on Christmas

Practice

Relation to My?

((nsubj}

!

My friend from Japan will

<

v |

reluctantly give

you 3 delicious

cookies

on Christmas

Practice

e Relationto Japan?

lrootl
((nsubj)
fobj}
\95))

'

My friend from Japan will reluctantly give you 3 delicious cookies on Christmas

Practice

e Relationtofrom?
(root)

(nsubj}
(—V \ -
{nmod
l’ v |

My friend from Japan will reluctantly give you 3 delicious cookies on Christmas

Practice

e Relation towill?
(root)

- N —a
(amod)
v U

My friend from Japan will reluctantly give you 3 delicious cookies on Christmas

Practice

e Relationtoreluctantly?
(root)

(', nsubj ', \
fobj}
\95))

lle.lXI

{nmod {aux |
il [e
l’ v |

My friend from Japan will reluctantly give you 3 delicious cookies on Christmas

Practice

e Relationto 3?
(root)

(', nsubj ', \
fobj}
\95))

lle.le

{nmod { f
l’ v |

My friend from Japan will reluctantly give you 3 delicious cookies on Christmas

Practice

e Relationtodelicious?

((nsubj} \
fobj}
\95))

{nmod {aux |
l’ v |

My friend from Japan will reluctantly give you 3 delicious cookies on Christmas

Practice

e Relationto Christmas?

(root)
(nsubj}
{nmod {aux)
l’ v |

My friend from Japan will reluctantly give you 3 delicious cookies on Christmas

Practice

e Relationtoon?

lrootl Lo_bl)
(nsubj} (\
{nmod {aux)
f [
Jr Y \L

My friend from Japan will reluctantly give you 3 delicious cookies on Christmas

Practice

e Relationtoon?

lrootl @
(nsubj} (\
{nmod {aux)
f [
Jr Y \L

My friend from Japan will reluctantly give you 3 delicious cookies on Christmas

