Lecture 16: English Syntax \& CFGs

Nathan Schneider
(most slides from Marine Carpuat)
ENLP | 23, 28 March 2023

Today's Agenda

- From sequences to trees
- Syntax
- Constituent, Grammatical relations, Dependency relations
- Formal Grammars
- Context-free grammar
- Dependency grammars
- Treebanks

sýntaxis (setting out or arranging)

- The ordering of words and how they group into phrases
> [[the old man] [is yawning]]
$>$ [[the old] [man the boats]]

Syntax and Grammar

- Goal of syntactic theory
- "explain how people combine words to form sentences and how children attain knowledge of sentence structure"
- Grammar
- implicit knowledge of a native speaker
- acquired without explicit instruction
- minimally able to generate all and only the possible sentences of the language

Syntax vs. Meaning

"Colorless green ideas sleep furiously."

- Noam Chomsky (1957)

You can tell that the words are in the right order.

- ...and that "colorless" and "green" modify "ideas"
- ...and that ideas sleep
- ...and that the sleeping is done furiously
- ...and that it sounds like an English sentence, even if you can't imagine what it means.
- Contrast with: "sleep green furiously ideas colorless"

But isn't meaning more important?

[send [the text message from James] [to Sharon]]
[translate [the message] [from Hindi] [to English]]

- When you say these to your phone, you want it to respond appropriately.
- We will see that syntax helps you find the meaning.
adapted from: Lori Levin

Syntax in NLP

- Syntactic analysis often a key component in applications
- Grammar checkers
- Dialogue systems
- Question answering
- Information extraction
- Machine translation
- ...

Two views of syntactic structure

- Constituency (phrase structure)
- Phrase structure organizes words in nested constituents
- Dependency structure
- Shows which words depend on (modify or are arguments of) which on other words

CONSTITUENCY PARSING \& CONTEXT FREE GRAMMARS

Constituency

- Basic idea: groups of words act as a single unit
- Constituents form coherent classes that behave similarly
- With respect to their internal structure: e.g., at the core of a noun phrase is a noun
- With respect to other constituents: e.g., noun phrases generally occur before verbs

Constituency: Example

- The following are all noun phrases in English...

Harry the Horse the Broadway coppers they
a high-class spot such as Mindy's the reason he comes into the Hot Box three parties from Brooklyn

- Why?
- They can all precede verbs
- They can all be preposed/postposed

Grammars and Constituency

- For a particular language:
- What are the "right" set of constituents?
- What rules govern how they combine?
- Answer: not obvious and difficult
- That's why there are many different theories of grammar and competing analyses of the same data!
- Our approach
- Focus primarily on the "machinery"

Finite-State/Regular Grammars

- You've already seen one class of grammars: regular expressions
$>$ A pattern like ^[a-z][0-9]\$ corresponds to a grammar which accepts (matches) some strings but not others.
$>$ Can regular languages define infinite languages?
> Can regular languages define arbitrarily complex languages?

Finite-State/Regular Grammars

- You've already seen one class of
grammars: regular expressions
> A pattern like ^[a-z][0-9]\$ corresponds to a grammar which accepts (matches) some strings but not others.
$>$ Can regular languages define infinite languages? Yes, e.g.: a*
> Can regular languages define arbitrarily complex languages? No. Cannot match all strings with matched parentheses (recursion/arbitrary nesting).

Context-Free Grammars

- Context-free grammars (CFGs)
- Aka phrase structure grammars
- Aka Backus-Naur form (BNF)
- Consist of
- Rules
- Terminals
- Non-terminals

Context-Free Grammars

- Terminals
- We'll take these to be words (for now)
- Non-Terminals
- The constituents in a language (e.g., noun phrase)
- Rules
- Consist of a single non-terminal on the left and any number of terminals and nonterminals on the right

An Example Grammar

Grammar Rules

Examples

$S \rightarrow$	$N P V P$	I + want a morning flight
$N P$	Pronoun	I
	Proper-Noun	Los Angeles
	Det Nominal	a + flight
Nominal	Nominal Noun	morning + flight
	Noun	flights
$V P$	Verb	do
	Verb NP	want + a flight
	Verb NP PP	leave + Boston + in the morning
	Verb PP	leaving + on Thursday
$P P \rightarrow$	Preposition NP	from + Los Angeles

CFG: Formal definition

N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form $A \rightarrow \beta$,
where A is a non-terminal,
β is a string of symbols from the infinite set of strings $(\Sigma \cup N) *$
S a designated start symbol

Three-fold View of CFGs

- Generator
- Acceptor
- Parser

Derivations and Parsing

- A derivation is a sequence of rules applications that
- Covers all tokens in the input string
- Covers only the tokens in the input string
- Parsing: given a string and a grammar, recover the derivation
- Derivation can be represented as a parse tree
- Multiple derivations?

Parse Tree: Example

Noun flight
morning

An English Grammar Fragment

- Sentences
- Noun phrases
- Issue: agreement
- Verb phrases
- Issue: subcategorization

Sentence Types

- Declaratives: A plane left. $\mathrm{S} \rightarrow \mathrm{NP}$ VP
- Imperatives: Leave! $\mathrm{S} \rightarrow \mathrm{VP}$
- Yes-No Questions: Did the plane leave?

$$
S \rightarrow \text { Aux NP VP }
$$

- WH Questions: When did the plane leave? $S \rightarrow$ WH-NP Aux NP VP

Noun Phrases

- We have seen rules such as

$N P \rightarrow$ Det Nominal
$N P \rightarrow$ ProperNoun
Nominal \rightarrow Noun | Nominal Noun

- But NPs are a bit more complex than that!
- E.g. "All the morning flights from Denver to Tampa leaving before 10"

Determiners

- Noun phrases can start with determiners...
- Determiners can be
- Simple lexical items: the, this, a, an, etc. (e.g., "a car")
- Or simple possessives (e.g., "John's car")
- Or complex recursive versions thereof (e.g., John's sister's husband's son's car)

Premodifiers

- Come before the head
- Examples:
- Cardinals, ordinals, etc. (e.g., "three cars")
- Adjectives (e.g., "large car")
- Ordering constraints
- "three large cars" vs. "?large three cars"

Postmodifiers

- Come after the head
- Three kinds
- Prepositional phrases (e.g., "from Seattle")
- Non-finite clauses (e.g., "arriving before noon")
- Relative clauses (e.g., "that serve breakfast")
- Similar recursive rules to handle these
- Nominal \rightarrow Nominal PP
- Nominal \rightarrow Nominal GerundVP
- Nominal \rightarrow Nominal RelClause

A Complex Noun Phrase Revisited

Subject and Object

Syntactic (not semantic):
The batter hit the ball [subject is semantic agent]
The ball was hit by the batter [subject is semantic patient]
The ball was given a whack by the batter
[subject is semantic recipient]
\{George, the key, the wind\} opened the door
Subject \neq topic:
I just married the most beautiful woman in the world Now beans, I like
As for democracy, I think it's the best form of government

Subject and Object

- English subjects
> agree with the verb
> when pronouns, in nominative case (I/she/he/we/they)
> omitted from infinitive clauses
(I tried _ to read the book, I hoped _ to be chosen)
- English objects
> when pronouns, in accusative case (me/her/him/us/them)
> become subjects in passive sentences

Agreement

- Agreement: constraints that hold among various constituents
- Example, number agreement in English

This flight
Those flights
One flight
Two flights
*This flights
*Those flight
*One flights
*Two flight

Problem

- Our NP rules don't capture agreement constraints
- Accepts grammatical examples (this flight)
- Also accepts ungrammatical examples (*these flight)
- Such rules overgenerate

Possible CFG Solution

- Encode agreement in non-terminals:
$-\mathrm{SgS} \rightarrow$ SgNP SgVP
- PIS \rightarrow PINP PIVP
- SgNP \rightarrow SgDet SgNom
- PINP \rightarrow PIDet PINom
- PIVP \rightarrow PIV NP
-Sg VP \rightarrow SgV Np

Verb Phrases

- English verb phrases consists of
- Head verb
- Zero or more following constituents (called arguments)
- Sample rules:
$V P \rightarrow$ Verb disappear
$V P \rightarrow$ Verb $N P \quad$ prefer a morning flight
$V P \rightarrow$ Verb NP PP leave Boston in the morning
$V P \rightarrow$ Verb $P P$ leaving on Thursday

Subcategorization

- Not all verbs are allowed to participate in all VP rules
- We can subcategorize verbs according to argument patterns (sometimes called "frames")
- Modern grammars may have 100s of such classes

Subcategorization

- Sneeze: John sneezed
- Find: Please find [a flight to NY] $]_{\mathrm{NP}}$
- Give: Give [me] ${ }_{N P}[\text { a cheaper fare] }]_{N P}$
- Help: Can you help $[m e]_{N P}[\text { with a flight }]_{p p}$
- Prefer: I prefer [to leave earlier] ${ }_{\text {To-vp }}$
- Told: I was told [United has a flight],

Subcategorization

- Subcategorization at work:
- *John sneezed the book
- * prefer United has a flight
- *Give with a flight
- But some verbs can participate in multiple frames:
- I ate
- I ate the apple
- How do we formally encode these constraints?

Why?

- As presented, the various rules for VPs overgenerate:
$V P \rightarrow$ Verb disappear
$V P \rightarrow$ Verb $N P$ prefer a morning flight
$V P \rightarrow$ Verb NP PP leave Boston in the morning
$V P \rightarrow$ Verb $P P \quad$ leaving on Thursday
- John sneezed [the book] ${ }_{\mathrm{NP}}$
- Allowed by the second rule...

Possible CFG Solution

- Encode agreement in non-terminals:
- SgS \rightarrow SgNP SgVP
- PIS \rightarrow PINP PIVP
- SgNP \rightarrow SgDet SgNom
- PINP \rightarrow PIDet PINom
- PIVP \rightarrow PIV NP
- SgVP \rightarrow SgV Np
- Can use the same trick for verb subcategorization

Grammar Formalisms

- Linguists have invented grammar
formalisms that overcome the limitations
of Context-Free Grammars
$>$ Lexical Functional Grammar
> Head-Driven Phrase Structure Grammar
> Combinatory Categorial Grammar > Lexicalized Tree-Adjoining Grammar > Grammatical Framework
- We sometimes teach a class on these.

Recap: Three-fold View of CFGs

- Generator
- Acceptor
- Parser

Recap: why use CFGs in NLP?

- CFGs have about just the right amount of machinery to account for basic syntactic structure in English
- Lot's of issues though...
- Good enough for many applications!
- But there are many alternatives out there...

DEPENDENCY GRAMMARS

Dependency Grammars

- CFGs focus on constituents
- Non-terminals don't actually appear in the sentence
- In dependency grammar, a parse is a graph (usually a tree) where:
- Nodes represent words
- Edges represent dependency relations between words (typed or untyped, directed or undirected)

Dependency Grammars

- Syntactic structure = lexical items linked by binary asymmetrical relations called dependencies

Dependency Type

Example Dependency Parse

root India won the world cup by beating Lanka

TREEBANKS

Treebanks

- Treebanks are corpora in which each sentence has been paired with a parse tree
- These are generally created:
- By first parsing the collection with an automatic parser
- And then having human annotators correct each parse as necessary
- But
- Detailed annotation guidelines are needed
- Explicit instructions for dealing with particular constructions

Penn Treebank

- Penn TreeBank is a widely used treebank
- 1 million words from the Wall Street Journal
- Treebanks implicitly define a grammar for the language

Penn Treebank: Example

```
( (S (", '")
    (S-TPC-2
        (NP-SBJ-1 (PRP We) )
        (VP (MD would)
        (VP (VB have)
            (S
                (NP-SBJ (-NONE- *-1) )
                (VP (TO to)
                (VP (VB wait)
                (SBAR-TMP (IN until)
                            (S
                                (NP-SBJ (PRP we) )
                                (VP (VBP have)
                                (VP (VBN collected)
                                    (PP-CLR (IN on)
                                    (NP (DT those)(NNS assets)))))))))))))
    (, ,) ('' '')
    (NP-SBJ (PRP he) )
    (VP (VBD said)
        (S (-NONE- *T*-2) ))
    (. .) ))
```


Treebank Grammars

- Such grammars tend to be very flat
- Recursion avoided to ease annotators burden
- Penn Treebank has 4500 different rules for VPs, including...
- VP \rightarrow VBD PP
$-\mathrm{VP} \rightarrow$ VBD PP PP
$-\mathrm{VP} \rightarrow$ VBD PP PP PP
$-\mathrm{VP} \rightarrow$ VBD PP PP PP PP

Summary

- Syntax \& Grammar
- Two views of syntactic structures
- Context-Free Grammars
- Dependency grammars
- Can be used to capture various facts about the structure of language (but not all!)
- Treebanks as an important resource for NLP

