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Review: Neural networks

e Simplest architecture: Feed-forward
e "Multilayer Perceptron”
e "Depth" = how many hidden layers

e One-to-one
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Neural networks and text

e Number of nodes per layer is fixed
o Number of inputs is fixed

e Length of a sentence, word, sound signal, ...
o Not fixed!

e |dea: Think of language data as streaming in over time.

o For each new input, we update our prediction.



Today: Recurrent neural networks (RNNSs)
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http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf

Agenda for today

e \Whatis an RNN?
e \What can it be used for?

e How is it trained? (some math, but not too much)

o The problem of vanishing and exploding gradients
e The LSTM model and some variants

e Interpretability



What is an RNN?
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http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf

What is an RNN?
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http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf

What is an RNN?

Some notes

Weights are shared
between each time step
We initialize a new RNN
for each sequence!
“Deep” in the length of the

sequence
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RNNs as Deep Networks
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RNNs as Deep Networks
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RNNSs as input to other NNs

e Usually, we feed the hidden representation produced by an RNN into another
layer or multi-layered network to produce a prediction, which can be...

o per-token (tagging) or for the whole sequence (classification)

o non-probabilistic or probabilistic (using softmax)

e Or we are interested in learning embeddings of the input itself
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today

Shapes and ApplicatioW
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Image captioning

many to one many to many many to many

Language Modeling
Text classification Translation Sequence tagging
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http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

Text classification

e Let RNN read and process input text

e Use hidden representation of last input token T

to make prediction for the whole sequence

e Example: sentiment analysis

not very good
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Language modeling

e Recall generative (n-gram) language models

o Given the previous context, predict next word

e How can we implement this as an RNN?

15



Recurrent lNeural language modeling

target word "is" "the" "problem”

output likelihood

hidden state

input embedding

input word "What" "is" "the"
http://torch.ch/blog/2016/07/25/nce.html .



http://torch.ch/blog/2016/07/25/nce.html

POS tagging

e Recall generative (HMM) POS tagging
o Given previous POS tag, predict tag that is most likely to generate current word
o Find optimal sequence (Viterbi)

e By default, RNNs (as neural networks in general) are discriminative, not

generative!

o Can model output directly at each timestep
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Neural POS tagging
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HMM POS tagging
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Issues with the vanilla RNN

Despite having no explicit independence assumptions, distant cells are unlikely
to influence each other.

Why?
1. At prediction time because new inputs “overwrite” old memory

2. At training time because of how backpropagation works
DT NN VBD DT NN

S aan

the dog ate the cat
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Training a Deep Neural Network

® High-level: Tuning of hyperparameters and architecture

@)

@)

@)

Dimensionality of hidden layers
Dropout rate

Learning rate

Batch size

“Resolution” of input:

sentences, words, characters, ...

e Low-level: Backpropagation
o Error-driven (minimizing loss function)
o Lots of matrix multiplications
o Made possible through modern computing
power, especially GPUs

(and more recently, TPUs)
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Training a Deep Neural Network

forwarad pass
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Training a Deep Neural Network

backward pass
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Gradient flow in a FFNN

Jurafsky & Martin 23



Gradient flow in an RNN
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Gradient flow in an RNN
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“Exploding gradients” “Vanishing gradients”

Li, Johnson, Yeung 25



Interim summary

e RNNs can be used to

of arbitrary length, thanks to a self-loop on the hidden layer

sequences
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Interim summary

e RNNSs can be used to classify

of arbitrary length, thanks to a self-loop on the hidden layer

sequences
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Interim summary

e RNNSs can be used to classify, generate sequences

of arbitrary length, thanks to a self-loop on the hidden layer

2 for the

price of 1
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Interim summary

e RNNs can be used to classify, generate, learn representations of sequences

of arbitrary length, thanks to a self-loop on the hidden layer

for the

price of 1
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Interim summary

e RNNs can be used to classify, generate, learn representations of sequences

of arbitrary length, thanks to a self-loop on the hidden layer

e Shared weights between time steps
e New initialization per sequence
e Can be “unrolled” and viewed as for the

deep FFNN price of 1

e Problem: Vanishing and exploding gradients
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Quick Break! — Something to think about:

1. How are representations we get from RNNSs different from EMBEDDINGS?

Contextualized

2. Could we get a similar effect WITHOUT the recurrence?

!

Global
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Non-Recurrent Neural LM

e Non-neural approach: n-grams p(w; | Wi.1, Wt.2, Wi.3)
e Neural approaches:

o Convolutional neural net (CNN) with kernel size = n
o Transformers: ,Attention is all you need” (BERT and friends)
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Exploding and vanishing gradients

e Occurin FFNNs as well
o Worse the more layers you have

e Bigger problem with RNNs because network is deep in the length of the
sequence and deep in the number of layers
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Exploding and vanishing gradients

Gradient clipping:
Scale gradient if its norm is too big

Without clipping With clipping

grad_norm = np.sum(grad * grad)

if grad_norm > threshold:
grad *= (threshold / grad_norm)

J(w,b)

Dealing with vanishing gradients is more complicated.
Goodfellow et al.

Li, Johnson, Yeung

J(w,b)

34


https://www.deeplearningbook.org/

Ancient Treasure Map




Long Short-Term Memory (LSTM)
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Ancient (!) Long Short-Term Memory (LSTM)
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Hochreiter and Schmidhuber, 1997, accessed through lecture slides by Arnold


http://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf

Long Short-Term Memory (LSTM)

Fundamentally, an LSTM is just an RNN with some additional
machinery within each node of the network.
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Long Short-Term Memory (LSTM)

e New concept of cell state

e 3 gates that are just functions of the cell state and hidden state:
o Forget
o Input
o Output
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Long Short-Term Memory (LSTM)

@ Q)
~ T\ - }\

Arnold

40



Long Short-Term Memory (LSTM)
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Long Short-Term Memory (LSTM)

Arnold

Cell state / context memory is separated from cell output, and is only changed
by two linear functions at each time step.




Long Short-Term Memory (LSTM)

Arnold

fe=0 Wy [hi—1,24] + by)

Forget gate determines if previous context should be taken into account.




Long Short-Term Memory (LSTM)

Arnold

it =0 (Wi'[ht_l,ﬂ?t] + bz)
C, = tanh(We-[hi—1, 2] + be)

Input gate determines if and how much of the current input should be taken into
account.




Long Short-Term Memory (LSTM)

Arnold

Cy_s S

S : I

ftT @tr'%é Ci = fi* Ciy +iy + Gy

Cell state / context memory is now completely determined and can be
calculated directly.




Long Short-Term Memory (LSTM)

Arnold

Or = 0 (WO [ht_l,xt] 1 bo)
hy = 04 x tanh (CY)

Output gate determines if and how much of the cell state should be yielded as
output.




Long Short-Term Memory (LSTM)

Instead of weights W and U in an RNN,
we have:

o W
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Long Short-Term Memory (LSTM)

e Separates cell state and output

e Vanishing gradient only occurs if all partial derivatives tend toward O
o Gradient of cell state is conveniently additive instead of multiplicative, reducing likelihood of all
sub gradients being 0

e 3 gates:
o Forget
o Input
o Output

e Infinite memory is regulated via these gates to better capture long-range
dependencies

Arbel: “How LSTM networks solve the problem of vanishing gradients”
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https://medium.com/datadriveninvestor/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577

Gated Recurrent Unit (GRU)

e Simpler: combines forget and input gates
e Equally powerful: gates still take care of vanishing/exploding gradients

ht

it = O (Wz : [ht—laxt])
r'e =0 (Wr ‘ [ht—laxt])
]Nlt — tanh (W . [Tt * ht—l;xt])

ht:(l—zt)*h,t_1+2t>kl~lt
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Stacked RNN
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Bidirectional RNN
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Li, Johnson. Yeung

RNNs are powerful!
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"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
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http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

RNNs are powerful!

PANDARUS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
wWhose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
11 dvink 1&T

Li, Johnson, Yeung

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.
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http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

RNNs are powerful!

Li, Johnson, Yeung

Proof. Omitted. a

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = Ox(£)

Proof. This is an algebraic space with the composition of sheaves F on Xz, we
have

Ox(F) = {morphy xo (G, F)}
where G defines an isomorphism F — F of O-modules. O
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ?7?. O

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: XY 2Y=2YaY xxY 2 X.
be a morphism of algebraic spaces over S and Y .

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox (U) which is locally of
finite type. 0

This since ¥ € F and z € ¢ the diagram

S —

|

§— 0Oy

™\

=0 ———

gor,

—a—a X

Spec(Ky) Morgess d(o.\'x,* N9}

is a limit. Then € is a finite type and assume S is a fAlat and F and € is a finite
type f.. This is of finite type diagrams, and
o the composition of G is a regular sequence,
o Ox- is a sheal of rings.
(m]

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. m]

Proof. This is clear that G is & finite presentation, see Lemmas 22,
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz = Fz -UOx,,,) — Oxl0x,(0%,)
is an isomorphism of covering of Oy, . If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition 7?7 and we can fltered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. 2]

If F is a finite direct sum Oy, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.
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http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

Li, Johnson, Yeung

RNNSs are hard to interpret!

lrer fiileld'sistring firom user-space
pack_string(Wwelid *®bufp, size_t Hremain, size_t ITen)

d [sit g fields, PATH_MAX
gth

Pick a neuron in the hidden representation and trace when it “fires”.
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Li, Johnson, Yeung

RNNSs are hard to interpret!
Smiles' 1 meant merely o say wnat I sasa.n oo SubEReTpemerTaTing

Quote detection cell



http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

Li, Johnson. Yeung

RNNs are hard to interpret!

REEIEE e N et a e elo it hec ros'sing of the Berezina lies in the fact
EREGR S T DRI a RS AN a b a1y proved the fallacy of all the plans for
ENREREE SO RN E ey s e e e at and the soundness of the only possible
line of action--the one Kutuzov and the general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled
aRCEEEN IOl RN N e e asiing speed and all its energy was directed tO
reaching its goal. It fled like a wounded animal and it was impossiblie
to block its path. This was shown not so much by the arrangements it
maldie S fe'rYceroassing as by what took place at the bridges. When the bridglEs
broke down, unarmed soldiers, people from Moscow and women with children
who were with the French transport, all--carried on by wvis inertiae- -
PIEEISISIEN O RWiadENI el oN S bola't's. and 1nto the ice-covered water andldidisEs

surrender .

Line length tracking cell
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RNNSs are hard to interpret!

e Probing tasks to discern whether these models implicitly learn different

aspects of syntax, semantics
e E.g., Linzen et al. (2018), Linzen et al. (2016) , Ettinger et al. (2016), Ettinger

and Linzen (2016)

e Enjoy with caution!
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Summary

e Feed-forward NNs are very powerful, but not well-suited for language data
e Recurrent NNs model variable-width data as streaming in over time
e Many different applications in NLP (and elsewhere, e.g., Bioinformatics)

e LSTMs and GRUs:

O  Address the problem of exploding and vanishing gradients
O Better at capturing long-range dependencies

e These days more and more replaced by Transformers

e Drawbacks (of all sequential NNs):
o More parameters to train
o Usually require large amounts of training data
o Tricky to interpret what exactly is learned
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Linguistic Structure beyond the Sequence

GP T-2: Neural language model with multihead attention

e Scaffolding sequential NNs with

N | umerous | _injuries | _were | _reported . L. . ] )

® T e I o I o I_® linguistically-motivated hierarchical
e structure

o1 o1 o’ o | e — Improve LM quality!

EDS: semantic predication/modification and variable binding

SN2
/7 ARG %ARGZ
VP2 ! \
7,7 \\ 1 N !
/// N N 1

e Better explainability (?)

N | e | s | vere | reporte e Less training data required (?)
b0 00 ‘% e Fewer parameters (?) L]
o101 o o

[Prange, Schneider, Kong: Ongoing Work.] 60



