Lecture 10: Algorithms for HMMs

Nathan Schneider

(some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes)

ENLP | 1 March 2022

Recap: tagging

- POS tagging is a sequence labelling task.
- We can tackle it with a model (HMM) that uses two sources of information:

– The word itself

- The tags assigned to surrounding words
- The second source of information means we can't just tag each word independently.

Local Tagging

Words:	<s></s>	one	dog	bit	
Possible tags:	<s></s>	CD	NN	NN	
(ordered by frequency for		NN	VB	VBD	
each word)		PRP			

- Choosing the best tag for each word independently, i.e. not considering tag context, gives the wrong answer (<s> CD NN NN </s>).
- Though NN is more frequent for 'bit', tagging it as VBD may yield a better *sequence* (<s> CD NN VB </s>)

because P(VBD|NN) and P(</s>|VBD) are high.

Recap: HMM

- Elements of HMM:
 - Set of states (tags)
 - Output alphabet (word types)
 - Start state (beginning of sentence)
 - State transition probabilities $P(t_i | t_{i-1})$
 - Output probabilities from each state $P(w_i | t_i)$

Recap: HMM

Given a sentence W=w₁...w_n with tags T=t₁...t_n, compute P(W,T) as:

$$P(\mathbf{W}, \mathbf{T}) = \prod_{i=1}^{n} P(w_i | t_i) P(t_i | t_{i-1})$$

- But we want to find argmax_T P(T|W) without enumerating all possible tag sequences T
 - Use a greedy approximation, or
 - Use Viterbi algorithm to store partial computations.

Greedy Tagging

Words:

Possible tags:
(ordered by
frequency for
each word)

<s></s>	one	dog	bit	
<s></s>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

- For i = 1 to N: choose the tag that maximizes
 - transition probability $P(t_i|t_{i-1}) \times$
 - emission probability $P(w_i|t_i)$
- This uses tag context but is still suboptimal. Why?
 - It commits to a tag before seeing subsequent tags.
 - It could be the case that ALL possible next tags have low transition probabilities. E.g., if a tag is unlikely to occur at the end of the sentence, that is disregarded when going left to right.

Greedy vs. Dynamic Programming

- The greedy algorithm is **fast**: we just have to make one decision per token, and we're done.
 - Runtime complexity?
 - -O(TN) with T tags, length-N sentence
- But subsequent words have no effect on each decision, so the result is likely to be **suboptimal**.
- Dynamic programming search gives an optimal global solution, but requires some bookkeeping (= more computation). Postpones decision about any tag until we can be sure it's optimal.

Viterbi Tagging: intuition

Words:	<s></s>	one	dog	bit	
Possible tags:	<s></s>	CD	NN	NN	
(ordered by frequency for		NN	VB	VBD	
each word)		PRP			

- Suppose we have already computed
 - a) The best tag sequence for $\langle s \rangle \dots bit$ that ends in NN.
 - b) The best tag sequence for $\langle s \rangle \dots bit$ that ends in VBD.
- Then, the best full sequence would be either
 - sequence (a) extended to include </s>, or
 - sequence (b) extended to include </s>.

Viterbi Tagging: intuition

Words:	<s></s>	one	dog	bit	
Possible tags:	<s></s>	CD	NN	NN	
(ordered by frequency for		NN	VB	VBD	
each word)		PRP			

- But similarly, to get
 - a) The best tag sequence for <s> ... bit that ends in NN.
- We could extend one of:
 - The best tag sequence for <s> ... dog that ends in NN.
 - The best tag sequence for $\langle s \rangle \dots dog$ that ends in VB.
- And so on...

Viterbi: high-level picture

- Want to find argmax_T *P*(**T**|**W**)
- Intuition: the best path of length i ending in state t must include the best path of length i-1 to the previous state. So,
 - Find the best path of length i-1 to each state.
 - Consider extending each of those by 1 step, to state t.
 - Take the best of those options as the best path to state t.

Viterbi algorithm

- Use a **chart** to store partial results as we go
 - T × N table, where v(t, i) is the probability* of the best state sequence for $w_1...w_i$ that ends in state t.

*Specifically, v(t,i) stores the max of the joint probability $P(w_1...w_i,t_1...t_{i-1},t_i=t|\lambda)$

Viterbi algorithm

- Use a **chart** to store partial results as we go
 - T × N table, where v(t, i) is the probability* of the best state sequence for $w_1...w_i$ that ends in state t.
- Fill in columns from left to right, with

 $v(t,i) = \max_{t'} v(t',i-1) \cdot P(t|t') \cdot P(w_i|t_i)$

– The max is over each possible previous tag t'

 Store a backtrace to show, for each cell, which state at *i* - 1 we came from.

*Specifically, v(t,i) stores the max of the joint probability $P(w_1...w_i,t_1...t_{i-1},t_i=t|\lambda)$

Transition and Output Probabilities Transition matrix: P(t_i | t_{i-1}):

	Noun	Verb	Det	Prep	Adv	
<s></s>	.3	.1	.3	.2	.1	0
Noun	.2	.4	.01	.3	.04	.05
Verb	.3	.05	.3	.2	.1	.05
Det	.9	.01	.01	.01	.07	0
Prep	.4	.05	.4	.1	.05	0
Adv	.1	.5	.1	.1	.1	.1

Emission matrix: $P(w_i | t_i)$:

	а	cat	doctor	in	is	the	very
Noun	0	.5	.4	0	.1	0	0
Verb	0	0	.1	0	.9	0	0
Det	.3	0	0	0	0	.7	0
Prep	0	0	0	1.0	0	0	0
Adv	0	0	0	.1	0	0	.9

Example

Suppose W=the doctor is in. Our initially empty table:

V	w ₁ =the	w ₂ =doctor	w ₃ =is	w ₄ =in	
Noun					
Verb					
Det					
Prep					
Adv					

Filling in the first column

Suppose W=the doctor is in. Our initially empty table:

V	w ₁ =the	w ₂ =doctor	w ₃ =is	w ₄ =in	
Noun	0				
Verb	0				
Det	.21				
Prep	0				
Adv	0				

v(Noun, the) = P(Noun|<s>)P(the|Noun)=.3(0)

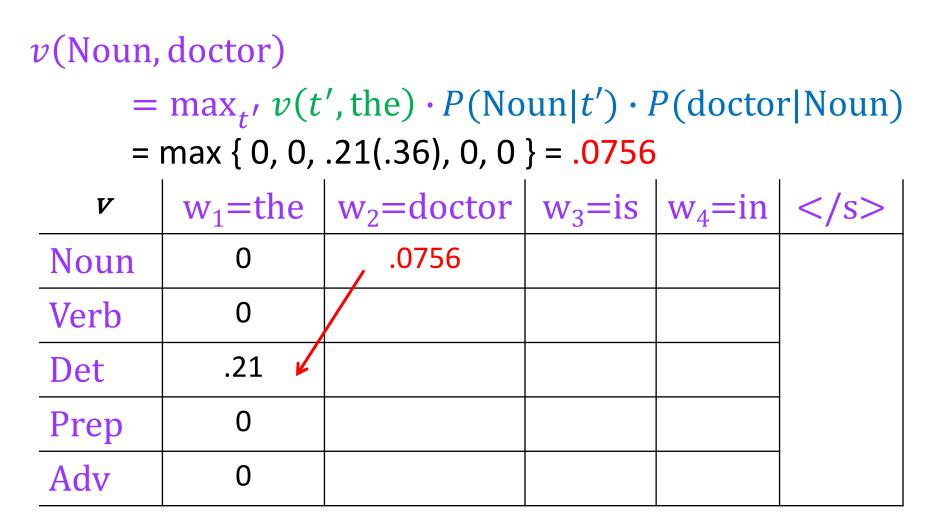
 $v(\text{Det, the}) = P(\text{Det}|\langle \ddot{s} \rangle) P(\text{the}|\text{Det})=.3(.7)$

v(Noun, doctor)

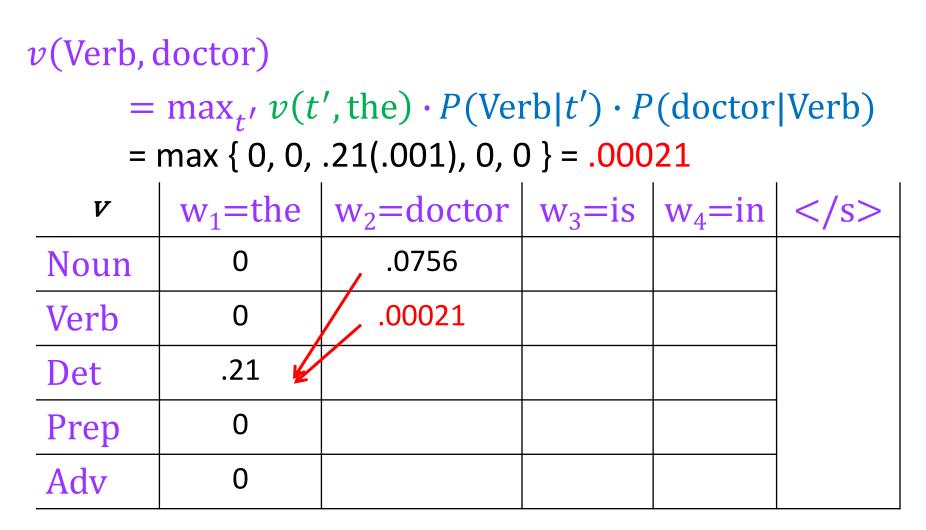
 $= \max_{t'} v(t', \text{the}) \cdot P(\text{Noun}|t') \cdot P(\text{doctor}|\text{Noun})$

V	w ₁ =the	w ₂ =doctor	w ₃ =is	w ₄ =in	
Noun	0	?			
Verb	0				
Det	.21				
Prep	0				
Adv	0				

P(Noun|Det) P(doctor|Noun)=.3(.4)



P(Noun|Det) P(doctor|Noun)=.9(.4)



P(Verb|Det) P(doctor|Verb)=.01(.1)

v(Verb, doctor)								
	$= \max_{t'} v(t', \text{the}) \cdot P(\text{Verb} t') \cdot P(\text{doctor} \text{Verb})$							
=	max { 0, 0,	.21(.001), 0, 0	000. = { (21				
V	w ₁ =the	w ₂ =doctor	w ₃ =is	w ₄ =in				
Noun	0	.0756						
Verb	0	.00021						
Det	.21 🖌	0						
Prep	0	0						
Adv	0	0						

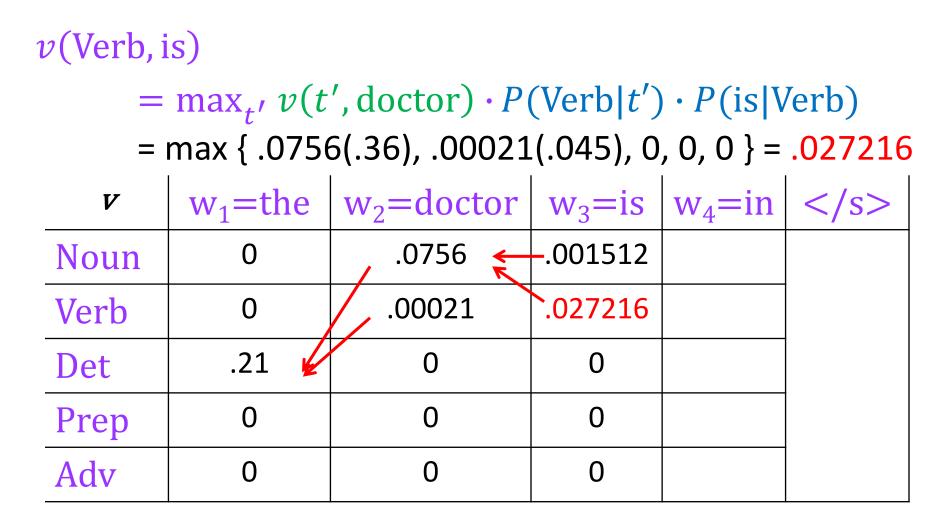
P(Verb|Det) P(doctor|Verb)=.01(.1)

The third column

	$= \max_{t'} v(t', \text{doctor}) \cdot P(\text{Noun} t') \cdot P(\text{is} \text{Noun})$ = max { .0756(.02), .00021(.03), 0, 0, 0 } = .001512							
V	w ₁ =the	w ₂ =doctor	$W_3 = IS$	$w_4 = m$	8			
Noun	0	.0756 🔶	001512					
Verb	0	.00021						
Det	.21 🖌	0						
Prep	0	0						
Adv	0	0						

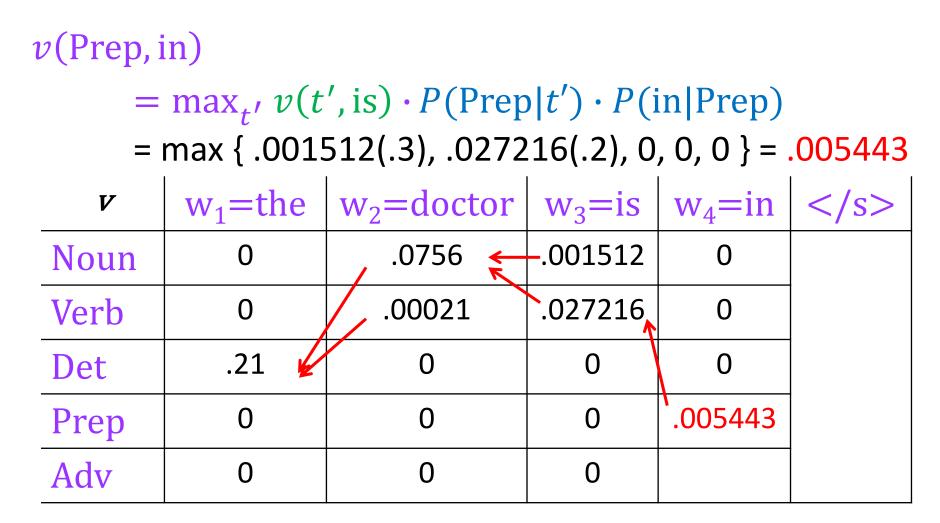
P(Noun|Noun) P(is|Noun)=.2(.1)=.02
P(Noun|Verb) P(is|Noun)=.3(.1)=.03

The third column



P(Verb|Noun) *P*(is|Verb)=.4(.9)=.36 *P*(Verb|Verb) *P*(is|Verb)=.05(.9)=.045

The fourth column



P(Prep|Noun) P(in|Prep)=.3(1.0)
P(Prep|Verb) P(in|Prep)=.2(1.0)

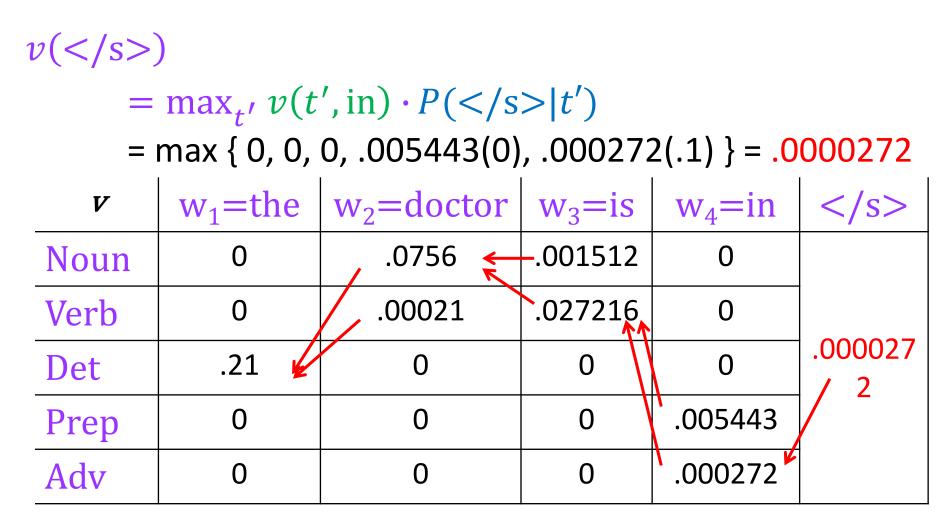
The fourth column

 $= \max_{t'} v(t', is) \cdot P(\operatorname{Prep}|t') \cdot P(in|\operatorname{Prep})$ = max { .000504(.004), .027216(.01), 0, 0, 0 } = .000272

V	w ₁ =the	w ₂ =doctor	w ₃ =is	w ₄ =in	
Noun	0	.0756 🗲	001512	0	
Verb	0	.00021	.027216	0	
Det	.21 🖌	0	0	0	
Prep	0	0	0	.005443	
Adv	0	0	0	.000272	

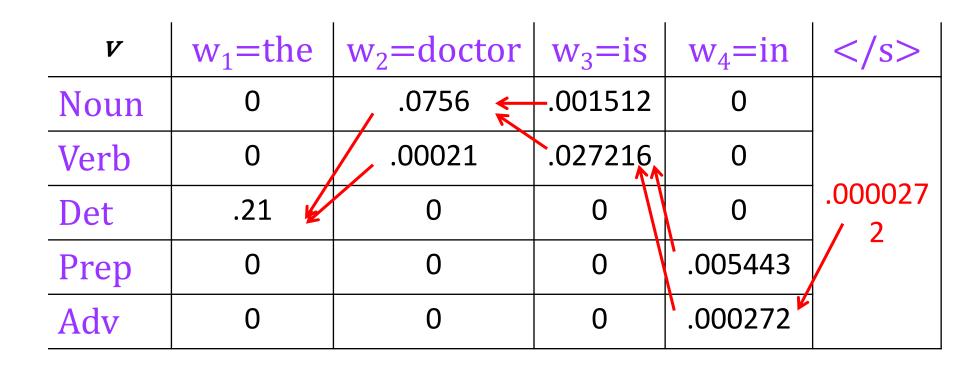
P(Adv|Noun) P(in|Adv)=.04(.1)P(Adv|Verb) P(in|Adv)=.1(.1)

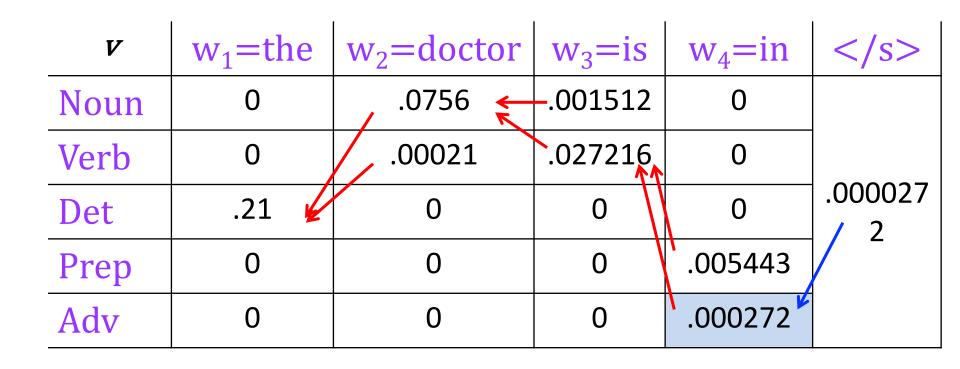
End of sentence

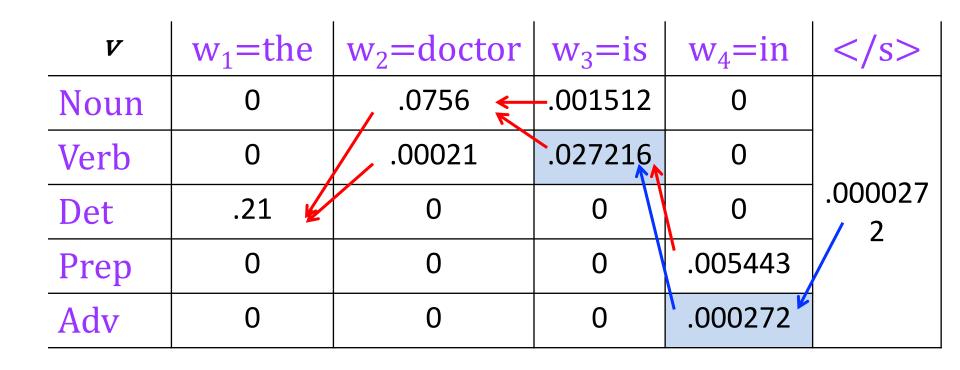


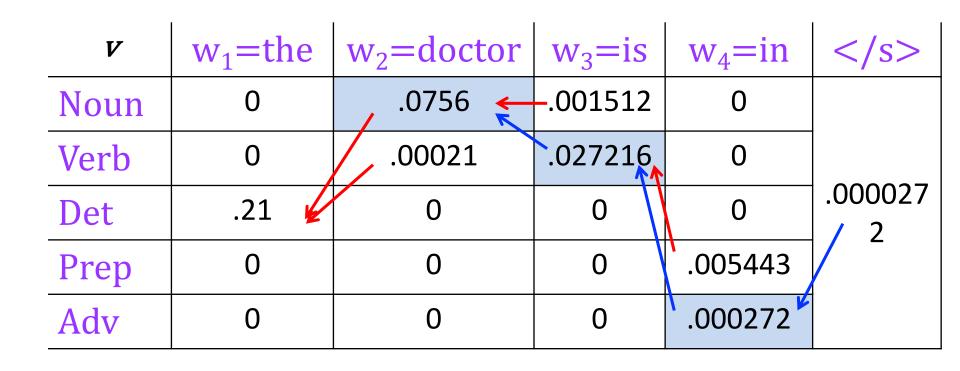
P(</s>|Prep)=0 *P*(</s>|Adv)=.1

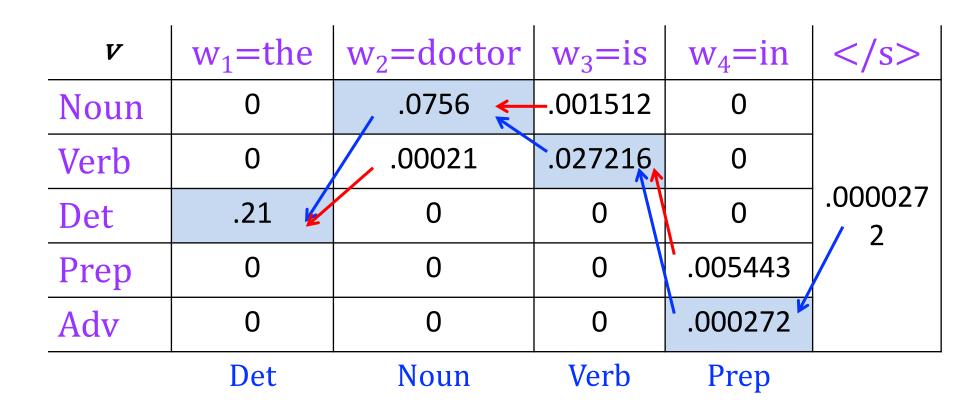
Completed Viterbi Chart









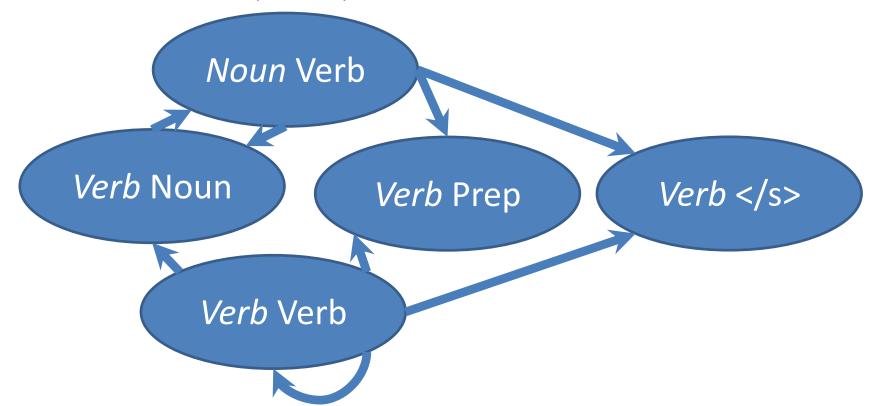


Implementation and efficiency

- For sequence length N with T possible tags,
 - Enumeration takes $O(T^N)$ time and O(N) space.
 - Bigram Viterbi takes $O(T^2N)$ time and O(TN) space.
 - Viterbi is exhaustive: further speedups might be had using methods that prune the search space.
- As with N-gram models, chart probs get really tiny really fast, causing underflow.
 - So, we use **costs** (neg log probs) instead.
 - Take minimum over sum of costs, instead of maximum over product of probs.

Higher-order Viterbi

- For a tag trigram model with T possible tags, we effectively need T² states
 - n-gram Viterbi requires T^{n-1} states, takes $O(T^nN)$ time and $O(T^{n-1}N)$ space.



HMMs: what else?

- Using Viterbi, we can find the best tags for a sentence (decoding), and get P(W, T).
- We might also want to
 - Compute the **likelihood** P(W), i.e., the probability of a sentence regardless of its tags (a language model!)
 - learn the best set of parameters (transition & emission probs.) given only an *unannotated* corpus of sentences.

Computing the likelihood

• From probability theory, we know that

$$P(\mathbf{W}) = \sum_{\mathbf{T}} P(\mathbf{W}, \mathbf{T})$$

- There are an exponential number of Ts.
- Again, by computing and storing partial results, we can solve efficiently.
- (Advanced slides show the algorithm for those who are interested!)

Summary

- HMM: a generative model of sentences using hidden state sequence
- Greedy tagging: fast but suboptimal
- Dynamic programming algorithms to compute
 - Best tag sequence given words (Viterbi algorithm)
 - Likelihood (forward algorithm—see advanced slides)
 - Best parameters from unannotated corpus (forward-backward algorithm, an instance of EM see advanced slides)

Discriminative Sequence Taggers

- The HMM is generative and count-based
- Other approaches to sequence tagging are discriminative feature-based linear models, including:
 - Structured perceptron: mashup of the perceptron and Viterbi!
 - Linear-chain conditional random field (CRF): extension of MaxEnt classification + Viterbi!
 - A separate set of slides introduces these

Advanced Topics

(the following slides are just for people who are interested)

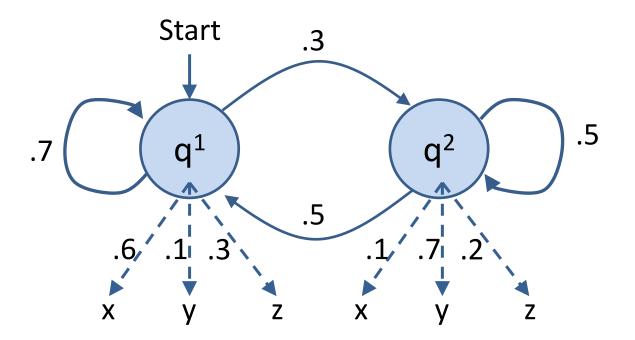
Notation

- Sequence of observations over time o₁, o₂, ..., o_N – here, words in sentence
- Vocabulary size V of possible observations
- Set of possible states q¹, q², ..., q^T (see note next slide)
 here, tags
- A, an T×T matrix of transition probabilities
 a_{ij}: the prob of transitioning from state i to j.
- B, an T×V matrix of output probabilities
 - $-b_i(o_t)$: the prob of emitting o_t from state i.

Note on notation

- J&M use q₁, q₂, ..., q_N for set of states, but *also* use q₁, q₂, ..., q_N for state sequence over time.
 - So, just seeing q_1 is ambiguous (though usually disambiguated from context).
 - I'll instead use q^i for state names, and q_n for state at time n.
 - So we could have $q_n = q^i$, meaning: the state we're in at time n is q^i .

HMM example w/ new notation



- States {q¹, q²} (or {<s>, q¹, q²}): think *NN*, *VB*
- Output symbols {x, y, z}: think chair, dog, help

Adapted from Manning & Schuetze, Fig 9.2

HMM example w/ new notation

• A possible sequence of outputs for this HMM:

zyyxyzxzz

• A possible sequence of states for this HMM:

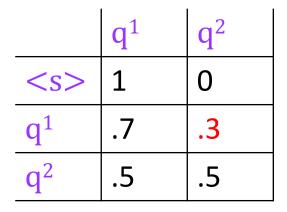
 $q^1 q^2 q^2 q^1 q^1 q^1 q^2 q^1 q^1 q^1$

• For these examples, N = 9, $q_3 = q^2$ and $o_3 = y$

Transition and Output Probabilities

• Transition matrix A: $a_{ij} = P(q^j | q^i)$

Ex: $P(q_n = q^2 | q_{n-1} = q^1) = .3$



• Output matrix B: $b_i(o) = P(o | q^i)$

	X	у	Z
q ¹	.6	.1	.3
q ²	.1	.7	.2

Ex: $P(o_n = y | q_n = q^1) = .1$

Forward algorithm

 Use a table with cells α(j,t): the probability of being in state j after seeing o₁...o_t (forward probability).

$$\alpha(j,t) = P(o_1, o_2, \dots ot, qt = j|\lambda)$$

• Fill in columns from left to right, with

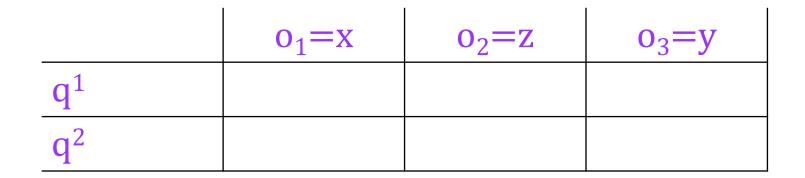
$$\alpha(j,t) = \sum_{i=1}^{N} \alpha(i,t-1) \cdot a_{ij} \cdot b_j(o_t)$$

- Same as Viterbi, but sum instead of max (and no backtrace).

Note: because there's a sum, we can't use the trick that replaces probs with costs. For implementation info, see <u>http://digital.cs.usu.edu/~cyan/CS7960/hmm-tutorial.pdf</u> and <u>http://stackoverflow.com/questions/13391625/underflow-in-forward-algorithm-for-hmms</u>.

Example

• Suppose O=xzy. Our initially empty table:



Filling the first column

	o ₁ =x	$o_2 = z$	o ₃ =y
q ¹	.6		
q ²	0		

 $\alpha(1,1) = a_{<s>1} \cdot b_1(x) = (1)(.6)$ $\alpha(2,1) = a_{<s>2} \cdot b_2(x) = (0)(.1)$

Starting the second column

	o ₁ =x	$o_2 = z$	o ₃ =y
q ¹	.6	.126	
q ²	0		

$$\alpha(1,2) = \sum_{i=1}^{N} \alpha(i,1) \cdot a_{i1} \cdot b_{1(Z)}$$

= $\alpha(1,1) \cdot a_{11} \cdot b_{1}(Z) + \alpha(2,1) \cdot a_{21} \cdot b_{1}(Z)$
= $(.6)(.7)(.3) + (0)(.5)(.3)$
= .126

Finishing the second column

	o ₁ =x	$o_2 = z$	o ₃ =y
q ¹	.6	.126	
q ²	0	.036	

$$\alpha(2,2) = \sum_{i=1}^{N} \alpha(i,1) \cdot a_{i2} \cdot b_{2(Z)}$$

= $\alpha(1,1) \cdot a_{12} \cdot b_{2}(Z) + \alpha(2,1) \cdot a_{22} \cdot b_{2}(Z)$
= $(.6)(.3)(.2) + (0)(.5)(.2)$
= $.036$

Third column and finish

	o ₁ =x	$o_2 = z$	o ₃ =y
q^1	.6	.126	.01062
q ²	0	.036	.03906

• Add up all probabilities in last column to get the probability of the entire sequence:

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha(i,T)$$

Learning

- Given only the output sequence, learn the best set of parameters $\lambda = (A, B)$.
- Assume 'best' = maximum-likelihood.
- Other definitions are possible, won't discuss here.

Unsupervised learning

- Training an HMM from an annotated corpus is simple.
 - Supervised learning: we have examples labelled with the right 'answers' (here, tags): no hidden variables in training.
- Training from unannotated corpus is trickier.
 - Unsupervised learning: we have no examples labelled with the right 'answers': all we see are outputs, state sequence is hidden.

Circularity

• If we know the state sequence, we can find the best λ . - E.g., use MLE: $P(q^j | qi) = \frac{C(qi \rightarrow qj)}{C(qi)}$

If we know λ, we can find the best state sequence.
 – use Viterbi

• But we don't know either!

Expectation-maximization (EM)

As in spelling correction, we can use EM to bootstrap, iteratively updating the parameters and hidden variables.

- Initialize parameters $\lambda^{(0)}$
- At each iteration k,
 - E-step: Compute expected counts using $\lambda^{(k-1)}$
 - M-step: Set $\lambda^{(k)}$ using MLE on the expected counts
- Repeat until λ doesn't change (or other stopping criterion).

Expected counts??

Counting transitions from $q^i \rightarrow q^j$:

- Real counts:
 - count 1 each time we see $q^i \rightarrow q^j$ in true tag sequence.
- Expected counts:
 - With current λ , compute probs of all possible tag sequences.
 - If sequence Q has probability p, count p for each $q^i \rightarrow q^j$ in Q.
 - Add up these fractional counts across all possible sequences.

Example

• Notionally, we compute expected counts as follows:

Possible sequence				Probability of sequence
Q ₁ =	\mathbf{q}^1	\mathbf{q}^{1}	\mathbf{q}^{1}	p ₁
$Q_2 =$	\mathbf{q}^1	q^2	\mathbf{q}^{1}	\mathbf{p}_2
$Q_3 =$	\mathbf{q}^1	\mathbf{q}^{1}	\mathbf{q}^2	p ₃
$Q_4 =$	\mathbf{q}^1	q^2	q^2	\mathbf{p}_4
Observs:	X	Ζ	У	

Example

• Notionally, we compute expected counts as follows:

Possible sequence				Probability of sequence
$Q_1 =$	q ¹	q	q1	\mathbf{p}_1
$Q_2 =$	q^1	q^2	\mathbf{q}^{1}	\mathbf{p}_2
$Q_3 =$	q^1	q	q^2	\mathbf{p}_3
$Q_4 =$	q^1	q^2	q^2	p ₄
Observs:	X	Z	У	

$$\hat{C}(q^1 \rightarrow q^1) = 2p_1 + p_3$$

Forward-Backward algorithm

- As usual, avoid enumerating all possible sequences.
- Forward-Backward (Baum-Welch) algorithm computes expected counts using forward probabilities and backward probabilities:

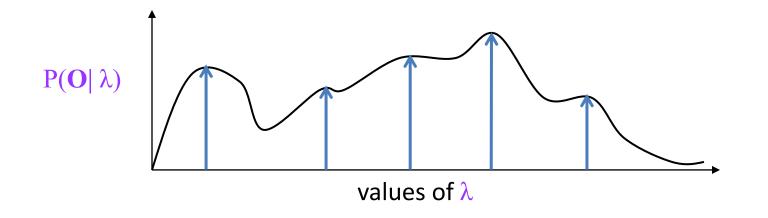
$$\beta(j,t) = P(qt = j, o_{t+1}, o_{t+2}, \dots oT | \lambda)$$

– Details, see J&M 6.5

• EM idea is much more general: can use for many latent variable models.

Guarantees

• EM is guaranteed to find a **local** maximum of the likelihood.



- Not guaranteed to find **global** maximum.
- Practical issues: initialization, random restarts, early stopping.
 Fact is, it doesn't work well for learning POS taggers!