Empirical Methods in Natural Language Processing Lecture 3 N-gram Language Models

(most slides from Sharon Goldwater; some adapted from Alex Lascarides)
20 January 2022

Recap

- Previously, we talked about corpus data and some of the information we can get from it, like word frequencies.
- For some tasks, like sentiment analysis, word frequencies alone can work pretty well (though can certainly be improved on).
- For other tasks, we need more.
- Today we consider sentence probabilities: what are they, why are they useful, and how might we compute them?

Review: Word-based sentiment

- Recall that we can predict sentiment for a document based on counting positive and negative words.
- Do you think the following words would be positive or negative in a movie review?
- OK
- Action
- Star

N-grams

- In some cases, looking at more than one word at a time might be more informative.
- action movie vs. action packed
- Star Wars vs. star studded
- An n-gram is a word sequence of length n.
- 1-gram or unigram: action
- 2-gram or bigram: action packed
- 3-gram or trigram: action packed adventure
- 4-gram: action packed adventure film

N -grams

The Force Awakens brings back the Old Trilogy 's heart, humor, mystery, and fun.

How many:

- Unigrams?
- Bigrams?
- Trigrams?

Character N-grams

- A character n-gram applies the same idea to characters rather than words.
- E.g. unnatural has character bigrams un, nn, na, . . . , al
- Why might this concept be useful for NLP?

Towards Sentence Probabilities

- "Probability of a sentence" = how likely is it to occur in natural language
- Consider only a specific language (English)
$\mathrm{P}($ the cat slept peacefully $)>\mathrm{P}($ slept the peacefully cat $)$
P (she studies morphosyntax $)>\mathrm{P}($ she studies more faux syntax $)$

Language models in NLP

- It's very difficult to know the true probability of an arbitrary sequence of words.
- But we can define a language model that will give us good approximations.
- Like all models, language models will be good at capturing some things and less good for others.
- We might want different models for different tasks.
- Today, one type of language model: an N -gram model.

Spelling correction

Sentence probabilities help decide correct spelling. mis-spelled text
\downarrow
possible outputs
best-guess output
(Error model)
no much effect
so much effort
no much effort
not much effort
(Language model)
\downarrow
not much effort

Automatic speech recognition

Sentence probabilities help decide between similar-sounding options. speech input

\downarrow	(Acoustic model)	
possible outputs		She studies morphosyntax
		She studies more faux syntax She's studies morph or syntax
\downarrow	(Language model)	
best-guess output		She studies morphosyntax

Machine translation

Sentence probabilities help decide word choice and word order. non-English input

\downarrow	(Translation model)	
possible outputs		She is going home
		She is going house
	She is traveling to home	
	To home she is going	
	(Language model)	\cdots

LMs for prediction

- LMs can be used for prediction as well as correction.
- Ex: predictive text correction/completion on your mobile phone.
- Keyboard is tiny, easy to touch a spot slightly off from the letter you meant.
- Want to correct such errors as you go, and also provide possible completions. Predict as as you are typing: ineff...
- In this case, LM may be defined over sequences of characters instead of (or in addition to) sequences of words.

But how to estimate these probabilities?

- We want to know the probability of word sequence $\vec{w}=w_{1} \ldots w_{n}$ occurring in English.
- Assume we have some training data: large corpus of general English text.
- We can use this data to estimate the probability of \vec{w} (even if we never see it in the corpus!)

Probability theory vs estimation

- Probability theory can solve problems like:
- I have a jar with 6 blue marbles and 4 red ones.
- If I choose a marble uniformly at random, what's the probability it's red?

Probability theory vs estimation

- Probability theory can solve problems like:
- I have a jar with 6 blue marbles and 4 red ones.
- If I choose a marble uniformly at random, what's the probability it's red?
- But often we don't know the true probabilities, only have data:
- I have a jar of marbles.
- I repeatedly choose a marble uniformly at random and then replace it before choosing again.
- In ten draws, I get 6 blue marbles and 4 red ones.
- On the next draw, what's the probability I get a red marble?
- The latter also requires estimation theory.

Notation

- I will often omit the random variable in writing probabilities, using $P(x)$ to mean $P(X=x)$.
- When the distinction is important, I will use
- $P(x)$ for true probabilities
- $\hat{P}(x)$ for estimated probabilities
- $P_{\mathrm{E}}(x)$ for estimated probabilities using a particular estimation method E.
- But since we almost always mean estimated probabilities, may get lazy later and use $P(x)$ for those too.

Example estimation: M\&M colors

What is the proportion of each color of M\&M?

- In 48 packages, I find ${ }^{1} 2620 \mathrm{M} \& M \mathrm{M}$, as follows:

Red	Orange	Yellow	Green	Blue	Brown
372	544	369	483	481	371

- How to estimate probability of each color from this data?
${ }^{1}$ Actually, data from: https://joshmadison.com/2007/12/02/mms-color-distribution-analysis/

Relative frequency estimation

- Intuitive way to estimate discrete probabilities:

$$
P_{\mathrm{RF}}(x)=\frac{C(x)}{N}
$$

where $C(x)$ is the count of x in a large dataset, and
$N=\sum_{x^{\prime}} C\left(x^{\prime}\right)$ is the total number of items in the dataset.

Relative frequency estimation

- Intuitive way to estimate discrete probabilities:

$$
P_{\mathrm{RF}}(x)=\frac{C(x)}{N}
$$

where $C(x)$ is the count of x in a large dataset, and
$N=\sum_{x^{\prime}} C\left(x^{\prime}\right)$ is the total number of items in the dataset.

- $\mathrm{M} \& \mathrm{M}$ example: $P_{\mathrm{RF}}($ red $)=\frac{372}{2620}=.142$
- This method is also known as maximum-likelihood estimation (MLE) for reasons we'll get back to.

MLE for sentences?

Can we use MLE to estimate the probability of \vec{w} as a sentence of English? That is, the prob that some sentence S has words \vec{w} ?

$$
P_{\mathrm{MLE}}(S=\vec{w})=\frac{C(\vec{w})}{N}
$$

where $C(\vec{w})$ is the count of \vec{w} in a large dataset, and N is the total number of sentences in the dataset.

Sentences that have never occurred

the Archaeopteryx soared jaggedly amidst foliage
vs
jaggedly trees the on flew

- Neither ever occurred in a corpus (until I wrote these slides).
$\Rightarrow C(\vec{w})=0$ in both cases: MLE assigns both zero probability.
- But one is grammatical (and meaningful), the other not.
\Rightarrow Using MLE on full sentences doesn't work well for language model estimation.

The problem with MLE

- MLE thinks anything that hasn't occurred will never occur $(P=0)$.
- Clearly not true! Such things can have differering, and non-zero, probabilities:
- My hair turns blue
- I injure myself in a skiing accident
- I travel to Finland
- And similarly for word sequences that have never occurred.

Sparse data

- In fact, even things that occur once or twice in our training data are a problem. Remember these words from Europarl?
cornflakes, mathematicians, pseudo-rapporteur, lobby-ridden, Lycketoft, UNCITRAL, policyfor, Commissioneris, 145.95

All occurred once. Is it safe to assume all have equal probability?

- This is a sparse data problem: not enough observations to estimate probabilities well. (Unlike the M\&Ms, where we had large counts for all colours!)
- For sentences, many (most!) will occur rarely if ever in our training data. So we need to do something smarter.

Towards better LM probabilities

- One way to try to fix the problem: estimate $P(\vec{w})$ by combining the probabilities of smaller parts of the sentence, which will occur more frequently.
- This is the intuition behind \mathbf{N}-gram language models.

Deriving an N -gram model

- We want to estimate $P\left(S=w_{1} \ldots w_{n}\right)$.
- Ex: $P(S=$ the cat slept quietly).
- This is really a joint probability over the words in S : $P\left(W_{1}=\right.$ the, $W_{2}=$ cat, $W_{3}=$ slept,$\ldots W_{4}=$ quietly $)$.
- Concisely, P (the, cat, slept, quietly) or $P\left(w_{1}, \ldots w_{n}\right)$.

Deriving an N -gram model

- We want to estimate $P\left(S=w_{1} \ldots w_{n}\right)$.
- Ex: $P(S=$ the cat slept quietly).
- This is really a joint probability over the words in S : $P\left(W_{1}=\right.$ the, $W_{2}=$ cat, $W_{3}=$ slept, $\ldots W_{4}=$ quietly $)$.
- Concisely, P (the, cat, slept, quietly) or $P\left(w_{1}, \ldots w_{n}\right)$.
- Recall that for a joint probability, $P(X, Y)=P(Y \mid X) P(X)$. So, $P($ the, cat, slept, quietly $)=P($ quietly \mid the, cat, slept $) P($ the, cat, slept $)$
$=P$ (quietly \mid the, cat, slept $) P($ slept \mid the, cat $) P($ the, cat $)$
$=P($ quietly \mid the, cat, slept $) P($ slept \mid the, cat $) P($ cat \mid the $) P($ the $)$

Deriving an N -gram model

- More generally, the chain rule gives us:

$$
P\left(w_{1}, \ldots w_{n}\right)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right)
$$

- But many of these conditional probs are just as sparse!
- If we want P (I spent three years before the mast)...
- we still need P (mast \mid spent three years before the).

Deriving an N -gram model

- So we make an independence assumption: the probability of a word only depends on a fixed number of previous words (history).
- trigram model: $P\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)$
- bigram model: $P\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-1}\right)$
- unigram model: $P\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right) \approx P\left(w_{i}\right)$
- In our example, a trigram model says
$-P($ mast $\mid I$ spent three years before the $) \approx P($ mast \mid before the $)$

Trigram independence assumption

- Put another way, trigram model assumes these are all equal:
- P (mast $\mid I$ spent three years before the)
- P (mast|I went home before the)
- P (mast|I saw the sail before the)
- P (mast|l revised all week before the)
because all are estimated as P (mast|before the)
- Also called a Markov assumption

Andrey Markov \rightarrow

- Not always a good assumption! But it does reduce the sparse data problem.

Estimating trigram conditional probs

- We still need to estimate P (mast|before, the): the probability of mast given the two-word history before, the
- If we use relative frequencies (MLE), we consider:
- Out of all cases where we saw before, the as the first two words of a trigram,
- how many had mast as the third word?

Estimating trigram conditional probs

- So, in our example, we'd estimate

$$
P_{M L E}(\text { mast } \mid \text { before }, \text { the })=\frac{C(\text { before }, \text { the }, \text { mast })}{C(\text { before }, \text { the })}
$$

where $C(x)$ is the count of x in our training data.

- More generally, for any trigram we have

$$
P_{M L E}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)}{C\left(w_{i-2}, w_{i-1}\right)}
$$

Example from Moby Dick corpus

$$
\begin{aligned}
C(\text { before }, \text { the }) & =55 \\
\text { fore, } \text { the } \text { mast }) & =4
\end{aligned} \quad \frac{C(\text { before, } \text { the }, \text { mast })}{C(\text { before }, \text { the })}=0.0727
$$

- mast is the second most common word to come after before the in Moby Dick; wind is the most frequent word.
- $P_{M L E}($ mast $)$ is 0.00049 , and $P_{M L E}($ mast \mid the $)$ is 0.0029 .
- So seeing before the vastly increases the probability of seeing mast next.

Trigram model: summary

- To estimate $P(\vec{w})$, use chain rule and make an indep. assumption:

$$
\begin{aligned}
P\left(w_{1}, \ldots w_{n}\right) & =\prod_{i=1}^{n} P\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right) \\
& \approx P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) \prod_{i=3}^{n} P\left(w_{i} \mid w_{i-2}, w_{w-1}\right)
\end{aligned}
$$

- Then estimate each trigram prob from data (here, using MLE):

$$
P_{M L E}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)}{C\left(w_{i-2}, w_{i-1}\right)}
$$

- On your own: work out the equations for other N-grams (e.g., bigram, unigram).

Practical details (1)

- Trigram model assumes two word history:

$$
P(\vec{w})=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) \prod_{i=3}^{n} P\left(w_{i} \mid w_{i-2}, w_{w-1}\right)
$$

- But consider these sentences:

	w_{1}	w_{2}	w_{3}	w_{4}
(1)	he	saw	the	yellow
(2)	feeds	the	cats	daily

- What's wrong? Does the model capture these problems?

Beginning/end of sequence

- To capture behaviour at beginning/end of sequences, we can augment the input:

	w_{-1}	w_{0}	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}
(1)	$<$ s $>$	$<$ s $>$	he	saw	the	yellow	$</ \mathrm{s}\rangle$
(2)	$<$ s $>$	$<$ s $>$	feeds	the	cats	daily	$</ \mathrm{s}>$

- That is, assume $w_{-1}=w_{0}=\langle s\rangle$ and $w_{n+1}=\langle/ \mathbf{s}\rangle$ so:

$$
P(\vec{w})=\prod_{i=1}^{n+1} P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)
$$

- Now, $P(</ \mathrm{s}\rangle \mid$ the , yellow $)$ is low, indicating this is not a good sentence.

Beginning/end of sequence

- Alternatively, we could model all sentences as one (very long) sequence, including punctuation:
two cats live in sam 's barn . sam feeds the cats daily . yesterday, he saw the yellow cat catch a mouse . [...]
- Now, trigrams like $P(. \mid$ cats daily $)$ and $P(, \mid$. yesterday $)$ tell us about behavior at sentence edges.
- Here, all tokens are lowercased. What are the pros/cons of not doing that?

Practical details (2)

- Word probabilities are typically very small.
- Multiplying lots of small probabilities quickly gets so tiny we can't represent the numbers accurately, even with double precision floating point.
- So in practice, we typically use negative log probabilities (sometimes called costs):
- Since probabilities range from 0 to 1 , negative log probs range from 0 to ∞ : lower cost $=$ higher probability.
- Instead of multiplying probabilities, we add neg log probabilities.

Interim Summary: N-gram probabilities

- "Probability of a sentence": how likely is it to occur in natural language? Useful in many natural language applications.
- We can never know the true probability, but we may be able to estimate it from corpus data.
- N-gram models are one way to do this:
- To alleviate sparse data, assume word probs depend only on short history.
- Tradeoff: longer histories may capture more, but are also more sparse.
- So far, we estimated N -gram probabilites using MLE.

Interim Summary: Language models

- Language models tell us $P(\vec{w})=P\left(w_{1} \ldots w_{n}\right)$: How likely to occur is this sequence of words?

Roughly: Is this sequence of words a "good" one in my language?

- LMs are used as a component in applications such as speech recognition, machine translation, and predictive text completion.
- To reduce sparse data, N -gram LMs assume words depend only on a fixedlength history, even though we know this isn't true.

Coming up next:

- Weaknesses of MLE and ways to address them (more issues with sparse data).
- How to evaluate a language model: are we estimating sentence probabilities accurately?

Evaluating a language model

- Intuitively, a trigram model captures more context than a bigram model, so should be a "better" model.
- That is, it should more accurately predict the probabilities of sentences.
- But how can we measure this?

Two types of evaluation in NLP

- Extrinsic: measure performance on a downstream application.
- For LM, plug it into a machine translation/ASR/etc system.
- The most reliable evaluation, but can be time-consuming.
- And of course, we still need an evaluation measure for the downstream system!
- Intrinsic: design a measure that is inherent to the current task.
- Can be much quicker/easier during development cycle.
- But not always easy to figure out what the right measure is: ideally, one that correlates well with extrinsic measures.

Let's consider how to define an intrinsic measure for LMs.

Entropy

- Definition of the entropy of a random variable X :

$$
H(X)=\sum_{x}-P(x) \log _{2} P(x)
$$

- Intuitively: a measure of uncertainty/disorder
- Also: the expected value of $-\log _{2} P(X)$

Entropy Example

One event (outcome)

$$
P(a)=1
$$

$$
\begin{aligned}
H(X) & =-1 \log _{2} 1 \\
& =0
\end{aligned}
$$

Entropy Example

2 equally likely events:

$$
\begin{aligned}
& P(a)=0.5 \\
& P(b)=0.5
\end{aligned}
$$

$$
\begin{aligned}
H(X) & =-0.5 \log _{2} 0.5-0.5 \log _{2} 0.5 \\
& =-\log _{2} 0.5 \\
& =1
\end{aligned}
$$

Entropy Example

4 equally likely events:

$$
\begin{aligned}
& P(a)=0.25 \\
& P(b)=0.25 \\
& P(c)=0.25 \\
& P(d)=0.25
\end{aligned}
$$

$$
\begin{aligned}
H(X)= & -0.25 \log _{2} 0.25-0.25 \log _{2} 0.25 \\
& -0.25 \log _{2} 0.25-0.25 \log _{2} 0.25 \\
= & -\log _{2} 0.25 \\
= & 2
\end{aligned}
$$

Entropy Example

3 equally likely events and one more

$$
\begin{aligned}
& P(a)=0.7 \\
& P(b)=0.1 \\
& P(c)=0.1 \\
& P(d)=0.1
\end{aligned}
$$ likely than the others:

$$
\begin{aligned}
H(X)= & -0.7 \log _{2} 0.7-0.1 \log _{2} 0.1 \\
& -0.1 \log _{2} 0.1-0.1 \log _{2} 0.1 \\
= & -0.7 \log _{2} 0.7-0.3 \log _{2} 0.1 \\
= & -(0.7)(-0.5146)-(0.3)(-3.3219) \\
= & 0.36020+0.99658 \\
= & 1.35678
\end{aligned}
$$

Entropy Example

$$
\begin{aligned}
& P(a)=0.97 \\
& P(b)=0.01 \\
& P(c)=0.01 \\
& P(d)=0.01
\end{aligned}
$$

3 equally likely events and one much more likely than the others:

$$
\begin{aligned}
H(X)= & -0.97 \log _{2} 0.97-0.01 \log _{2} 0.01 \\
& -0.01 \log _{2} 0.01-0.01 \log _{2} 0.01 \\
= & -0.97 \log _{2} 0.97-0.03 \log _{2} 0.01 \\
= & -(0.97)(-0.04394)-(0.03)(-6.6439) \\
= & 0.04262+0.19932 \\
= & 0.24194
\end{aligned}
$$

$$
H(X)=3
$$

$$
H(X)=1.35678
$$

Entropy as y/n questions

How many yes-no questions (bits) do we need to find out the outcome?

- Uniform distribution with 2^{n} outcomes: n q's.
- Other cases: entropy is the average number of questions per outcome in a (very) long sequence of outcomes, where questions can consider multiple outcomes at once.

Entropy as encoding sequences

- Assume that we want to encode a sequence of events X.
- Each event is encoded by a sequence of bits, we want to use as few bits as possible.
- For example
- Coin flip: heads $=0$, tails $=1$
-4 equally likely events: $a=00, b=01, c=10, d=11$
- 3 events, one more likely than others: $a=0, b=10, c=11$
- Morse code: e has shorter code than q
- Average number of bits needed to encode $X \geq$ entropy of X

The Entropy of English

- Given the start of a text, can we guess the next word?
- For humans, the measured entropy is only about 1.3.
- Meaning: on average, given the preceding context, a human would need only $1.3 \mathrm{y} / \mathrm{n}$ questions to determine the next word.
- This is an upper bound on the true entropy, which we can never know (because we don't know the true probability distribution).
- But what about N-gram models?

Cross-entropy

- Our LM estimates the probability of word sequences.
- A good model assigns high probability to sequences that actually have high probability (and low probability to others).
- Put another way, our model should have low uncertainty (entropy) about which word comes next.
- We can measure this using cross-entropy.
- Note that cross-entropy \geq entropy: our model's uncertainty can be no less than the true uncertainty.

Computing cross-entropy

- For $w_{1} \ldots w_{n}$ with large n, per-word cross-entropy is well approximated by:

$$
H_{M}\left(w_{1} \ldots w_{n}\right)=-\frac{1}{n} \log _{2} P_{M}\left(w_{1} \ldots w_{n}\right)
$$

- This is just the average negative log prob our model assigns to each word in the sequence. (i.e., normalized for sequence length).
- Lower cross-entropy \Rightarrow model is better at predicting next word.

Cross-entropy example

Using a bigram model from Moby Dick, compute per-word cross-entropy of I spent three years before the mast (here, without using end-of sentence padding):

$$
\left.\begin{array}{rl}
& -\frac{1}{7}(\quad \\
& \lg _{2}(P(I))+\lg _{2}(P(\text { spent } \mid I))+l g_{2}(P(\text { three } \mid \text { spent }))+\lg _{2}(P(\text { years } \mid \text { three })) \\
& +\lg _{2}(P(\text { before } \mid \text { years }))+\lg _{2}(P(\text { the } \mid \text { before }))+\lg _{2}(P(\text { mast } \mid \text { the }))
\end{array}\right)
$$

- Per-word cross-entropy of the unigram model is about 11 .
- So, unigram model has about 5 bits more uncertainty per word then bigram model. But, what does that mean?

Data compression

- If we designed an optimal code based on our bigram model, we could encode the entire sentence in about 42 bits.
- A code based on our unigram model would require about 77 bits.
- ASCII uses an average of 24 bits per word (168 bits total)!
- So better language models can also give us better data compression: as elaborated by the field of information theory.

Perplexity

- LM performance is often reported as perplexity rather than cross-entropy.
- Perplexity is simply $2^{\text {cross-entropy }}$
- The average branching factor at each decision point, if our distribution were uniform.
- So, 6 bits cross-entropy means our model perplexity is $2^{6}=64$: equivalent uncertainty to a uniform distribution over 64 outcomes.

Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2. Is that good?

Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2. Is that good?

- No way to tell! Cross-entropy depends on both the model and the corpus.
- Some language is simply more predictable (e.g. casual speech vs academic writing).
- So lower cross-entropy could mean the corpus is "easy", or the model is good.
- We can only compare different models on the same corpus.
- Should we measure on training data or held-out data? Why?

Sparse data, again

Suppose now we build a trigram model from Moby Dick and evaluate the same sentence.

- But I spent three never occurs, so $P_{M L E}($ three \mid I spent $)=0$
- which means the cross-entropy is infinite.
- Basically right: our model says I spent three should never occur, so our model is infinitely wrong/surprised when it does!
- Even with a unigram model, we will run into words we never saw before. So even with short N-grams, we need better ways to estimate probabilities from sparse data.

Smoothing

- The flaw of MLE: it estimates probabilities that make the training data maximally probable, by making everything else (unseen data) minimally probable.
- Smoothing methods address the problem by stealing probability mass from seen events and reallocating it to unseen events.
- Lots of different methods, based on different kinds of assumptions. We will discuss just a few.

Add-One (Laplace) Smoothing

- Just pretend we saw everything one more time than we did.

$$
\left.\begin{array}{rl}
P_{\mathrm{ML}}\left(w_{i} \mid w_{i-2}, w_{i-1}\right) & =\frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)}{C\left(w_{i-2}, w_{i-1}\right)} \\
\Rightarrow \quad & P_{+1}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)
\end{array}\right) \frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)+1}{C\left(w_{i-2}, w_{i-1}\right)} .
$$

$$
?
$$

Add-One (Laplace) Smoothing

- Just pretend we saw everything one more time than we did.

$$
\left.\begin{array}{rl}
P_{\mathrm{ML}}\left(w_{i} \mid w_{i-2}, w_{i-1}\right) & =\frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)}{C\left(w_{i-2}, w_{i-1}\right)} \\
\Rightarrow \quad & P_{+1}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)
\end{array}\right) \frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)+1}{C\left(w_{i-2}, w_{i-1}\right)} .
$$

- NO! Sum over possible w_{i} (in vocabulary V) must equal 1 :

$$
\sum_{w_{i} \in V} P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=1
$$

- If increasing the numerator, must change denominator too.

Add-one Smoothing: normalization

- We want:

$$
\sum_{w_{i} \in V} \frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)+1}{C\left(w_{i-2}, w_{i-1}\right)+x}=1
$$

- Solve for x :

$$
\begin{aligned}
\sum_{w_{i} \in V}\left(C\left(w_{i-2}, w_{i-1}, w_{i}\right)+1\right) & =C\left(w_{i-2}, w_{i-1}\right)+x \\
\sum_{w_{i} \in V} C\left(w_{i-2}, w_{i-1}, w_{i}\right)+\sum_{w_{i} \in V} 1 & =C\left(w_{i-2}, w_{i-1}\right)+x \\
C\left(w_{i-2}, w_{i-1}\right)+v & =C\left(w_{i-2}, w_{i-1}\right)+x \\
v & =x
\end{aligned}
$$

where $v=$ vocabulary size.

Add-one example (1)

- Moby Dick has one trigram that begins I spent (it's I spent in) and the vocabulary size is 17231 .
- Comparison of MLE vs Add-one probability estimates:

	MLE	+1
\hat{P} (three \| I spent $)$	0	0.00006
$\hat{P}($ in \mid I spent $)$	1	0.0001

- \hat{P} (in $\mid I$ spent) seems very low, especially since in is a very common word. But can we find better evidence that this method is flawed?

Add-one example (2)

- Suppose we have a more common bigram w_{1}, w_{2} that occurs 100 times, 10 of which are followed by w_{3}.

	MLE	+1
$\hat{P}\left(w_{3} \mid w_{1}, w_{2}\right)$	$\frac{10}{100}$	$\frac{11}{17331}$
		≈ 0.0006

- Shows that the very large vocabulary size makes add-one smoothing steal way too much from seen events.
- In fact, MLE is pretty good for frequent events, so we shouldn't want to change these much.

Add- α (Lidstone) Smoothing

- We can improve things by adding $\alpha<1$.

$$
P_{+\alpha}\left(w_{i} \mid w_{i-1}\right)=\frac{C\left(w_{i-1}, w_{i}\right)+\alpha}{C\left(w_{i-1}\right)+\alpha v}
$$

- Like Laplace, assumes we know the vocabulary size in advance.
- But if we don't, can just add a single "unknown" (UNK) item to the vocabulary, and use this for all unknown words during testing.
- Then: how to choose α ?

Optimizing α (and other model choices)

- Use a three-way data split: training set (80-90\%), held-out (or development) set (5-10\%), and test set (5-10\%)
- Train model (estimate probabilities) on training set with different values of α
- Choose the α that minimizes cross-entropy on development set
- Report final results on test set.
- More generally, use dev set for evaluating different models, debugging, and optimizing choices. Test set simulates deployment, use it only once!
- Avoids overfitting to the training set and even to the test set.

Summary

- We can measure the relative goodness of LMs on the same corpus using cross-entropy: how well does the model predict the next word?
- We need smoothing to deal with unseen N-grams.
- Add-1 and Add- α are simple, but not very good.

Postscript

- There are better smoothing methods for N-gram language models, including one called Kneser-Ney smoothing.
- But neural network language models can do even better without a Markov assumption. (Later in the course.)

