
Lecture	12:

Algorithms	for	HMMs

Nathan	Schneider

(some	slides	from	Sharon	Goldwater;	

thanks	to	Jonathan	May	for	bug	fixes)

ENLP	|	17	October	2016

updated	9	September	2017

Recap:	tagging

• POS	tagging	is	a	sequence	labelling	task.

• We	can	tackle	it	with	a	model	(HMM)	that	

uses	two	sources	of	information:

– The	word	itself
– The	tags	assigned	to	surrounding	words

• The	second	source	of	information	means	we	

can’t	just	tag	each	word	independently.

Local	Tagging

<s> one dog bit </s>
<s> CD NN NN </s>

NN VB VBD

PRP

Possible	tags:	

(ordered	by	

frequency	for	

each	word)

Words:

• Choosing	the	best	tag	for	each	word	independently,	

i.e.	not	considering	tag	context,	gives	the	wrong	

answer	(<s>	CD	NN	NN	</s>).

• Though	NN	is	more	frequent	for	‘bit’,	tagging	it	as	

VBD	may	yield	a	better	sequence
(<s>	CD	NN	VB	</s>)	

– because	P(VBD|NN) and	P(</s>|VBD)	are	high.

Recap:	HMM

• Elements	of	HMM:

– Set	of	states	(tags)
– Output	alphabet	(word	types)
– Start	state	(beginning	of	sentence)
– State	transition	probabilities	P(ti |	ti-1)
– Output	probabilities	from	each	state	P(wi |	ti)

Recap:	HMM

• Given	a	sentence	W=w1…wn with	tags	T=t1…tn,	
compute	P(W,T) as:

• But	we	want	to	find	 without	

enumerating	all	possible	tag	sequences T
– Use	a	greedy	approximation,	or

– Use	Viterbi	algorithm	to	store	partial	computations.

-(.,/) =0- 12 32 - 32 3245

6

275

argmax/ -(/|.)

Greedy	Tagging

<s> one dog bit </s>
<s> CD NN NN </s>

NN VB VBD

PRP

Possible	tags:	

(ordered	by	

frequency	for	

each	word)

Words:

• For	i =	1	to	N:	choose	the	tag	that	maximizes	

– transition	probability	- 32 3245 	×
– emission	probability	- 12 32

• This	uses	tag	context	but	is	still	suboptimal.	Why?

– It	commits	to	a	tag	before	seeing	subsequent	tags.

– It	could	be	the	case	that	ALL	possible	next	tags	have	low	

transition	probabilities.	E.g.,	if	a	tag	is	unlikely	to	occur	at	the	

end	of	the	sentence,	that	is	disregarded	when	going	left	to	right.

Greedy	vs.	Dynamic	Programming

• The	greedy	algorithm	is	fast:	we	just	have	to	
make	one	decision	per	token,	and	we’re	done.

– Runtime	complexity?

– @(AB) with	A tags,	length-B sentence

• But	subsequent	words	have	no	effect	on	each	

decision,	so	the	result	is	likely	to	be	suboptimal.

• Dynamic	programming	search	gives	an	optimal
global	solution,	but	requires	some	bookkeeping	

(=	more	computation).	Postpones	decision	about	

any	tag	until	we	can	be	sure	it’s	optimal.

Viterbi	Tagging:	intuition

<s> one dog bit </s>
<s> CD NN NN </s>

NN VB VBD

PRP

Possible	tags:	

(ordered	by	

frequency	for	

each	word)

Words:

• Suppose	we	have	already	computed

a) The	best	tag	sequence	for	<s> … bit that	ends	in	NN.
b) The	best	tag	sequence	for	<s> … bit that	ends	in	VBD.

• Then,	the	best	full	sequence	would	be	either

– sequence	(a)	extended	to	include	</s>,	or

– sequence	(b)	extended	to	include	</s>.

Viterbi	Tagging:	intuition

<s> one dog bit </s>
<s> CD NN NN </s>

NN VB VBD

PRP

Possible	tags:	

(ordered	by	

frequency	for	

each	word)

Words:

• But	similarly,	to	get

a) The	best	tag	sequence	for	<s> … bit that	ends	in	NN.

• We	could	extend	one	of:

– The	best	tag	sequence	for	<s> … dog that	ends	in	NN.
– The	best	tag	sequence	for	<s> … dog that	ends	in	VB.

• And	so	on…

Viterbi:	high-level	picture

• Intuition:	the	best	path	of	length	i ending	in	state	t
must	include	the	best	path	of	length	i−1 to	the	
previous	state.	So,

– Find	the	best	path	of	length	i−1 to	each	state.

– Consider	extending	each	of	those	by	1	step,	to	state	t.
– Take	the	best	of	those	options	as	the	best	path	to	state	t.

Viterbi:	high-level	picture

• Want	to	find	

• Intuition:	the	best	path	of	length	i ending	in	state	t
must	include	the	best	path	of	length	i-1 to	the	
previous	state.	So,

– Find	the	best	path	of	length	i-1 to	each	state.

– Consider	extending	each	of	those	by	1	step,	to	state	t.
– Take	the	best	of	those	options	as	the	best	path	to	state	t.

argmax/ -(/|.)

Viterbi	algorithm

• Use	a	chart to	store	partial	results	as	we	go	
– T	× N	table,	where	b 3, c is	the	probability*	of	the	best	

state	sequence	for	w1…wi that	ends	in	state	t.

*Specifically,	v(t,i)	stores	the	max	of	the	joint	probability	P(w1…wi,t1…ti-1,ti=t|λ)

Viterbi	algorithm

• Use	a	chart to	store	partial	results	as	we	go	
– T	× N	table,	where	b 3, c is	the	probability*	of	the	best	

state	sequence	for	w1…wi that	ends	in	state	t.

• Fill	in	columns	from	left	to	right,	with

– The	max	is	over	each	possible	previous	tag	3d

• Store	a	backtrace to	show,	for	each	cell,	which	state	
at	c − 1 we	came	from.

b 3, c = maxUf b 3′, c − 1 [-(3|3′) [- 12|32

*Specifically,	v(t,i)	stores	the	max	of	the	joint	probability	P(w1…wi,t1…ti-1,ti=t|λ)

Transition	and	Output	Probabilities
Transition	matrix:	P(ti |	ti-1):

Emission	matrix:	P(wi |	ti):

Noun Verb Det Prep Adv </s>
<s> .3 .1 .3 .2 .1 0

Noun .2 .4 .01 .3 .04 .05

Verb .3 .05 .3 .2 .1 .05

Det .9 .01 .01 .01 .07 0

Prep .4 .05 .4 .1 .05 0

Adv .1 .5 .1 .1 .1 .1

a cat doctor in is the very
Noun 0 .5 .4 0 0.1 0 0

Verb 0 0 .1 0 .9 0 0

Det .3 0 0 0 0 .7 0

Prep 0 0 0 1.0 0 0 0

Adv 0 0 0 .1 0 0 .9

Example

Suppose	W=the	doctor	is	in.	Our	initially	empty	

table:

v w1=the w2=doctor w3=is w4=in </s>
Noun
Verb
Det
Prep
Adv

Filling	in	the	first	column

Suppose	W=the	doctor	is	in.	Our	initially	empty	

table:

b Noun, the = - Noun <s> -(the|Noun)=.3(0)
…

v w1=the w2=doctor w3=is w4=in </s>
Noun 0

Verb 0

Det .21

Prep 0

Adv 0

b Det, the 			= - Det <s>)	-(the|Det =.3(.7)

The	second	column

- Noun Det)	-(doctor|Noun =.3(.4)

b Noun, doctor
= maxUf b 3d, the [-(Noun|3′) [-(doctor|Noun)	

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 ?

Verb 0

Det .21

Prep 0

Adv 0

The	second	column

- Noun Det)	-(doctor|Noun =.9(.4)

b Noun, doctor
= maxUf b 3d, the [-(Noun|3′) [-(doctor|Noun)	
=	max	{	0,	0,	.21(.36),	0,	0	}	=	.0756

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756

Verb 0

Det .21

Prep 0

Adv 0

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756

Verb 0 .00021

Det .21

Prep 0

Adv 0

The	second	column

- Verb Det)	-(doctor|Verb =.01(.1)

b Verb, doctor
= maxUf b 3d, the [-(Verb|3′) [-(doctor|Verb)	
=	max	{	0,	0,	.21(.001),	0,	0	}	=	.00021

The	second	column

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756

Verb 0 .00021

Det .21 0

Prep 0 0

Adv 0 0

- Verb Det)	-(doctor|Verb =.01(.1)

b Verb, doctor
= maxUf b 3d, the [-(Verb|3′) [-(doctor|Verb)	
=	max	{	0,	0,	.21(.001),	0,	0	}	=	.00021

The	third	column

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512

Verb 0 .00021

Det .21 0

Prep 0 0

Adv 0 0

- Noun Noun)	-(is|Noun =.2(.1)=.02

b Noun, is
= maxUf b 3d, doctor [-(Noun|3′) [-(is|Noun)	
=	max	{	.0756(.02),	.00021(.03),	0,	0,	0	}	=	.001512

- Noun Verb)	-(is|Noun =.3(.1)=.03

The	third	column

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512

Verb 0 .00021 .027216

Det .21 0 0

Prep 0 0 0

Adv 0 0 0

- Verb Noun)	-(is|Verb =.4(.9)=.36

b Verb, is
= maxUf b 3d, doctor [-(Verb|3′) [-(is|Verb)	
=	max	{	.0756(.36),	.00021(.045),	0,	0,	0	}	=	.027216

- Verb Verb)	-(is|Verb =.05(.9)=.045

The	fourth	column

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0

- Prep Noun)	-(in|Prep =.3(1.0)

b Prep, in
= maxUf b 3d, is [-(Prep|3′) [-(in|Prep)	
=	max	{	.001512(.3),	.027216(.2),	0,	0,	0	}	=	.005443

- Prep Verb)	-(in|Prep =.2(1.0)

The	fourth	column

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

- Adv Noun)	-(in|Adv =.04(.1)

b Prep, in
= maxUf b 3d, is [-(Prep|3′) [-(in|Prep)	
=	max	{	.000504(.004),	.027216(.01),	0,	0,	0	}	=	.000272

- Adv Verb)	-(in|Adv =.1(.1)

End	of	sentence

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

.000027

2

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

- </s> Prep =0

b </s>
= maxUf b 3d, in [-(</s>|3′)		
=	max	{	0,	0,	0,	.005443(0),	.000272(.1)	}	=	.0000272

- </s> Adv =.1

Completed	Viterbi	Chart

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

.000027

2

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

Following	the	Backtraces

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

.000027

2

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

Following	the	Backtraces

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

.000027

2

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

Following	the	Backtraces

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

.000027

2

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

Following	the	Backtraces

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

.000027

2

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

Det Noun Verb Prep

Implementation	and	efficiency

• For	sequence	length	N with	T possible	tags,	

– Enumeration	takes	O(TN) time	and	O(N) space.
– Bigram	Viterbi	takes	O(T2N) time	and	O(TN) space.
– Viterbi	is	exhaustive:	further	speedups	might	be	had	

using	methods	that	prune	the	search	space.

• As	with	N-gram	models,	chart	probs get	really	

tiny	really	fast,	causing	underflow.

– So,	we	use	costs (neg log	probs)	instead.
– Take	minimum	over	sum	of	costs,	instead	of	maximum	

over	product	of	probs.

Higher-order	Viterbi

• For	a	tag	trigrammodel	with	T possible	tags,	

we	effectively	need	T2 states

– n-gram	Viterbi	requires	Tn-1 states,	takes	O(TnN)
time	and	O(Tn-1N) space.

Noun Verb

Verb	PrepVerb	Noun

Verb	Verb

Verb	</s>

HMMs:	what	else?

• Using	Viterbi,	we	can	find	the	best	tags	for	a	

sentence	(decoding),	and	get	-(.,/).

• We	might	also	want	to

– Compute	the	likelihood -(.),	i.e.,	the	probability	of	a	
sentence	regardless	of	its	tags	(a	language	model!)

– learn the	best	set	of	parameters	(transition	&	emission	

probs.)	given	only	an	unannotated corpus	of	sentences.

Computing	the	likelihood

• From	probability	theory,	we	know	that

• There	are	an	exponential	number	of	Ts.

• Again,	by	computing	and	storing	partial	results,	we	

can	solve	efficiently.

• (Advanced	slides	show	the	algorithm	for	those	who	
are	interested!)

-(.) =Å-(.,/)
�

/

Summary

• HMM:	a	generative	model	of	sentences	using	

hidden	state	sequence

• Greedy	tagging:	fast	but	suboptimal

• Dynamic	programming	algorithms	to	compute

– Best	tag	sequence	given	words	(Viterbi	algorithm)

– Likelihood	(forward	algorithm—see	advanced	
slides)

– Best	parameters	from	unannotated	corpus	

(forward-backward	algorithm,	an	instance	of	EM—

see	advanced	slides)

Advanced	Topics

(the	following	slides	are	just	for	people	who	are	
interested)

Notation

• Sequence	of	observations	over	time	o1, o2, …, oN
– here,	words	in	sentence

• Vocabulary	size	V of	possible	observations

• Set	of	possible	states	q1, q2, …, qT
(see	note	next	slide)

– here,	tags	

• A,	an	T×T matrix	of	transition	probabilities

– aij:	the	prob of	transitioning	from	state	i to	j.	

• B,	an	T×V matrix	of	output	probabilities

– bi(ot):	the	prob of	emitting	ot from	state	i.	

Note	on	notation

• J&M	use	q1, q2, …, qN for	set	of	states,	but	also use	
q1, q2, …, qN for	state	sequence	over	time.

– So,	just	seeing	q1 is	ambiguous	(though	usually	

disambiguated	from	context).

– I’ll	instead	use	qi for	state	names,	and	qn for	state	at	time	n.		

– So	we	could	have	qn = qi,	meaning:	the	state	we’re	in	at	

time	n is qi.

HMM	example	w/	new	notation

• States	{q1,	q2}	(or	{<s>,	q1,	q2}):	think	NN,	VB

• Output	symbols	{x,	y,	z}:	think	chair,	dog,	help

q1 q2

x y z

.6 .1 .3

x y z

.1 .7 .2

.5

.3

.5

.7

Start

Adapted	from	Manning	&	Schuetze,	Fig	9.2

HMM	example	w/	new	notation

• A	possible	sequence	of	outputs	for	this	HMM:

• A	possible	sequence	of	states	for	this	HMM:

• For	these	examples,	N = 9,	q3= q2 and	o3= y

z y y x y z x z z

q1 q2 q2 q1 q1 q2 q1 q1 q1

Transition	and	Output	Probabilities

• Transition	matrix	A:
aij =	P(qj |	qi)

Ex: P(qn=	q2	|	qn-1=	q1)	=	.3

• Output	matrix	B:
bi(o)	=	P(o	|	qi)

Ex: P(on=	y |	qn=	q1)	=	.1

q1 q2

<s> 1 0

q1 .7 .3

q2 .5 .5

x y z
q1 .6 .1 .3

q2 .1 .7 .2

Forward	algorithm

• Use	a	table	with	cells	α(j,t): the	probability	of	being	in	
state	j after	seeing	o1…ot (forward	probability).

• Fill	in	columns	from	left	to	right,	with

– Same	as	Viterbi,	but	sum	instead	of	max	(and	no	backtrace).

â ä, 3 =Åâ c, 3 − 1
Q

275

[V2ã[Rã OU

â(ä, 3) = -(O1, O2, … O3, P3 = ä|N)

Note:	because	there’s	a	sum,	we	can’t	use	the	trick	that	replaces	probs with	costs.	For	

implementation	info,	see	http://digital.cs.usu.edu/~cyan/CS7960/hmm-tutorial.pdf and	

http://stackoverflow.com/questions/13391625/underflow-in-forward-algorithm-for-hmms .

Example

• Suppose	O=xzy.	Our	initially	empty	table:

o1=x o2=z o3=y
q1

q2

Filling	the	first	column

o1=x o2=z o3=y
q1 .6

q2 0

â 1,1 = V\]^5 [R1 z) = 1 (.6
â 2,1 = V\]^| [R2 z) = 0 (.1

Starting	the	second	column

o1=x o2=z o3=y
q1 .6 .126

q2 0

â 1,2 =Åâ c, 1
Q

275

[V25 [R1 Z

= .6 .7 .3 + 0 .5 .3

= â 1,1 [V55[R5 Z + â 2,1 [V|5[R1(Z)

= .126

Finishing	the	second	column

o1=x o2=z o3=y
q1 .6 .126

q2 0 .036

â 2,2 =Åâ c, 1
Q

275

[V2| [R2 Z

= .6 .3 .2 + 0 .5 .2

= â 1,1 [V5|[R| Z + â 2,1 [V||[R2(Z)

= .036

Third	column	and	finish

• Add	up	all	probabilities	in	last	column	to	get	the	

probability	of	the	entire	sequence:

o1=x o2=z o3=y
q1 .6 .126 .01062

q2 0 .036 .03906

- @|N =Åâ c, A
Q

275

Learning

• Given	only the	output	sequence,	learn	the	best	set	of	
parameters	λ =	(A,	B).

• Assume	‘best’	=	maximum-likelihood.

• Other	definitions	are	possible,	won’t	discuss	here.

Unsupervised	learning

• Training	an	HMM	from	an	annotated	corpus	is	

simple.

– Supervised learning:	we	have	examples	labelled	with	the	

right	‘answers’	(here,	tags):	no	hidden	variables	in	training.

• Training	from	unannotated	corpus	is	trickier.

– Unsupervised learning:	we	have	no	examples	labelled	with	

the	right	‘answers’:	all	we	see	are	outputs,	state	sequence	

is	hidden.

Circularity

• If	we	know	the	state	sequence,	we	can	find	the	best	λ.
– E.g.,	use	MLE:

• If	we	know	λ,	we	can	find	the	best	state	sequence.
– use	Viterbi

• But	we	don't	know	either!

- Pä|Pc = ç(S2→Sã)
ç(S2)

Expectation-maximization	(EM)

As	in	spelling	correction,	we	can	use	EM	to	bootstrap,	

iteratively	updating	the	parameters	and	hidden	variables.

• Initialize	parameters	λ(0)

• At	each	iteration	k,
– E-step:	Compute	expected	counts	using	λ(k-1)

– M-step:	Set	λ(k) using	MLE	on	the	expected	counts

• Repeat	until	λ	doesn't	change	(or	other	stopping	
criterion).

Expected	counts??

Counting	transitions	from	qi→qj:

• Real	counts:	

– count	1	each	time	we	see	qi→qj in	true	tag	sequence.

• Expected	counts:

– With	current	λ,	compute	probs of	all	possible	tag	sequences.

– If	sequence	Q has	probability	p,	count p for	each	qi→qj in	Q.
– Add	up	these	fractional	counts	across	all	possible	sequences.

Example

• Notionally,	we	compute	expected	counts	as	follows:

Possible	

sequence

Probability	of	

sequence

Q1= q1 q1 q1 p1
Q2= q1 q2 q1 p2
Q3= q1 q1 q2 p3
Q4= q1 q2 q2 p4
Observs: x z y

Example

• Notionally,	we	compute	expected	counts	as	follows:

êë P1 → P1 = 2í1 + í3

Possible	

sequence

Probability	of	

sequence

Q1= q1 q1 q1 p1
Q2= q1 q2 q1 p2
Q3= q1 q1 q2 p3
Q4= q1 q2 q2 p4
Observs: x z y

Forward-Backward	algorithm

• As	usual,	avoid	enumerating	all	possible	sequences.

• Forward-Backward (Baum-Welch)	algorithm	computes	

expected	counts	using	forward	probabilities	and	

backward	probabilities:

– Details,	see	J&M	6.5

• EM	idea	is	much	more	general:	can	use	for	many	latent	

variable	models.

ì(ä, 3) = -(P3 = ä, OUî5, OUî|, … OA|N)

Guarantees

• EM	is	guaranteed	to	find	a	localmaximum	of	the	likelihood.

• Not	guaranteed	to	find	globalmaximum.

• Practical	issues:	initialization,	random	restarts,	early	stopping.	

Fact	is,	it	doesn’t	work	well	for	learning	POS	taggers!

values	of	λ

P(O| λ)

