Linear Models for Classification: Discriminative Learning (Perceptron, SVMs, MaxEnt)

Nathan Schneider (some slides borrowed from Chris Dyer) ENLP | 28 September 2016

Outline

- Words, probabilities → Features, weights
- Geometric view: decision boundary
- Perceptron

previous lecture

this lecture

- Generative vs. Discriminative
- More discriminative models: Logistic regression/MaxEnt; SVM
- Loss functions, optimization
- Regularization; sparsity

$$\begin{array}{c} \textbf{X} \rightarrow \\ \textbf{Y} \rightarrow \\ \textbf{Y} \rightarrow \\ \textbf{Y} \rightarrow \\ \begin{array}{c} \textbf{X} \leftarrow \textbf{0} \\ \text{for } i = 1 \dots I; \\ \text{for } t = 1 \dots T; \\ \text{select } (\textbf{x}, y)_t \\ \# \text{ run current classifier} \\ \hat{y} \leftarrow \text{arg max}_{y'} \textbf{w}_{y'}^{\mathsf{T}} \boldsymbol{\Phi}(\textbf{x}) \\ & \text{if all classes} \\ \text{have the same} \\ \text{if } \hat{y} \neq y \text{ then } \# \text{ mistake } \begin{array}{c} \textbf{percepts} \\ \textbf{percepts} \\ \textbf{w}_y \leftarrow \textbf{w}_y + \boldsymbol{\Phi}(\textbf{x}) \\ \textbf{w}_y \leftarrow \textbf{w}_y - \boldsymbol{\Phi}(\textbf{x}) \\ \textbf{w}_y \leftarrow \textbf{w}_y - \boldsymbol{\Phi}(\textbf{x}) \\ \text{return } \textbf{w} \end{array} \right) \\ \end{array}$$

Perceptron Learner

- The perceptron doesn't estimate probabilities. It just adjusts weights up or down until they classify the training data correctly.
 - No assumptions of feature independence necessary! ⇒ Better accuracy than NB
- The perceptron is an example of an **online** learning algorithm because it potentially updates its parameters (weights) with each training datapoint.
- Classification, a.k.a. decoding, is called with the latest weight vector. Mistakes lead to weight updates.
- One hyperparameter: I, the number of iterations (passes through the training data).
- Often desirable to make several passes over the training data. The number can be tuned. Under certain assumptions, it can be proven that the learner will converge.

Perceptron: Avoiding overfitting

- Like any learning algorithm, the perceptron risks overfitting the training data. Two main techniques to improve generalization:
 - Averaging: Keep a copy of each weight vector as it changes, then average all of them to produce the final weight vector. <u>Daumé chapter</u> has a trick to make this efficient with large numbers of features.
 - ► Early stopping: Tune I by checking held-out accuracy on dev data (or cross-val on train data) after each iteration. If accuracy has ceased to improve, stop training and use the model from iteration I – 1.

Generative vs. Discriminative

- Naïve Bayes allows us to classify via the **joint probability** of **x** and *y*:
 - $p(y \mid \mathbf{x}) \propto p(y) \prod_{w \in \mathbf{x}} p(w \mid y)$ = $p(y) p(\mathbf{x} \mid y)$ (per the independence assumptions of the model) = $p(y, \mathbf{x})$ (chain rule)
 - This means the model accounts for BOTH x and y. From the joint distribution p(x,y) it is possible to compute p(x) as well as p(y), p(x | y), and p(y | x).
- NB is called a generative model because it assigns probability to linguistic objects (x). It could be used to generate "likely" language corresponding to some y. (Subject to its naïve modeling assumptions!)
 - (Not to be confused with the "generative" school of linguistics.)
- Some other linear models, including the perceptron, are discriminative: they are trained directly to classify given x, and cannot be used to estimate the probability of x or generate x | y.

Many possible decision boundaries

Max-Margin Methods (e.g., SVM)

Max-Margin Methods

- Support Vector Machine (SVM): most popular max-margin variant
- Closely related to the perceptron; can be optimized (learned) with a slight tweak to the perceptron algorithm.
- Like perceptron, discriminative, nonprobabilistic.

Maximum Entropy (MaxEnt) a.k.a. (Multinomial) Logistic Regression

- What if we want a discriminative classifier with **probabilities**?
 - E.g., need confidence of prediction, or want the full distribution over possible classes
- Wrap the linear score computation ($\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y')$) in the **softmax** function:

•
$$\log p(y | \mathbf{x}) = \log \frac{\exp(\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y))}{\sum_{y'} \exp(\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y'))} = \mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y) - \log \Sigma_{y'} \exp(\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y'))$$

• **Binary case:** Denominator = normalization (makes probabilities sum to 1). Sum over all classes \Rightarrow same for all numerators \Rightarrow can be ignored at classification time.

$$\log p(y=1 \mid \mathbf{x}) = \log \frac{\exp(\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y=1))}{\exp(\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y=1)) + \exp(\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y=0))}$$
$$= \log \frac{\exp(\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y=1))}{\exp(\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y=1)) + 1} \quad (\text{fixing } \mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y=0) = 0)$$

- MaxEnt classifiers are a special case of **MaxEnt** a.k.a. **log-linear models**.
 - Why the term "Maximum Entropy"? See Smith Linguistic Structure Prediction, appendix C.

- For all linear models, the classification rule or decoding objective is: y ← arg max_{y'} w^T Φ(x, y')
 - Objective function = function for which we want to find the optimum (in this case, the max)
- There is also a learning objective for which we want to find the optimal parameters. Mathematically, NB, MaxEnt, SVM, and perceptron all optimize different learning objectives.
 - When the learning objective is formulated as a minimization problem, it's called a loss function.
 - A loss function scores the "badness" of the training data under any possible set of parameters. Learning = choosing the parameters that minimize the badness.

- Naïve Bayes learning objective: joint data likelihood
 - $p^* \leftarrow \arg \max_p L_{joint}(\mathbf{D}; \mathbf{p})$ = $\arg \max_p \Sigma_{(\mathbf{x}, y) \in \mathbf{D}} \log \mathbf{p}(\mathbf{x}, y) = \arg \max_p \Sigma_{(\mathbf{x}, y) \in \mathbf{D}} \log (\mathbf{p}(y)\mathbf{p}(\mathbf{x} \mid y))$
 - It can be shown that relative frequency estimation (i.e., count and divide, no smoothing) is indeed the maximum likelihood estimate
- MaxEnt learning objective: conditional log likelihood

•
$$p^* \leftarrow \arg \max_p L_{cond}(\mathbf{D}; \mathbf{p})$$

= $\arg \max_p \Sigma_{(\mathbf{x}, y) \in \mathbf{D}} \log \mathbf{p}(y | \mathbf{x})$
• $\mathbf{w} \leftarrow \arg \max_{\mathbf{w}} \Sigma_{(\mathbf{x}, y) \in \mathbf{D}} \mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y) - \log \Sigma_{y'} \exp(\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y'))$ [2 slides ago]

- This has no closed-form solution. Hence, we need an optimization algorithm to try different weight vectors and choose the best one.
- With thousands or millions of parameters—not uncommon in NLP—it may also overfit.

Visualizing different loss functions for binary classification

figure from Noah Smith

- Why not just penalize error directly if that's how we're going to evaluate our classifier (accuracy)?
 - Error is difficult to optimize! Log loss and hinge loss are easier. Why?
 - * Because they're differentiable.
 - * Can use stochastic (sub)gradient descent (SGD) and other gradient-based optimization algorithms (L-BFGS, AdaGrad, ...). There are freely available software packages that implement these algorithms.
 - * With supervised learning, these loss functions are **convex**: local optimum = global optimum (so in principle the initialization of weights doesn't matter).
 - * The perceptron algorithm can be understood as a special case of subgradient descent on the hinge loss!
- N.B. I haven't explained the math for the hinge loss (perceptron) or the SVM. Or the derivation of gradients. See further reading links if you're interested.

A likelihood surface

Visualizes the likelihood objective (vertical axis) as a function of 2 parameters. Likelihood = maximization problem. Flip upside down for the loss.

Gradient-based optimizers choose a point on the surface, look at its curvature, and then successively move to better points.

figure from Chris Manning

Regularization

- Better MaxEnt learning objective: regularized conditional log likelihood
 - $\mathbf{w}^* \leftarrow \arg \max_{\mathbf{w}} -\lambda \mathbf{R}(\mathbf{w}) + \Sigma_{(\mathbf{x}, y) \in \mathbf{D}} \mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y) \log \Sigma_{y'} \exp(\mathbf{w}^{\mathsf{T}} \Phi(\mathbf{x}, y'))$
- To avoid overfitting, the regularization term ("regularizer") –λR(w) penalizes complex models (i.e., parameter vectors with many large weights).
 - Close relationship to Bayesian prior (a priori notion of what a "good" model looks like if there is not much training data). Note that the regularizer is a function of the weights only (not the data)!
- In NLP, most popular values of R(w) are the ℓ_1 norm ("Lasso") and the ℓ_2 norm ("ridge"):
 - $l_2 = \|\mathbf{w}\|_2 = (\Sigma_i w_i^2)^{-1/2}$ encourages most weights to be small in magnitude
 - $\boldsymbol{\ell}_1 = \|\mathbf{w}\|_1 = \Sigma_i |w_i|$ encourages most weights to be **0**
 - + λ determines the tradeoff between regularization and data-fitting. Can be tuned on dev data.
- SVM objective also incorporates a regularization term. Perceptron does not (hence, averaging and early stopping).

Sparsity

- *l*₁ regularization is a way to promote **model sparsity**: many weights are pushed to 0.
 - A vector is sparse if (# **nonzero** parameters) « (total # parameters).
 - Intuition: if we define very general feature templates—e.g. one feature per word in the vocabulary—we expect that *most features should not matter* for a particular classification task.
- In NLP, we typically have sparsity in our **feature vectors** as well.
 - E.g., in WSD, all words in the training data but *not* in context of a particular token being classified are effectively 0-valued features.
 - Exception: **dense** word representations popular in recent neural network models (we'll get to this later in the course).
- Sometimes the word "sparsity" or "sparseness" just means "not very much data."

Summary: Linear Models

Classifier: $y \leftarrow \arg \max_{y'} \mathbf{w}^{\mathsf{T}} \mathbf{\Phi}(\mathbf{x}, y')$

	kind of model	loss function	learning algorithm	avoiding overfitting
Naïve Bayes	Probabilistic, generative	Likelihood	Closed-form estimation	Smoothing
Logistic regression (MaxEnt)	Probabilistic, discriminative	Conditional likelihood	Optimization	Regularization penalty
Perceptron	Non-probabilistic, discriminative	Hinge	Optimization	Averaging; Early stopping
SVM (linear kernel)	Non-probabilistic, discriminative	Max-margin	Optimization	Regularization penalty

Take-home points

- Feature-based linear classifiers are important to NLP.
 - You define the features, an algorithm chooses the weights. Some classifiers then exponentiate and normalize to give probabilities.
 - More features ⇒ more flexibility, also more risk of overfitting. Because we work with large vocabularies, not uncommon to have millions of features.
- Learning objective/loss functions formalize training as choosing parameters to optimize a function.
 - Some model **both** the language and the class (generative); some directly model the class *conditioned on* the language (discriminative).
 - In general: **Generative** \Rightarrow training is cheaper, but lower accuracy.

Discriminative \Rightarrow higher accuracy with sufficient training data and computation (optimization).

- Some models, like naïve Bayes, have a closed-form solution for parameters. Learning is cheap!
- Other models require fancier optimization algorithms that may iterate multiple times over the data, adjusting parameters until convergence (or some other stopping criterion).
 - The advantage: fewer modeling assumptions. Weights can be interdependent.

Which classifier to use?

- Fast and simple: **naïve Bayes**
- Very accurate, still simple: **perceptron**
- Very accurate, probabilistic, more complicated to implement: MaxEnt
- Potentially best accuracy, more complicated to implement:
 SVM
- All of these: watch out for overfitting!
- Check the web for free and fast implementations, e.g. SVM^{light}

Further Reading: Basics & Examples

- Manning: features in linear classifiers <u>http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-</u> <u>FeatureClassifiers.pdf</u>
- Goldwater: naïve Bayes & MaxEnt examples <u>http://www.inf.ed.ac.uk/teaching/courses/fnlp/lectures/07_slides.pdf</u>
- O'Connor: MaxEnt—incl. step-by-step examples, comparison to naïve Bayes <u>http://people.cs.umass.edu/~brenocon/inlp2015/04-logreg.pdf</u>
- Daumé: "The Perceptron" (A Course in Machine Learning, ch. 3) <u>http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf</u>
- Neubig: "The Perceptron Algorithm" <u>http://www.phontron.com/slides/nlp-programming-en-05-perceptron.pdf</u>

Further Reading: Advanced

- Neubig: "Advanced Discriminative Learning"—MaxEnt w/ derivatives, SGD, SVMs, regularization <u>http://www.phontron.com/slides/nlp-programming-en-06-</u> <u>discriminative.pdf</u>
- Manning: generative vs. discriminative, MaxEnt likelihood function and derivatives <u>http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-MEMMs-Smoothing.pdf</u>, slides 3–20
- Daumé: linear models <u>http://www.ciml.info/dl/v0_8/ciml-v0_8-ch06.pdf</u>
- Smith: A variety of loss functions for text classification <u>http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-slides.pdf</u> & <u>http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-advanced-slides.pdf</u>