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C
x y

wj ← [words(x)]j 

return  
arg maxy′ p(y′) × Πj p(wj | y′)

Naïve Bayes Classifier



Naïve Bayes Learner
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p(      ) ← (#       in Y)      
              (# docs in X)
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Smoothing p(w | y)

• What if  we encounter the word distraught in a test 
document, but it has never been seen in training? 

‣ Can’t estimate p(distraught |      ) or p(distraught |      ): 
numerator will be 0 

‣ Because the word probabilities are multiplied together for 
each document, the probability of  the whole document will 
be 0
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Smoothing p(w | y)

• Smoothing techniques adjust probabilities to avoid 
overfitting to the training data 

‣ Above: Laplace (add-1) smoothing 

‣ OOV (out-of-vocabulary/unseen) words now have small 
probability, which decreases the model’s confidence in the 
prediction without ignoring the other words 

‣ Probability of  each seen word is reduced slightly to save 
probability mass for unseen words
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New:
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Smoothing p(w | y)

• Laplace (add-1) smoothing, above, uses a pseudo-count of  1, 
which is kind of  arbitrary. 

‣ For some datasets, it’s overkill—better to smooth less. 

‣ Lidstone (add-α) smoothing: tune the amount of  smoothing on 
development data:
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The Nature of Evaluation

I Scientific method rests on making and testing hypotheses.

I Evaluation is just another name for testing.

I Evaluation not just for public review:
I It’s how you manage internal development
I And even how systems improve themselves (see ML courses).
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What Hypotheses?

About existing linguistic objects:

I Is this text by Shakespeare or Marlowe?

About output of a language system:

I How well does this language model predict the data?
I How accurate is this segmenter/tagger/parser?

I Is this segmenter/tagger/parser better than that one?

About human beings:

I How reliable is this person’s annotation?

I To what extent do these two annotators agree? (IAA)



Gold Standard Evaluation

I In many cases we have a record of ‘the truth’:
I The best human judgement as to what the correct

segmentation/tag/parse/reading is,
or what the right documents are in response to a query.

I Gold standards used both for training and for evaluation

I But testing must be done on unseen data (held-out test set;
train/test split)

Don’t ever train on data that you’ll use in testing!!



Tuning

I Often, in designing a system, you’ll want to tune it by trying
several configuration options and choosing the one that works best
empirically.

I E.g., Lidstone (add-�) smoothing; choosing features for text
classification.

I If you run several experiments on the test set, you risk overfitting

it; i.e., the test set is no longer a reliable proxy for new data.

I One solution is to hold out a second set for tuning, called a
development (“dev”) set. Save the test set for the very end.



Cross-validation

What if my dataset is too small to have a nice train/test or
train/dev/test split?

I
k-fold cross-validation: partition the data into k pieces and treat
them as mini held-out sets. Each fold is an experiment with a
di↵erent held-out set, using the rest of the data for training:

I After k folds, every data point will have a held-out prediction!

I If tuning the system via cross-validation, still important to have a
separate blind test set.



Measuring a Model’s Performance

Accuracy

Proportion model gets right:

|right|
|test-set| ⇥ 100

E.g., POS tagging (state of the art ⇡ 96%).



How should we evaluate your 
rhyming script?

• Suppose somebody creates a gold standard of  
<input_word, {rhyming_words}> pairs. 

• Multiple desired outputs; system’s outputs 
could overlap only partially. How to evaluate? 

‣ Accuracy over all words in the dictionary?
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Rhymes for “hinge”
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Precision & Recall
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Sys=Y Sys=N

Gold=Y 10 3

Gold=N 1 (large)

Precision = TP/(TP+FP)  
= 10/11 = 91%

Recall = TP/(TP+FN)  
= 10/13 = 77%

F1 = 2·P·R/(P+R) = 83%



Measuring a Model’s Performance

Precision, Recall, F-score

I For isolating performance on a particular label in multi-label tasks,
or

I For chunking, phrase structure parsing, or anything where
word-by-word accuracy isn’t appropriate.

I
F

1

-score: Harmonic mean of
precision (proportion of model’s answers that are right) and
recall (proportion of test data that model gets right).

I E.g., for the POS tag NN:

P = |tokens correctly tagged NN|
|all tokens automatically tagged NN| = TP

TP+FP

R = |tokens correctly tagged NN|
|all tokens gold-tagged NN| = TP

TP+FN

F

1

= P·R
P+R



Upper Bounds, Lower Bounds?

Suppose your POS tagger has 95% accuracy? Is that good? Bad??

Upper Bound: Turing Test

When using a human Gold Standard, check the agreement of humans
against that standard.

Lower Bound: Performance of a ‘simpler’ model (baseline)

I Model always picks most frequent class (majority baseline).
I Model assigns a class randomly according to:

1. Even probability distribution; or
2. Probability distribution that matches the observed one.

Suitable upper and lower bounds depend on the task.



Measurements: What’s Significant?

I We’ll be measuring things, and comparing measurements.

I What and how we measure depends on the task.

I But all have one issue in common:

Are the di↵erences we find significant?

I In other words, should we interpret the di↵erences as down to pure
chance? Or is something more going on?

I Is our model significantly better than the baseline model?
Is it significantly worse than the upper bound?



Example: Tossing a Coin

I I tossed a coin 40 times; it came up heads 17 times.

I Expected value of fair coin is 20. So we’re comparing 17 and 20.

I If this di↵erence is significant, then it’s (probably) not a fair coin.
If not, it (probably) is.



Which Significance Test?

I Paremetric when the underlying distribution is normal.
I t-test, z-test,. . .
I You don’t need to know the mathematical formulae;

available in statistical libraries!

I Non-Parametric otherwise.
I Usually do need non-parametric tests:

remember Zipf’s Law!
I Can use McNemar’s test or variants of it.

See Smith (2011, Appendix B) for a detailed discussion of significance testing
methods for NLP.



Error Analysis

I Summary scores are important, but don’t always tell the full
picture!

I Once you’ve built your system, it’s always a good idea to dig into
its output to identify patterns.

I Quantitative and qualitative (look at some examples!)
I You may find bugs (e.g., predictions are always wrong for words

with accented characters)

I Or think of ways to improve your system



Confusion Matrices



Tasks where there is > 1 right answer

Example: A Paraphrasing Task

I Estimate that John enjoyed the book means John enjoyed reading

the book.

I Lots of closely related words to read are good too:
skim through, go through, peruse, etc.


