More Smoothing, Tuning, and Evaluation

Nathan Schneider

(slides adapted from Henry Thompson, Alex Lascarides, Chris Dyer, Noah Smith, et al.) ENLP | 21 September 2016

Review:

- What if we encounter the word distraught in a test document, but it has never been seen in training?
 - Can't estimate p(distraught |) or p(distraught |): numerator will be 0
- Because the word probabilities are multiplied together for each document, the probability of the whole document will be 0

Smoothing
$$p(w | y)$$

 $p(\text{horrific} |) \leftarrow (\# docs with horrific) + 1$
 $(\# docs) + V + 1$
 $p(00V |) \leftarrow 1$
 $(\# docs) + V + 1$

V is the size of the vocabulary of the training corpus

- Smoothing techniques adjust probabilities to avoid overfitting to the training data
 - Above: Laplace (add-1) smoothing
 - OOV (out-of-vocabulary/unseen) words now have small probability, which decreases the model's confidence in the prediction without ignoring the other words
 - Probability of each seen word is reduced slightly to save probability mass for unseen words

Smoothing
$$p(w | y)$$

 $p(\text{horrific} |) \leftarrow (\# docs with horrific) + 1$
 $(\# docs) + V + 1$
 $p(00V |) \leftarrow 1$
 $(\# docs) + V + 1$

V is the size of the vocabulary of the training corpus

- Smoothing techniques adjust probabilities to avoid overfitting to the training data
 - Above: Laplace (add-1) smoothing
 - OOV (out-of-vocabulary/unseen) words now have small probability, which decreases the model's confidence in the prediction without ignoring the other words
 - Probability of each seen word is reduced slightly to save probability mass for unseen words

New:

Smoothing
$$p(w | y)$$

 $p(\text{horrific} |) \leftarrow (\# docs with horrific) + 1$
 $(\# docs) + V + 1$
 $p(00V |) \leftarrow 1$
 $(\# docs) + V + 1$

V is the size of the vocabulary of the training corpus

- Laplace (add-1) smoothing, above, uses a pseudo-count of 1, which is kind of arbitrary.
 - For some datasets, it's overkill—better to smooth less.
 - Lidstone (add-α) smoothing: tune the amount of smoothing on development data:

$$p(\text{horrific} |) \leftarrow (\# \text{docs with horrific}) + \alpha \\ (\# \text{docs}) + \alpha(V+1) \qquad p(\text{OOV} |) \leftarrow \alpha \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \\ (\# \text{docs}) + \alpha(V+1) \qquad (\# \text{docs}) + \alpha(V+1) \ (\# \text{docs}) + \alpha(V+1) \ (\# \text{docs}) + \alpha(V+$$

The Nature of Evaluation

- Scientific method rests on making and testing hypotheses.
- Evaluation is just another name for testing.

The Nature of Evaluation

- Scientific method rests on making and testing hypotheses.
- Evaluation is just another name for testing.
- Evaluation not just for public review:
 - It's how you manage internal development
 - And even how systems improve themselves (see ML courses).

What Hypotheses?

About existing linguistic objects:

Is this text by Shakespeare or Marlowe?

About output of a language system:

- How well does this language model predict the data?
- How accurate is this segmenter/tagger/parser?
 - Is this segmenter/tagger/parser better than that one?

About human beings:

- How reliable is this person's annotation?
- ► To what extent do these two annotators agree? (IAA)

Gold Standard Evaluation

- In many cases we have a record of 'the truth':
 - The best human judgement as to what the correct segmentation/tag/parse/reading is, or what the right documents are in response to a query.
- Gold standards used both for training and for evaluation
- But testing must be done on unseen data (held-out test set; train/test split)

Don't ever train on data that you'll use in testing!!

Tuning

- Often, in designing a system, you'll want to tune it by trying several configuration options and choosing the one that works best empirically.
 - E.g., Lidstone (add-λ) smoothing; choosing features for text classification.
- If you run several experiments on the test set, you risk overfitting it; i.e., the test set is no longer a reliable proxy for new data.
- One solution is to hold out a second set for tuning, called a development ("dev") set. Save the test set for the very end.

Cross-validation

What if my dataset is **too small** to have a nice train/test or train/dev/test split?

k-fold cross-validation: partition the data into k pieces and treat them as mini held-out sets. Each fold is an experiment with a different held-out set, using the rest of the data for training:

Measuring a Model's Performance

Accuracy

Proportion model gets right:

$$rac{|\mathsf{right}|}{|\mathsf{test-set}|} imes 100$$

E.g., POS tagging (state of the art $\approx 96\%).$

How should we evaluate your rhyming script?

- Suppose somebody creates a gold standard of <input_word, {rhyming_words}> pairs.
- Multiple desired outputs; system's outputs could overlap only partially. How to evaluate?
 - Accuracy over all words in the dictionary?

Rhymes for "hinge"

Rhymes for "hinge"

Rhymes for "hinge"

Precision & Recall

Measuring a Model's Performance

Precision, Recall, F-score

- For isolating performance on a particular label in multi-label tasks, or
- For chunking, phrase structure parsing, or anything where word-by-word accuracy isn't appropriate.
- F₁-score: Harmonic mean of precision (proportion of model's answers that are right) and recall (proportion of test data that model gets right).
- E.g., for the POS tag NN:

$$P = \frac{|\text{tokens correctly tagged NN}|}{|\text{all tokens automatically tagged NN}|} = \frac{\text{TP}}{\text{TP+FP}}$$

$$R = \frac{|\text{tokens correctly tagged NN}|}{|\text{all tokens gold-tagged NN}|} = \frac{\text{TP}}{\text{TP+FP}}$$

$$F_1 = \frac{P \cdot R}{P + R}$$

Upper Bounds, Lower Bounds?

Suppose your POS tagger has 95% accuracy? Is that good? Bad??

Upper Bound: Turing Test

When using a human Gold Standard, check the agreement of humans against that standard.

Lower Bound: Performance of a 'simpler' model (baseline)

- ► Model always picks most frequent class (majority baseline).
- Model assigns a class randomly according to:
 - 1. Even probability distribution; or
 - 2. Probability distribution that matches the observed one.

Suitable upper and lower bounds depend on the task.

Measurements: What's Significant?

- ▶ We'll be measuring things, and comparing measurements.
- What and how we measure depends on the task.
- But all have one issue in common:

Are the differences we find significant?

- In other words, should we interpret the differences as down to pure chance? Or is something more going on?
- Is our model significantly better than the baseline model? Is it significantly worse than the upper bound?

Example: Tossing a Coin

- I tossed a coin 40 times; it came up heads 17 times.
- Expected value of fair coin is 20. So we're comparing 17 and 20.
- If this difference is *significant*, then it's (probably) not a fair coin. If not, it (probably) is.

Which Significance Test?

Paremetric when the underlying distribution is normal.

- ▶ t-test, z-test,...
- You don't need to know the mathematical formulae; available in statistical libraries!
- ► Non-Parametric otherwise.
 - Usually do need non-parametric tests: remember Zipf's Law!
 - Can use McNemar's test or variants of it.

See Smith (2011, Appendix B) for a detailed discussion of significance testing methods for NLP.

Error Analysis

- Summary scores are important, but don't always tell the full picture!
- Once you've built your system, it's always a good idea to dig into its output to identify patterns.
 - Quantitative and qualitative (look at some examples!)
 - You may find bugs (e.g., predictions are always wrong for words with accented characters)

Confusion Matrices

		Estimated Emotion							
		Anger	Boredom	Disgust	Fear	Happiness	Sadness	Neutral	Emotion Recog. Rate
True Emotion	Anger	19	0	2	0	3	0	0	79.2%
	Boredom	1	8	1	1	0	1	7	42.1%
	Disgust	0	1	6	0	1	0	3	54.5%
	Fear	1	3	2	7	2	0	1	43.8%
	Happiness	3	0	3	2	5	0	2	33.3%
	Sadness	0	0	0	0	0	14	0	100.0%
	Neutral	0	5	1	0	0	0	13	68.4%
	HMM Recog. Rate	79.2%	47.1%	40.0%	70.0%	45.5%	93.3%	50.0%	

Tasks where there is > 1 right answer

Example: A Paraphrasing Task

- Estimate that John enjoyed the book means John enjoyed reading the book.
- Lots of closely related words to *read* are good too: skim through, go through, peruse, etc.

