Time-aware Provenance for Distributed Systems

Wenchao Zhou, Ling Ding, Andreas Haeberlen, Zachary Ives, Boon Thau Loo

University of Pennsylvania
Provenance for Distributed Systems

Goal: Develop capability to answer diagnostic questions

We need to tackle additional challenges...

- Provenance in **transient and inconsistent state**
- Explanation for **state changes**
- Security without trusted nodes
 - Nodes may be **compromised by the attacker**
Provenance in Dynamic Environments

- Reason - insertion of link(a,b,1)

- Provenance for system state
 - Not track dependency between changes
 - Possible solution: differencing the current provenance with a previous version.
 - *But*, what about a deletion? No current version to compare…

Why did node c’s route to node a change?
Provenance in Dynamic Environments

- Explicitly capture time
 - Handle question asked when the system is in transient state
 - Consistent view of the provenance graph

\[
c: \text{minCost}(\text{@c, a, 4}) \\
b: \text{minCost}(\text{@b, a, 3}) \\
\text{Who is right?}
\]
Time-aware Provenance

- Explicitly capture causalities between state changes
 - Explain the INSERT / DELETE of tuples
 - Event-based execution triggered by state changes

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1), minCost(@S,D,C2).
sp2a: ΔpathCost(@Z,D,C1+C2) :- link(@S,Z,C1), ΔminCost(@S,D,C2).
sp2b: ΔpathCost(@Z,D,C1+C2) :- Δlink(@S,Z,C1), minCost(@S,D,C2).
Time-aware Provenance

- Explicitly capture causalities between state changes
 - Explain the INSERT / DELETE of tuples
 - Event-based execution triggered by state changes
 - Update due to constraints (primary keys, aggregation)

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C).

insertion of minCost(@c,a,4) caused deletion of minCost(@c,a,5)
TAP Provenance Model

Update due to constraints

Rule triggering

Why did node c’s route to node a change?

DELETE(c, minCost(@c,a,5), t3)

INSERT(c, minCost(@c,a,4), t3)

DERIVE(c, minCost(@c,a,4), sp3, t3)

INSERT(c, pathCost(@c,a,4), t3)

DERIVE(b, pathCost(@c,a,4), sp2@b, t2)

INSERT(b, link(@b,c,3), t1)

INSERT(b, minCost(@b,a,1), t2)

DERIVE(b, minCost(@b,a,1), sp3, t2)

link(@b,c,3) exists in time [t1, t2]
Provenance Maintenance

- **Provenance with temporal dimension**
 - Versions of provenance
 - Expensive – provenance explosion

- **Active maintenance**
 - Provenance deltas – deltas between adjacent versions
 - Incrementally applied in querying

- **Reactive maintenance**
 - Input logs – communications and update of base tuples
 - Reconstruct provenance by deterministic replay
 - Long-running systems? Periodic snapshots
Secure Provenance Querying

- **Byzantine adversaries**
 - May have compromised an arbitrary subset of the nodes
 - May have complete control over the nodes – arbitrary behavior

- **Guarantees**
 - Idealism: Always get correct forensics results (not possible!)
 - Practicality: The conservative model requires compromises
 - May be incomplete, but, it will identify at least one faulty node
Thank You …