Towards a Data-centric View of Cloud Security

Wenchao Zhou*, Micah Sherr#, William R. Marczak+, Zhuoyao Zhang*, Tao Tao*, Boon Thau Loo*, and Insup Lee*

*Univ. of Pennsylvania #Georgetown Univ. +Univ. of California, Berkeley
Introduction

- **Success of cloud**
 - Economics of outsourcing data and computation
 - Continued migration of applications to the cloud
 - Amazon EC2, salesforce, Microsoft Office…

- **Security: one barrier that prevents further success**
 - Enforce the privacy and integrity of user data
 - Current solutions mostly focus on OS and virtual machines

- **Cloud applications are increasingly interdependent**
Motivating Examples

- Interconnecting enables more adaptable systems

- Online market-places
 - Retail portals such as Yahoo!, Amazon serve as storefronts
 - Collect product and inventory information from sellers
 - Should prevent from …
 - merchants querying each others’ inventories and prices
 - communicating payment info with unauthorized parties

- Social network services, outsourced data storage…
Overview

- A comprehensive solution should …
 - go beyond OS and VM-centric security solutions
 - securely share, verify, and trace data between applications

- DS2 (Declarative Secure Distributed Systems)
 http://netdb.cis.upenn.edu/ds2/
 - Secure querying processing
 - Declarative access control policies for data sharing
 - System analysis and forensics using distributed provenance
 - End-to-end verification of data partitioned across users
Outline

- Introduction
- Motivation
- DS2 Platform
 - Secure Data Processing
 - Declarative Access Control
 - Distributed Provenance
 - End-to-end query verification
- Conclusion
DS2 Platform
DS2 Platform

- Integration of access control policies
 - Meta-programmability
DS2 Platform

- Integration of access control policies
 - Meta-programmability
- Provenance-aware secure query processing
- End-to-end verification
Secure Query Processing

Zhou et al. Unified Declarative Platform for Secure Networked Information Systems, ICDE09

- Compact specification of network protocols

- **Secure Network Datalog (SeNDlog)**
 - A distributed variant of *Datalog*
 - Continuous recursive queries over network state
 - Security Primitives
 - Rules within a *context*
 - Authenticated communication

- A variety of secure distributed systems
 - Secure network routing (S-BGP), DHTs, p2p query processing
Example: Authenticated Map-Reduce

At MW:

m1 map(ID,Content) :- file(MW,ID,Content).
m2 MW says emits(MW,Word,Num,Offset)@RW :-
 word(Word,Num,Offset),
 reduceWorker(RID,RW), RID=f_SHA1(Word).

- In the context of Map Worker
 - m1: Perform map operation on each file
 - m2: For each word in the document, pass it to the reducer according to the mapper-reducer mapping.

- Authenticate outgoing tuples by tagging signatures
Example: Authenticated Map-Reduce

At RW:

\[
\begin{align*}
\text{r1 reduceTuple(Word,a_LIST<Num>) :-} & \\
& \quad \text{MW says emits(MW,Word,Num,Offset).} \\
\text{r2 reduce(Word,List) :- reduceTuple(Word,List),} & \\
& \quad \text{Master says rBegin(RW).}
\end{align*}
\]

\[\]

- In the context of Reduce Worker
 - r1: Group the received words, and maintain a list for each word
 - r2: Perform reduce operation once received signal from Master

- Verify the signatures of the incoming tuples
Example: Authenticated Map-Reduce

At RW:

r1 reduceTuple(Word,a_LIST<Num>) :-
 MW says emits(MW,Word,Num,Offset).

r2 reduce(Word,List) :- reduceTuple(Word,List),
 Master says rBegin(RW).

Unified platform: protocol specs & security enforcement

Building blocks for more complex security policies

- r1: Group the received words, and maintain a list for which word
- r2: Perform reduce operation once received signal from Master

- Verify the signatures of the incoming tuples
Access Control

Marczak et al. SecureBlox: Customizable Secure Distributed Data Processing, SIGMOD10

- View-based Access Control
 - Horizontal and vertical partition of relational table
 - Authorization + authentication
 - Access ONLY to the secure views
 - *How can we enforce this?*

At alice:

sv1 sview(Name,Dept) :- employee(Name,Dept,Salary), Salary < 5K.
sv2 predsecview("employee","sview",U) :- authority says good(U).
sv3 ret(Name,Dept)@U :- U says query("sview"), sview(Name, Dept).
Access Control

Marczak et al. SecureBlox: Customizable Secure Distributed Data Processing, SIGMOD10

- **Enforcement: meta-constraints**
 - Meta-model – rules as data
 - Check the query format against schema constraints
 - `says(U,R), body(R,A), functor(A,P) -> predsecview(_,P,U)`

- **Code Generation**
 - Automatic rewrite of queries to refer to security views
 - Updates in the meta-model
 - Customizable security constructs according to policy changes
Outline

- Introduction
- Motivation
- DS2 Platform
 - Secure Data Processing
 - Declarative Access Control
 - Distributed Provenance
 - End-to-end query verification
- Conclusion
Distributed Provenance

Zhou et al. Efficient Querying and Maintenance of Network Provenance at Internet-Scale, SIGMOD10

- Distributed provenance (or lineage)
 - Explains the existence and derivation of any network state
 - Maps naturally into various applications

- Applications in cloud
 - Error detection, diagnosis, and forensics
 - Mitigation: propagating corrections only to affected applications
 - History-based trust management
Distributed Provenance

Zhou et al. Efficient Querying and Maintenance of Network Provenance at Internet-Scale, SIGMOD10

- **Data model – a directed graph**
 - Tuple and rule execution vertices
 - Edges represent dataflows

```
<table>
<thead>
<tr>
<th>src</th>
<th>dest</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>5</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>5</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>5</td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>3</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>5</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>3</td>
</tr>
</tbody>
</table>
```
Distributed Provenance

Zhou et al. Efficient Querying and Maintenance of Network Provenance at Internet-Scale, SIGMOD10

- **Data model – a directed graph**
 - Tuple and rule execution vertices
 - Edges represent dataflows

- **Maintenance and querying**
 - Maintained as distributed relational tables
 - Views of base and derived tuples
 - Querying performed as graph traversal

- **Reasonable overhead for distributed provenance**
End-to-end Query Verification

- **Threat Model**
 - The owner of the data is trustworthy
 - Some fraction of the cloud that host the data could be malicious

- **Verification with MHT (Merkle Hash Tree)**
 - Previously used to check correctness of outsourced databases
 - Maintain hash hierarchy (MHT) on pre-sorted data
 - VOs (verification objects) attached to query results
 - Signature over the root of MHT
 - Hash values required for re-computing the root of MHT
MHT Example

- Query Result = \{x3\}
MHT Example

- Query Result = \{x_3\}
- VO = \{SIG(h_{1-8}), h_4, h_{1-2}, h_{5-8}\}
- \text{hash}(x_3) \mid h_4 \mid h_{1-2} \mid h_{5-8} = h_{1-8}?
P-MHT Example

- Table is partitioned across three nodes
 - $X_1 = \{x_1, x_2, x_3\}$, $X_2 = \{x_4, x_5, x_6\}$, $X_3 = \{x_7, x_8\}$

- Each node maintain a portion of MHT
 - Sufficient to generate the VOs for the tuples located on the node.
P-MHT Example

- Table is partitioned across three nodes
 - $X_1 = \{x_1, x_2, x_3\}$, $X_2 = \{x_4, x_5, x_6\}$, $X_3 = \{x_7, x_8\}$

- Each node maintain a portion of MHT
 - Sufficient to generate the VOs for the tuples located on the node.
Conclusion and Future Work

- Data-centric: go beyond OS/VM-centric solutions
- Security challenges faced by data-centric cloud security
 - Secure query processing and data sharing
 - Analysis and tracing of data flowing across applications
 - End-to-end verification
- Preliminary design of the DS2 Platform

Future work
- Close integration with cloud applications
- Security guarantees for distributed provenance
Thank You…

Towards a Data-centric View of Cloud Security

http://netdb.cis.upenn.edu/ds2/