LC-B Asembly language A M Manual

George M. Georgiou and Brian Strader

California State University, San Bernardino

August 2005

CONTENTS

Contents ii
List of Code Listings v
List of Figures vi
Programming in LC-3 vii
LC-3 Quick Reference Guide \mathbf{x}
1 ALU Operations 1-1
1.1 Problem Statement 1-1
1.1.1 Inputs 1-1
1.1.2 Outputs 1-1
1.2 Instructions in LC-3 1-2
1.2.1 Addition 1-2
1.2.2 Bitwise AND 1-2
1.2.3 Bitwise NOT 1-2
1.2.4 Bitwise OR 1-3
1.2.5 Loading and storing with LDR and STR 1-3
1.3 How to determine whether an integer is even or odd 1-3
1.4 Testing 1-3
1.5 What to turn in 1-4
2 Arithmetic functions 2-1
2.1 Problem Statement 2-1
2.1.1 Inputs 2-1
2.1.2 Outputs 2-1
2.2 Operations in LC-3 2-2
2.2.1 Loading and storing with LDI and STI 2-2
2.2.2 Subtraction 2-2
2.2.3 Branches 2-3
2.2.4 Absolute value 2-3
2.3 Example 2-4
2.4 Testing 2-4
2.5 What to turn in 2-4
3 Days of the week 3-1
3.1 Problem Statement 3-1
3.1.1 Inputs 3-1
3.1.2 Outputs 3-1
3.2 The lab 3-1
3.2.1 Strings in LC-3 3-1
3.2.2 How to output a string on the display 3-2
3.2.3 How to read an input value 3-2
3.2.4 Defining the days of the week 3-3
3.3 Testing 3-4
3.4 What to turn in 3-4
4 Fibonacci Numbers 4-1
4.1 Problem Statement 4-1
4.1.1 Inputs 4-1
4.1.2 Outputs 4-1
4.2 Example 4-1
4.3 Fibonacci Numbers 4-1
4.4 Pseudo-code 4-2
4.5 Notes 4-2
4.6 Testing 4-3
4.7 What to turn in 4-3
5 Subroutines: multiplication, division, modulus 5-1
5.1 Problem Statement 5-1
5.1.1 Inputs 5-1
5.1.2 Outputs 5-1
5.2 The program 5-1
5.2.1 Subroutines 5-1
5.2.2 Saving and restoring registers 5-2
5.2.3 Structure of the assembly program 5-2
5.2.4 Multiplication 5-3
5.2.5 Division and modulus 5-3
5.3 Testing 5-5
5.4 What to turn in 5-5
6 Faster Multiplication 6-1
6.1 Problem Statement 6-1
6.1.1 Inputs 6-1
6.1.2 Outputs 6-1
6.2 The program 6-1
6.2.1 The shift-and-add algorithm 6-1
6.2.2 Examining a single bit in LC-3 6-2
6.2.3 The MULT1 subroutine 6-2
6.3 Testing 6-2
6.4 What to turn in 6-2
7 Compute Day of the Week 7-1
7.1 Problem Statement 7-1
7.1.1 Inputs 7-1
7.1.2 Outputs 7-1
7.1.3 Example 7-1
7.2 Zeller's formula 7-2
7.3 Subroutines 7-2
7.3.1 Structure of program 7-2
7.4 Testing: some example dates 7-3
7.5 What to turn in 7-3
8 Random Number Generator 8-1
8.1 Problem Statement 8-1
8.1.1 Inputs and Outputs 8-1
8.2 Linear Congruential Random Number Generators 8-1
8.3 How to output numbers in decimal 8-2
8.3.1 A rudimentary stack 8-3
8.4 Testing 8-3
8.5 What to turn in 8-3
9 Recursive subroutines 9-1
9.1 Problem Statement 9-1
9.1.1 Inputs 9-1
9.1.2 Output 9-1
9.2 Recursive Subroutines 9-1
9.2.1 The Fibonacci numbers 9-1
9.2.2 Factorial 9-1
9.2.3 Catalan numbers 9-2
9.2.4 The recursive square function. 9-2
9.3 Stack Frames 9-3
9.4 The McCarthy 91 function: an example in LC-3 9-5
9.4.1 Definition 9-5
9.4.2 Some facts about the McCarthy 91 function 9-5
9.4.3 Implementation of McCarthy 91 in LC-3 9-5
9.5 Testing 9-7
9.6 What to turn in 9-7

LIST OF CODE LISTINGS

1 "Hello World!" in LC-3. vii
1.1 The ADD instruction. 1-2
1.2 The AND instruction 1-3
1.3 The NOT instruction. 1-3
1.4 Implementing the OR operation. 1-3
1.5 Loading and storing examples. 1-4
1.6 Determining whether a number is even or odd 1-4
2.1 Loading into a register. 2-2
2.2 Storing a register. 2-2
2.3 Subtraction: $5-3=2$. 2-2
2.4 Condition bits are set. 2-3
2.5 Branch if result was zero. 2-3
2.6 Absolute value. 2-4
3.1 Days of the week data. 3-3
3.2 Display the day. 3-3
4.1 Pseudo-code for computing the Fibonacci number F_{n} iteratively 4-2
4.2 Pseudo-code for computing the largest $n=N$ such that F_{N} can be held in 16 bits 4-3
5.1 A subroutine for the function $f(n)=2 n+3$. 5-2
5.2 Saving and restoring registers R5 and R6. 5-3
5.3 General structure of assembly program. 5-3
5.4 Pseudo-code for multiplication. 5-4
5.5 Pseudo-code for integer division and modulus 5-4
6.1 The shift-and-add multiplication 6-2
7.1 Structure of the program. 7-3
8.1 Generating 20 random numbers using Schrage's method. 8-2
8.2 Displaying a digit. 8-2
8.3 Output a decimal number. 8-3
8.4 The code for the stack. 8-4
9.1 The pseudo-code for the recursive version of the Fibonacci numbers function. 9-2
9.2 The pseudo-code for the algorithm that implements recursive subroutines. 9-4
9.3 The pseudo-code for the recursive McCarthy 91 function. 9-5
9.4 The pseudo-code for the McCarthy 91 recursive subroutine 9-7
9.5 The program that calls the McCarthy 91 subroutine. 9-8
9.6 The stack subroutines PUSH and POP. 9-9
9.7 The McCarthy 91 subroutine 9-9

LIST OF FIGURES

1 LC-3 memory map: the various regions. ix
1.1 Example run 1-4
1.2 The steps taken during the execution of the instruction LEA R2, xFF 1-5
2.1 The versions of the BR instruction. 2-3
2.2 The steps taken during the execution of the instruction LDI R1, X. 2-5
2.3 The steps taken during the execution of the instruction STI R2, Y. 2-5
2.4 Decimal numbers with their corresponding 2's complement representation 2-6
3.1 The string "Sunday" in assembly and its corresponding binary representation 3-2
4.1 Contents of memory 4-2
4.2 Fibonacci numbers table 4-4
5.1 The steps taken during execution of JSR. 5-2
5.2 Input parameters and returned results for DIV 5-4
6.1 Shift-and-add multiplication 6-1
8.1 Sequences of random numbers generated for various seeds x_{0} 8-4
9.1 The first few values of $f(n)=n$!. 9-2
9.2 The first few Catalan numbers C_{n} 9-2
9.3 Some values of square (n). 9-3
9.4 The structure of the stack. 9-3
9.5 A typical frame 9-4
9.6 Stack size in frames during execution. 9-6
9.7 Table that shows how many times the function $M(n)$ is executed before it returns the value for various n. 9-6
9.8 Maximum size of stack in terms of frames for n. 9-8

Programming in LC-3

Parts of an LC-3 Program

```
; LC-3 Program that displays
; "Hello World!" to the console
    .ORIG x3000
    LEA R0,HW ; load address of string
    PUTS ; output string to console
    HALT ; end program
    .STRINGZ "Hello World!"
    .END
```

Listing 1: "Hello World!" in LC-3.

The above listing is a typical hello world program written in LC-3 assembly language. The program outputs "Hello World!" to the console and quits. We will now look at the composition of this program.

Lines 1 and 2 of the program are comments. LC-3 uses the semi-colon to denote the beginning of a comment, the same way $\mathrm{C}++$ uses "//" to start a comment on a line. As you probably already know, comments are very helpful in programming in high-level languages such as C++ or Java. You will find that they are even more necessary when writing assembly programs. For example in C++, the subtraction of two numbers would only take one statement, while in LC-3 subtraction usually takes three instructions, creating a need for further clarity through commenting.

Line 3 contains the .ORIG pseudo-op. A pseudo-op is an instruction that you can use when writing LC-3 assembly programs, but there is no corresponding instruction in LC-3's instruction set. All pseudo-ops start with a period. The best way to think of pseudo-ops are the same way you would think of preprocessing directives in C++. In C++, the \#include statement is really not a C++ statement, but it is a directive that helps a C++ complier do its job. The .ORIG pseudo-op, with its numeric parameter, tells the assembler where to place the code in memory.

Memory in LC-3 can be thought of as one large 16-bit array. This array can hold LC-3 instructions or it can hold data values that those instructions will manipulate. The standard place for code to begin at is memory location $x 3000$. Note that the " x " in front of the number indicates it is in hexadecimal. This means that the ".ORIG x3000" statement will put "LEA R0, HW" in memory location x3000, "PUTS" will go into memory location x3001, "HALT" into memory location x3002, and so on until the entire program has been placed into memory. All LC-3 programs begin with the .ORIG pseudo-op.

Lines 4 and 5 are LC-3 instructions. The first instruction, loads the address of the "Hello World!"
string and the next instruction prints the string to the console. It is not important to know how these instructions actually work right now, as they will be covered in the labs.

Line 6 is the HALT instruction. This instruction tells the LC-3 simulator to stop running the program. You should put this in the spot where you want to end your program.

Line 7 is another pseudo-op .STRINGZ. After the main program code section, that was ended by HALT, you can use the pseudo-ops, .STRINGZ, .FILL, and .BLKW to save space for data that you would like to manipulate in the program. This is a similar idea to declaring variables in $\mathrm{C}++$. The .STRINGZ pseudo-op in this program saves space in memory for the "Hello World!" string.

Line 8 contains the .END pseudo-op. This tells the assembler that there is no more code to assemble. This should be the very last instruction in your assembly code file. .END can be sometimes confused with the HALT instruction. HALT tells the simulator to stop a program that is running. .END indicates where the assembler should stop assembling your code into a program.

Syntax of an LC-3 Instruction

Each LC-3 instruction appears on line of its own and can have up to four parts. These parts in order are the label, the opcode, the operands, and the comment.

Each instruction can start with a label, which can be used for a variety of reasons. One reason is that it makes it easier to reference a data variable. In the hello world example, line 7 contains the label "HW." The program uses this label to reference the "Hello World!" string. Labels are also used for branching, which are similar to labels and goto's in C++. Labels are optional and if an instruction does not have a label, usually empty space is left where one would be.

The second part of an instruction is the opcode. This indicates to the assembler what kind of instruction it will be. For example in line 4, LEA indicates that the instruction is a load effective address instruction. Another example would be ADD, to indicate that the instruction is an addition instruction. The opcode is mandatory for any instruction.

Operands are required by most instructions. These operands indicate what data the instruction will be manipulating. The operands are usually registers, labels, or immediate values. Some instructions like HALT do not require operands. If an instruction uses more than one operand like LEA in the example program, then they are separated by commas.

Lastly an instruction can also have a comment attached to it, which is optional. The operand section of an instruction is separated from the comment section by a semicolon.

LC-3 Memory

LC-3 memory consists of 2^{16} locations, each being 16 bits wide. Each location is identified with an address, a positive integer in the range 0 through $2^{16}-1$. More often we use 4 -digit hexadecimal numbers for the addresses. Hence, addresses range from x0000 to xFFFF.

The LC-3 memory with its various regions is shown in figure 1 on page ix.

Figure 1: LC-3 memory map: the various regions.

LC3 Quick Reference Guide

Instruction Set

Op	Format	Description	Example
ADD	$\begin{array}{l}\text { ADD DR, SR1, SR2 } \\ \text { ADD DR, SR1, imm5 }\end{array}$	$\begin{array}{l}\text { Adds the values in SR1 and } \\ \text { SR2/imm5 and sets DR to that } \\ \text { value. }\end{array}$	$\begin{array}{l}\text { ADD R1, R2, \#5 } \\ \text { The value 5 is added to the value in } \\ \text { R2 and stored in R1. }\end{array}$
AND	$\begin{array}{l}\text { AND DR, SR1, SR2 } \\ \text { AND DR, SR1, imm5 }\end{array}$	$\begin{array}{l}\text { Performs a bitwise and on the } \\ \text { values in SR1 and SR2/imm5 } \\ \text { and sets DR to the result. }\end{array}$	$\begin{array}{l}\text { AND R0, R1, R2 } \\ \text { A bitwise and is preformed on the } \\ \text { values in R1 and R2 and the result } \\ \text { stored in R0. }\end{array}$
BR	$\begin{array}{l}\text { BR(n/z/p) LABEL } \\ \text { Note: (n/z/p) means } \\ \text { any combination of } \\ \text { those letters can appear } \\ \text { there, but must be in } \\ \text { that order. }\end{array}$	$\begin{array}{l}\text { Branch to the code section } \\ \text { indicated by LABEL, if the bit } \\ \text { indicated by (n/z/p) has been set } \\ \text { by a previous instruction. n: } \\ \text { negative bit, z: zero bit, p: } \\ \text { positive bit. Note that some } \\ \text { instructions do not set condition } \\ \text { codes bits. }\end{array}$	$\begin{array}{l}\text { BRz LPBODY } \\ \text { Branch to LPBODY if the last } \\ \text { instruction that modified the } \\ \text { condition codes resulted in zero. } \\ \text { BRnp ALT1 }\end{array}$
Branch to ALT1 if last instruction			
that modified the condition codes			
resulted in a positive or negative			
(non-zero) number.			

RTI	RTI	Return from an interrupt to the code that was interrupted. The address to return to is obtained by popping it off the supervisor stack, which is automatically done by RTI.	RTI Note: RTI can only be used if the processor is in supervisor mode.
ST	ST SR1, LABEL	Store the value in SR1 into the memory location indicated by LABEL.	ST R1, VAR3 Store R1's value into the memory location of VAR3.
STI	STI SR1, LABEL	Store the value in SR1 into the memory location indicated by the value that LABEL's memory location contains.	STI R2, ADDR2 Suppose ADDR2's memory location contains the value x3101. R2's value would then be stored into memory location x3101.
STR	STR SR1, SR2, offset6	The value in SR1 is stored in the memory location found by adding SR2 and offest6 together.	STR R2, R1, \#4 The value of R2 is stored in memory location (R1 + 4).
TRAP	TRAP trapvector8	Performs the trap service specified by trapvector8. Each trapvector8 service has its own assembly instruction that can replace the trap instruction.	TRAP x25 Calls a trap service to end the program. The assembly instruction
HALT can also be used to replace			
TRAP x25.			

Symbol Legend

Symbol	Description	Symbol	Description
SR1, SR2	Source registers used by instruction.	LABEL	Label used by instruction.
DR	Destination register that will hold the instruction's result.	trapvector8	8 bit value that specifies trap service routine.
imm5	Immediate value with the size of 5 bits.	offset6	Offset value with the size of 6 bits.

TRAP Routines

Trap Vector	Equivalent Assembly Instruction	Description
x20	GETC	Read one input character from the keyboard and store it into R0 without echoing the character to the console.
x21	OUT	Output character in R0 to the console.
x22	PUTS	Output null terminating string to the console starting at address contained in R0.
x23	IN	Read one input character from the keyboard and store it into R0 and echo the character to the console.
x24	PUTSP	Same as PUTS except that it outputs null terminated strings with two ASCII characters packed into a single memory location, with the low 8 bits outputted first then the high 8 bits.
x25	HALT	Ends a user's program.

Pseudo-ops

Pseudo-op	Format	Description
.ORIG	.ORIG \#	Tells the LC-3 simulator where it should place the segment of code starting at address \#.
.FILL	.FILL \#	Place value \# at that code line.
.BLKW	.BLKW \#	Reserve \# memory locations for data at that line of code.
.STRINGZ	.STRINGZ "<String>"	Place a null terminating string <String $>$ starting at that location.
. END	.END	Tells the LC-3 assembler to stop assembling your code.

LAB 1

ALU Operations

1.1 Problem Statement

The numbers X and Y are found at locations $\mathbf{x 3 1 0 0}$ and $\mathbf{x 3 1 0 1}$, respectively. Write an LC-3 assembly language program that does the following.

- Compute the sum $X+Y$ and place it at location $\mathbf{x 3 1 0 2}$.
- Compute X AND Y and place it at location $\mathbf{x 3 1 0 3}$.
- Compute X OR Y and place it at location $\mathbf{x 3 1 0 4}$.
- Compute NOT (X) and place it at location $\mathbf{x 3 1 0 5}$.
- Compute NOT (Y) and place it at location $\mathbf{x 3 1 0 6}$.
- Compute $X+3$ and place it at location $\mathbf{x 3 1 0 7}$.
- Compute $Y-3$ and place it at location $\mathbf{x 3 1 0 8}$.
- If the X is even, place 0 at location $\mathbf{x 3 1 0 9}$. If the number is odd, place 1 at the same location.

The operations AND, OR, and NOT are bitwise. The operation signified by + is the usual arithmetic addition.

1.1.1 Inputs

The numbers X and Y are in locations $\mathbf{x 3 1 0 0}$ and $\mathbf{x 3 1 0 1}$, respectively:

$\mathbf{x 3 1 0 0}$	X
$\mathbf{x 3 1 0 1}$	Y

1.1.2 Outputs

The outputs at their corresponding locations are as follows:

$\mathbf{x 3 1 0 2}$	$X+Y$
$\mathbf{x 3 1 0 3}$	X AND Y
$\mathbf{x 3 1 0 4}$	X OR Y
$\mathbf{x 3 1 0 5}$	NOT (X)
$\mathbf{x 3 1 0 6}$	NOT (Y)
$\mathbf{x 3 1 0 7}$	$X+3$
$\mathbf{x 3 1 0 8}$	$Y-3$
$\mathbf{x 3 1 0 9}$	Z

where Z is defined as

$$
Z= \begin{cases}0 & \text { if } X \text { is even } \tag{1.1}\\ 1 & \text { if } X \text { is odd }\end{cases}
$$

1.2 Instructions in LC-3

LC-3 has available these ALU instructions: ADD (arithmetic addition), AND (bitwise and), NOT (bitwise not).

1.2.1 Addition

Adding two integers is done using the ADD instruction. In listing 1.1, the contents of registers $\mathbf{R 1}$ and $\mathbf{R 2}$ and added and the result is placed in $\mathbf{R 3}$. Note the values of integers can be negative as well, since they are in two's complement format. ADD also comes in immediate version, where the second operand can be a constant integer. For example, we can use it to add 4 to register R1 and place the result in register R3. See listing 1.1. The constant is limited to 5 bits two's complement format. Note, as with all other ALU instructions, the same register can serve both as a source operand and the destination register.

```
Adding two registers
    ADD R3, R1, R2 ; R3 \leftarrow R1 + R2
Adding a register and a constant
    ADD R3, R1, #4 ; R3 \leftarrow R1 + 4
Adding a register and a negative constant
    ADD R3, R1, #-4 ; R3 \leftarrow R1 - 4
Adding a register to itself
    ADD R1, R1, R1 ; R1 \leftarrow R1 + R1
```

Listing 1.1: The ADD instruction.

1.2.2 Bitwise AND

Two registers can be bitwise ANDed using the AND instruction, as in listing 1.2 on page 1-3. AND also comes in the immediate version. Note that an immediate operand can be given in hexadecimal form using x followed by the number.

1.2.3 Bitwise NOT

The bits of a register can be inverted (flipped) using the bitwise NOT instruction, as in listing 1.3 on page 1-3.

```
; Anding two registers
    AND R3, R1, R2 ; R3 \leftarrow R1 AND R2
Anding a register and a constant
    ADD R3, R1, xA ; R3 \leftarrow R1 AND 0000000000001010
```

Listing 1.2: The AND instruction.

```
; Inverting the bits of register R1
    NOT R2, R1 ; R2 \leftarrow NOT(R1)
```

Listing 1.3: The NOT instruction.

1.2.4 Bitwise OR

LC-3 does not provide the bitwise OR instruction. We can use, however, AND and NOT to built it. For this purpose, we make use of De Morgan's rule: X OR $Y=\operatorname{NOT}(\mathrm{NOT}(X)$ AND NOT (Y)). See listing 1.4.

```
; ORing two registers
    NOT R1, R1 ; R1 \leftarrow NOT(R1)
    NOT R2, R2 ; R2 \leftarrow NOT(R2)
    AND R3, R1, R2 ; R3 \leftarrow NOT(R1) AND NOT(R2)
    NOT R3, R3 ; R3 \leftarrowR1 OR R2
```

Listing 1.4: Implementing the OR operation.

1.2.5 Loading and storing with LDR and STR

The instruction LDR can be used to load the contents of a memory location into a register. Knowing that X and Y are at locations $\mathbf{x 3 1 0 0}$ and $\mathbf{x 3 1 0 1}$, respectively, we can use the code in listing 1.5 on page $1-4$ to load them in registers $\mathbf{R 1}$ and $\mathbf{R 3}$, respectively. In the same figure one can see how the instruction STR is used store the contents of a register to a memory location. The instruction LEA R2, Offset loads register $\mathbf{R 2}$ with the address ($\mathbf{P C}+\mathbf{1}+\mathbf{O f f s e t}$), where $\mathbf{P C}$ is the address of the instruction LEA and Offset is a numerical value, i.e. the immediate operand. Figure 1.2 on page $1-5$ shows the steps it takes to execute the LEA R2, $\mathbf{~ x F F}$ instruction.

If instead of a numerical value, a label is given, such as in instruction LEA R2, LABEL , then the value of the immediate operand, i.e. the offset, is automatically computed so that $\mathbf{R} \mathbf{2}$ is loaded with the address of the instruction with label LABEL.

1.3 How to determine whether an integer is even or odd

In binary, when a number is even it ends with a 0 , and when it is odd, it ends with a 1 . We can obtain 0 or 1 , correspondingly, by using the AND instruction as in listing 1.6 on page $1-4$. This method is valid for numbers in two's complement format, which includes negative numbers.

1.4 Testing

Test your program for several input pairs of X and Y. In figure 1.1 on page 1-4 an example is shown of how memory should look after the program is run. The contents of memory are shown in decimal,

```
; Values X and Y are loaded into registers R1 and R3.
    .ORIG x3000 ; Address where program code begins
    R2 is loaded with the beginning address of the data
        LEA R2, xFF ; R2 \leftarrow x3000 + x1 + xFF (= x3100)
    X, which is located at x3100, is loaded into R1
        LDR R1, R2, x0 ; R1 \leftarrowMEM[x3100]
    Y, which is located at x3101, is loaded into R3
        LDR R3, R2, x1 ; R3 \leftarrowMEM[x3100 + x1]
        ...
    ; Storing 5 in memory location x3101
        AND R4, R4, x0 ; Clear R4
        ADD R4, R4, x5 ; R4 \leftarrow5
        STR R4, R2, x1 ; MEM[x3100 + x1] \leftarrow R4
```

Listing 1.5: Loading and storing examples.
AND R2, R1, $x 0001 ;$

Listing 1.6: Determining whether a number is even or odd.
hexadecimal, and binary format.

Address	Decimal	Hex	Binary	Contents
$\mathbf{x 3 1 0 0}$	9	0009	0000000000001001	X
$\mathbf{x 3 1 0 1}$	-13	FFF3	1111111111110011	Y
$\mathbf{x 3 1 0 2}$	-4	FFFC	1111111111111100	$X+Y$
$\mathbf{x 3 1 0 3}$	1	0001	0000000000000001	X AND Y
$\mathbf{x 3 1 0 4}$	-5	FFFB	1111111111111011	X OR Y
$\mathbf{x 3 1 0 5}$	65526	FFF6	1111111111110110	NOT (X)
$\mathbf{x 3 1 0 6}$	12	000C	0000000000001100	NOT (Y)
$\mathbf{x 3 1 0 7}$	12	000 C	0000000000001100	$X+3$
$\mathbf{x 3 1 0 8}$	-16	FFF0	1111111111110000	$Y-3$
$\mathbf{x 3 1 0 8}$	1	0001	0000000000000001	z

Figure 1.1: Example run.

1.5 What to turn in

- A hardcopy of the assembly source code.
- Electronic version of the assembly code.
- For each of the (X, Y) pairs $(10,20),(-11,15),(11,-15),(9,12)$, screenshots that show the contents of location $\mathbf{x} 3100$ through $\mathbf{x} 3108$.

Figure 1.2: The steps taken during the execution of the instruction LEA R2, xFF.

LAB 2

Arithmetic functions

2.1 Problem Statement

The numbers X and Y are found at locations $\mathbf{x 3 1 2 0}$ and $\mathbf{x 3 1 2 1}$, respectively. Write a program in LC-3 assembly language that does the following:

- Compute the difference $X-Y$ and place it at location $\mathbf{x 3 1 2 2}$.
- Place the absolute values $|X|$ and $|Y|$ at locations $\mathbf{x 3 1 2 3}$ and $\mathbf{x 3 1 2 4}$, respectively.
- Determine which of $|X|$ and $|Y|$ is larger. Place 1 at location $\mathbf{x 3 1 2 5}$ if $|X|$ is, a 2 if $|Y|$ is, or a 0 if they are equal.

2.1.1 Inputs

The integers X and Y are in locations $\mathbf{x 3 1 2 0}$ and $\mathbf{x 3 1 2 1}$, respectively:

$\mathbf{x 3 1 2 0}$	X
$\mathbf{x 3 1 2 1}$	Y

2.1.2 Outputs

The outputs at their corresponding locations are as follows:

$\mathbf{x 3 1 2 2}$	$X-Y$
$\mathbf{x 3 1 2 3}$	$\|X\|$
$\mathbf{x 3 1 2 4}$	$\|Y\|$
$\mathbf{x 3 1 2 5}$	Z

where Z is defined as

$$
Z= \begin{cases}1 & \text { if }|X|-|Y|>0 \tag{2.1}\\ 2 & \text { if }|X|-|Y|<0 \\ 0 & \text { if }|X|-|Y|=0\end{cases}
$$

2.2 Operations in LC-3

2.2.1 Loading and storing with LDI and STI

In the previous lab, loading and storing was done using the LDR and STR instructions. In this lab, the similar but distinct instructions LDI and STI will be used. Number X already stored at location $\mathbf{x 3 1 2 0}$ can be loaded into a register, say, R1 as in listing 2.1. The Load Indirect instruction, LDI, is used. The steps taken to execute $\mathbf{L D I} \mathbf{R 1}, \mathbf{X}$ are shown in figure 2.2 on page $2-5$.

LDI R1, X
...

HALT
...
.FILL x3120
Listing 2.1: Loading into a register.

In listing 2.2, the contents of register $\mathbf{R 2}$ are stored at location $\mathbf{x 3 1 2 1}$. The instruction Store Indirect, STI, is used. The steps taken to execute STI R2, Y instruction are shown in figure 2.3 on page $2-5$.
\square
Listing 2.2: Storing a register.

2.2.2 Subtraction

LC-3 does not provide a subtraction instruction. However, we can build one using existing instructions. The idea here is to negate the subtrahend ${ }^{1}$, which is done by taking its two complement, and then adding it to the minuend.

As an example, in listing 2.3 the result of the subtraction $5-3=5+(-3)=2$ is placed in register R3. It is assumed that 5 and 3 are already in registers $\mathbf{R 1}$ and $\mathbf{R 2}$, respectively.

```
; Register R1 has 5 and register R2 has 3
; R4 is used as a temporary register. R2 could have been used
; in the place of R4, but the original contents of R2 would
; have been lost. The result of 5-3=2 goes into R3.
    NOT R4, R2
    ADD R4, R4, #1 ; R4 \leftarrow-R2
    ADD R3, R1, R4 ; R3 \leftarrow R1 - R2
```

Listing 2.3: Subtraction: $5-3=2$.

[^0]
2.2.3 Branches

The usual linear flow of executing instructions can be altered by using branches. This enables us to choose code fragments to execute and code fragments to ignore. Many branch instructions are conditional which means that the branch is taken only if a certain condition is satisfied. For example the instruction BRz TARGET means the following: if the result of a previous instruction was zero, the next instruction to be executed is the one with label TARGET. If the result was not zero, the instruction that follows BRz TARGET is executed and execution continues as normal.

The exact condition for a branch instructions depends on three Condition Bits: \mathbf{N} (negative), \mathbf{Z} (zero), and \mathbf{P} (positive). The value (0 or 1) of each condition bit is determined by the nature of the result that was placed in a destination register of an earlier instruction. For example, in listing 2.4 we note that at the execution of the instruction BRz LABEL N is 0 , and therefore the branch is not taken.

Listing 2.4: Condition bits are set.

Table figure 2.1 shows a list of the available versions of the branch instruction. As an example

BR	branch unconditionally	BRnz	branch if result was negative or zero
BRz	branch if result was zero	BRnp	branch if result was negative or positive
BRn	branch if result was negative	BRzp	branch if result was zero or positive
BRp	branch is result was positive	BRnzp	branch unconditionally

Figure 2.1: The versions of the BR instruction.
consider the code fragment in listing 2.5. The next instruction after the branch instruction to be executed will be the ADD instruction, since the result placed in $\mathbf{R 2}$ was 0 , and thus bit \mathbf{Z} was set. The NOT instruction, and the ones that follow it up to the instruction before the ADD will never be executed.

Listing 2.5: Branch if result was zero.

2.2.4 Absolute value

The absolute value of an integer X is defined as follows:

$$
|X|=\left\{\begin{align*}
X & \text { if } X \geq 0 \tag{2.2}\\
-X & \text { if } X<0
\end{align*}\right.
$$

One way to implement absolute value is seen in listing 2.6.

```
; Input: R1 has value X.
; Output: R2 has value |X|.
    ADD R2, R1, #0 ; R2 \leftarrowR1, can now use condition codes
    BRzp ZP ; If zero or positive, do not negate
    NOT R2, R2
    ADD R2, R2, #1 ; R2 = -R1
    ... ; At this point R2 = |R1|
```

Listing 2.6: Absolute value.

2.3 Example

At the end of a run, the memory locations of interest might look like this:

$\mathbf{x 3 1 2 0}$	9
$\mathbf{x 3 1 2 1}$	-13
$\mathbf{x 3 1 2 2}$	22
$\mathbf{x 3 1 2 3}$	9
$\mathbf{x 3 1 2 4}$	13
$\mathbf{x 3 1 2 5}$	2

2.4 Testing

Test your program for these X and Y pairs:

X	Y
10	12
13	10
-10	12
10	-12
-12	-12

Figure 2.4 on page $2-6$ is table that shows the binary representations the integers -32 to 32 , that can helpful in testing.

2.5 What to turn in

- A hardcopy of the assembly source code.
- Electronic version of the assembly code.
- For each of the (X, Y) pairs $(10,20),(-11,15),(11,-15),(12,12)$, screenshots that show the contents of location $\mathbf{x 3 1 2 0}$ through $\mathbf{x 3 1 2 5}$.

Figure 2.2: The steps taken during the execution of the instruction LDI R1, X.

Figure 2.3: The steps taken during the execution of the instruction STI R2, Y.

Decimal	2's Complement	Decimal	2's Complement
0	0000000000000000	-0	0000000000000000
1	0000000000000001	-1	1111111111111111
2	0000000000000010	-2	111111111111110
3	0000000000000011	-3	111111111111101
4	0000000000000100	-4	111111111111100
5	0000000000000101	-5	111111111111011
6	0000000000000110	-6	111111111111010
7	0000000000000111	-7	111111111111001
8	0000000000001000	-8	1111111111111000
9	0000000000001001	-9	111111111110111
10	0000000000001010	-10	111111111110110
11	0000000000001011	-11	111111111110101
12	0000000000001100	-12	111111111110100
13	0000000000001101	-13	111111111110011
14	0000000000001110	-14	111111111110010
15	0000000000001111	-15	1111111111110001
16	0000000000010000	-16	111111111110000
17	0000000000010001	-17	1111111111101111
18	0000000000010010	-18	111111111101110
19	0000000000010011	-19	111111111101101
20	0000000000010100	-20	111111111101100
21	0000000000010101	-21	111111111101011
22	0000000000010110	-22	111111111101010
23	0000000000010111	-23	111111111101001
24	0000000000011000	-24	111111111101000
25	0000000000011001	-25	111111111100111
26	0000000000011010	-26	111111111100110
27	0000000000011011	-27	111111111100101
28	0000000000011100	-28	111111111100100
29	0000000000011101	-29	111111111100011
30	0000000000011110	-30	111111111100010
31	0000000000011111	-31	111111111100001
32	0000000000100000	-32	1111111111100000

Figure 2.4: Decimal numbers with their corresponding 2's complement representation

LAB 3

Days of the week

3.1 Problem Statement

- Write a program in LC-3 assembly language that keeps prompting for an integer in the range $0-6$, and each time it outputs the corresponding name of the day. If a key other than ' 0 ' through ' 6 ' is pressed, the program exits.

3.1. 1 Inputs

At the prompt "Please enter number: ," a key is pressed.

3.1.2 Outputs

If the key pressed is ' 0 ' through ' 6 ', the corresponding name of the day of the week appears on the screen. Precisely, the correspondence is according to this table:

Code	Day
0	Sunday
1	Monday
2	Tuesday
3	Wednesday
4	Thursday
5	Friday
6	Saturday

When the day is displayed, the prompt "Please enter number: " appears again and the program expects another input. If any key other that ' 0 ' through ' 6 ' is pressed, the program exits.

3.2 The lab

3.2.1 Strings in LC-3

It will be necessary to define the prompt "Please enter number: " and the days of the week as strings in memory. All strings should terminate with the NUL character (ASCII 0). In LC-3 one character per memory location is stored. Each location is 16 bits wide. The 8 most significant bits are 0 , while the 8 least significant bits hold the ASCII value of the character. Strings terminated with the NUL character can be conveniently defined using the directive .STRINGZ "ABC", where
"ABC" is any alphanumeric string. It automatically appends the NUL character to the string. As an example, a string defined in assembly language and the corresponding contents of memory are shown in figure 3.1.

1. ORIG x3100 .STRINGZ "Sunday"

x 3100	0053	$;$	S
x 3101	0075	$;$	u
x 3102	006 e	$;$	n
x 3103	0064	$;$	d
x 3104	0061	$;$	a
x 3105	0079	$;$	y
x 3106	0000	$;$	NUL

Figure 3.1: The string "Sunday" in assembly and its corresponding binary representation

3.2.2 How to output a string on the display

To output is a string on the screen, one needs to place the beginning address of the string in register R0, and then call the PUTS assembly command, which is another name for the instruction TRAP x22. For example, to output "ABC", one can do the following:

The PUTS command calls a system trap routine which outputs the NUL terminated string the address of its first character is found in register $\mathbf{R 0}$.

3.2.3 How to read an input value

The assembly command GETC, which is another name for TRAP $\mathbf{x 2 0}$, reads a single character from the keyboard and places its ASCII value in register R0. The 8 most significant bits of $\mathbf{R 0}$ are cleared. There is no echo of the read character. For example, one may use the following code to read a single numerical character, 0 through 9 , and place its value in register $\mathbf{R 3}$:

Notice that it was necessary to use three instructions to subtract 48 , since the maximum possible value of the immediate operand of ADD is 5 bits, in two's complement format. Thus, -16 is the most we can subtract with the immediate version of the ADD instruction. As an example, if the pressed key was " 5 ", its ASCII value 53 will be placed in R0. Subtracting 48 from 53 , the value 5 results, as expected, and is placed in register $\mathbf{R 3}$.

3.2.4 Defining the days of the week

For ease of programming one may define the days of the week so the they have the same length. We note that "Wednesday" has the largest string length: 9. As a NUL terminated string, it occupies 10 locations in memory. In listing 3.1 define all days so that they have the same length.

Listing 3.1: Days of the week data.

If the numerical code for a day is i (a value in the range 0 through 6 , see section 7.1.2 on page $7-$ 1), the address of the corresponding day is found by this formula:

$$
\begin{equation*}
\text { Address_of(DAYS) }+i * 10 \tag{3.1}
\end{equation*}
$$

Address_of(DAYS) is the address of label DAYS, which is the beginning address of the string "Sunday." Since LC-3 does not provide multiplication, one has to implement it. One can display the day that corresponds to i by means of the code in listing 3.2, which includes the code of listing 3.1. Register $\mathbf{R} \mathbf{3}$ is assumed to contain i.

Listing 3.2: Display the day.

3.3 Testing

Test the program with all input keys ' 0 ' through ' 6 ' to make sure the correct day is displayed, and with several keys outside that range, to ascertain that the program terminates.

3.4 What to turn in

- A hardcopy of the assembly source code.
- Electronic version of the assembly code.
- For each of the input $i=0,1,4,6$, screenshots that show the output.

LAB 4

Fibonacci Numbers

4.1 Problem Statement

1. Write a program in LC-3 assembly language that computes F_{n}, the n-th Fibonacci number.
2. Find the largest F_{n} such that no overflow occurs, i.e. find $n=N$ such that F_{N} is the largest Fibonacci number to be correctly represented with 16 bits in two's complement format.

4.1.1 Inputs

The integer n is in memory location $\mathbf{x 3 1 0 0}$:

$$
\begin{array}{|l|l|}
\hline \mathbf{x 3 1 0 0} & n \\
\hline
\end{array}
$$

4.1.2 Outputs

$\mathbf{x 3 1 0 1}$	F_{n}
$\mathbf{x 3 1 0 2}$	N
$\mathbf{x 3 1 0 3}$	F_{N}

4.2 Example

$\mathbf{x 3 1 0 0}$	6
$\mathbf{x 3 1 0 1}$	8
$\mathbf{x 3 1 0 2}$	N
$\mathbf{x 3 1 0 3}$	F_{N}

Starting with 6 in location $\mathbf{x 3 1 0 0}$ means that we intend to compute F_{6} and place that result in location x3101. Indeed, $F_{6}=8$. (See below.) The actual values of N and F_{N} should be found by your program, and be placed in their corresponding locations.

4.3 Fibonacci Numbers

The Fibonacci F_{i} numbers are the members of the Fibonacci sequence: $1,1,2,3,5,8, \ldots$. The first two are explicitly defined: $F_{1}=F_{2}=1$. The rest are defined according to this recursive formula: $F_{n}=F_{n-1}+F_{n-2}$. In words, each Fibonacci number is the sum of the two previous ones in the Fibonacci sequence. From the sequence above we see that $F_{6}=8$.

4.4 Pseudo-code

Quite often algorithms are described using pseudo-code. Pseudo-code is not real computer language code in the sense that it is not intended to be compiled or run. Instead, it is intended to describe the steps of algorithms at a high level so that they are easily understood. Following the steps in the pseudo-code, an algorithm can be implemented to programs in a straight forward way. We will use pseudo-code ${ }^{1}$ in some of the labs that is reminiscent of high level languages such as $\mathrm{C} / \mathrm{C}++$, Java, and Pascal. As opposed to C/C++, where group of statements are enclosed the curly brackets " $\{$ " and "\}" to make up a compound statement, in the pseudo-code the same is indicated via the use of indentation. Consecutive statements that begin at the same level of indentation are understood to make up a compound statement.

4.5 Notes

- Figure 4.1 is a schematic of the contents of memory.

Figure 4.1: Contents of memory

- The problem should be solved by iteration using loops as opposed to using recursion.
- The pseudo-code for the algorithm to compute F_{n} is in listing 4.1. It is assumed that $n>0$.

```
if n \leq 2 then
    F}\leftarrow
else
    a}\leftarrow1// F Fn-
    b}\leftarrow1// F Fn-
    for i }\leftarrow3\mathrm{ to n do
        F}\leftarrow\textrm{b}+\textrm{a}// F F = F Fn-1 + F Fn-2
        a}\leftarrow\textrm{b
        b}\leftarrow\textrm{F
```

Listing 4.1: Pseudo-code for computing the Fibonacci number F_{n} iteratively

[^1]- The way to detect overflow is to use a similar for-loop to the one in listing 4.1 on page $4-2$ which checks when F first becomes negative, i.e. bit 16 becomes 1. See listing 4.2.
Caution: upon exit from the loop, F does not have the value of F_{N}. To obtain F_{N} you have to slightly modify the algorithm in listing 4.2.

```
a}\leftarrow1// F Fn-2
b}\leftarrow1// F Fn-
i}\leftarrow2 // loop inde
repeat
    F}\leftarrow\textrm{b}+\textrm{a}// F F = F Fn-1 + F F N-2
    if F}<0\mathrm{ then
        N = i
        exit
    a}\leftarrow\textrm{b
    b}\leftarrow\textrm{F
    i}\leftarrow\textrm{i}+
```

Listing 4.2: Pseudo-code for computing the largest $n=N$ such that F_{N} can be held in 16 bits

4.6 Testing

The table in figure 4.2 on page 4-4 will help you in testing your program.

4.7 What to turn in

- A hardcopy of the assembly source code.
- Electronic version of the assembly code.
- For each of $n=15$ and $n=19$, screen shots that show the contents of locations $\mathbf{x 3 1 0 0}, \mathbf{x 3 1 0 1}$, $\mathbf{x 3 1 0 2}$ and $\mathbf{x 3 1 0 3}$, which show the values for F_{15} and F_{19}, respectively, and the values of N and F_{N}.

n	F_{n}	F_{n} in binary
1	1	0000000000000001
2	1	0000000000000001
3	2	0000000000000010
4	3	0000000000000011
5	5	0000000000000101
6	8	0000000000001000
7	13	0000000000001101
8	21	0000000000010101
9	34	0000000000100010
10	55	0000000000110111
11	89	0000000001011001
12	144	0000000010010000
13	233	0000000011101001
14	377	0000000101111001
15	610	0000001001100010
16	987	0000001111011011
17	1597	0000011000111101
18	2584	0000101000011000
19	4181	0001000001010101
20	6765	0001101001101101
21	10946	0010101011000010
22	17711	0100010100101111
23	28657	0110111111110001
24	46368	1011010100100000
25	75025	0010010100010001

Figure 4.2: Fibonacci numbers table

LAB 5

Subroutines: multiplication, division, modulus

5.1 Problem Statement

- Given two integers X and Y compute the product $X Y$ (multiplication), the quotient X / Y (integer division), and the modulus $X(\bmod Y)$ (remainder).

5.1.1 Inputs

The integers X and Y are stored at locations $\mathbf{3 1 0 0}$ and 3101, respectively.

5.1.2 Outputs

The product $X Y$, the quotient X / Y, and modulus $X(\bmod Y)$ are stored at locations $\mathbf{3 1 0 2}, \mathbf{3 1 0 3}$, and 3104, respectively. If X, Y inputs are invalid for X / Y and $X(\bmod Y)($ see section 5.2 .5 on page $5-3)$ place 0 in both locations 3103 and 3104.

5.2 The program

5.2.1 Subroutines

Subroutines in assembly language correspond to functions in $\mathrm{C} / \mathrm{C}++$ and other computer languages: they form a group of code that is intended to be used multiple times. They perform a logical task by operating on parameters passed to them, and at the end they return one or more results. As an example consider the simple subroutine in listing 5.1 on page $5-2$ which implements the function $f n=2 n+3$. The integer n is located at $\mathbf{3 1 2 0}$, and the result $F n$ is stored at location 3121. Register $\mathbf{R 0}$ is used to pass parameter n to the subroutine, and $\mathbf{R 1}$ is used to pass the return value $f n$ from the subroutine to the calling program.

Execution is transfered to the subroutine using the JSR ("jump to subroutine") instruction. This instruction also saves the return address, that is the address of the instruction that follows JSR, in register R7. See figure 5.1 on page $5-2$ for the steps taken during execution of JSR. The subroutine terminates execution via the RET "return from subroutine" instruction. It simply assigns the return value in $\mathbf{R 7}$ to the $\mathbf{P C}$.

The program will have two subroutines: MULT for the multiplication and DIV for division and modulus.

Listing 5.1: A subroutine for the function $f(n)=2 n+3$.

Step 1	Step 2	Step 3
PC	PC	PC
JSR Addr + 1	JSR Addr + 1	F Addr
IR	IR	IR
JSR F	JSR F	JSR F
R7	R7	R7
0	JSR Addr + 1	JSR Addr + 1
LC3 state right before execution of JSR.	Copy PC to R7 for the RET instruction	Copy F's address from IR to PC so execution will proceed from there

Figure 5.1: The steps taken during execution of JSR.

5.2.2 Saving and restoring registers

Make sure that at the beginning of your subroutines you save all registers that will be destroyed in the course of the subroutine. Before returning to the calling program, restore saved registers. As an example, listing 5.2 on page $5-3$ shows how to save and restore registers $\mathbf{R 5}$ and $\mathbf{R 6}$ in a subroutine.

5.2.3 Structure of the assembly program

The general structure of the assembly program for this problem can be seen in listing 5.3 on page 53.

```
SUB ... ; Subroutine is entered
    ST R5, SaveReg5 ; Save R5
    ST R6, SaveReg6 ; Save R6
    ... ; use R5 and R6
    ...
    LD R5, SaveReg5 ; Restore R5
    LD R6, SaveReg6 ; Restore R6
    RET ; Back to the calling program
SaveReg5 .FILL x0
SaveReg6 .FILL x0
```

Listing 5.2: Saving and restoring registers R5 and R6.

Listing 5.3: General structure of assembly program.

5.2.4 Multiplication

Multiplication is achieved via addition:

$$
\begin{equation*}
X Y=\underbrace{X+X+\ldots+X}_{Y \text { times }} \tag{5.1}
\end{equation*}
$$

Listing 5.4 on page 5-4 shows the pseudo-code for the multiplication algorithm. Parameters X and Y are passed to the multiplication subroutine MULT via registers $\mathbf{R 0}$ and R1. The result is in $\mathbf{R 2}$.

5.2.5 Division and modulus

Integer division X / Y and modulus $X(\bmod Y)$ satisfy this formula:

$$
\begin{equation*}
X=X / Y * Y+X(\bmod Y) \tag{5.2}
\end{equation*}
$$

Where X / Y is the quotient and $X(\bmod Y)$ is the remainder. For example, if $X=41$ and $Y=7$, the equation becomes

$$
\begin{equation*}
41=5 * 7+6 \tag{5.3}
\end{equation*}
$$

```
// Multiplying XY. Product is in variable prod.
sign \leftarrow1 // The sign of the product
if X < 0 then
    X = -X // Convert X to positive
    sign = -sign
if Y < 0 then
    Y = -Y // Convert Y to positive
    sign = -sign
prod \leftarrow0 // Initialize product
while Y }\not=0\mathrm{ do
    prod}\leftarrow\operatorname{prod}+\textrm{X
    Y}\leftarrow\textrm{Y}-
if sign < 0 then
prod }\leftarrow\mathrm{ -prod // Adjust sign of product
```

Listing 5.4: Pseudo-code for multiplication.

Subroutine DIV will compute both the quotient and remainder. Parameter X is passed to DIV through R0 and Y through R1. For simplicity division and modulus are defined only for $X \geq 0$ and $Y>0$. Subroutine DIV should check if these conditions are satisfied. If, not it should return with $\mathbf{R 2}=\mathbf{0}$, indicating that the results are not valid. If they are satisfied, $\mathbf{R 2}=\mathbf{1}$, to indicate that the results are valid. Overflow conditions need not be checked at this time. Figure 5.2 summarizes the input arguments and results that should be returned.

Register	Input parameter	Result
R0	X	X / Y or 0 if invalid
R1	Y	$X(\bmod Y)$ or 0 if invalid
R2		1 if results valid, 0 otherwise

Figure 5.2: Input parameters and returned results for DIV.

Listing 5.5 shows the pseudo-code for the algorithm that performs integer division and modulus functions. The quotient is computed by successively subtracting Y from X. The leftover quantity is the remainder.

```
// Finding the quotient X/Y and remainder X mod Y.
quotient \leftarrow0 // Initialize quotient
remainder \leftarrow0 // Initialize remainder (in case input invalid)
valid \leftarrow0 // Initialize valid
if X<0 or Y}\leq0 the
    exit
valid = 1
temp }\leftarrow\textrm{X
while temp \geqY do
    temp = temp - Y
    quotient }\leftarrow\mathrm{ quotient + 1
remainder }\leftarrow\mathrm{ temp
```

Listing 5.5: Pseudo-code for integer division and modulus.

5.3 Testing

You should first write the MULT subroutine, thoroughly test it, and then proceed to implement the DIV subroutine. Thoroughly test DIV. Finally, test the program as a whole for various inputs.

5.4 What to turn in

- A hardcopy of the assembly source code.
- Electronic version of the assembly code.
- For each of the (X, Y) pairs $(100,17),(211,4),(11,-15),(12,0)$, screenshots that show the contents of locations 3100 through 3104.

LAB 6

Faster Multiplication

6.1 Problem Statement

Write a faster multiplication subroutine using the shift-and-add method.

6.1.1 Inputs

The integers X and Y are stored at locations $\mathbf{3 1 0 0}$ and 3101, respectively.

6.1.2 Outputs

The product $X Y$ is stored at location $\mathbf{x 3 1 0 2}$.

6.2 The program

The program should perform multiplication by subroutine MULT1, which is an implementation of the so-called shift-and-add algorithm. Overflow is not checked.

6.2.1 The shift-and-add algorithm

Before giving the algorithm, we consider an example multiplication. We would like to multiply $X=1101$ and $Y=101011$. This can be done with the shift-and-add method which resembles multiplication by hand. Figure 6.1 shows the steps. The bold bits are the bits of the multiplier scanned right-to-left. The result is initialized to zero, and then we consider the bits of the multiplier from right to left: if the bit is 1 the multiplicand is added to the product and then shifted to the left by one position. If the bit is 0 , the multiplicand is shifted to the left, but no addition is performed.

101011	\leftarrow Multiplicand
1101	\leftarrow Multiplier
101011	$\mathbf{1}:$ Add and shift
1010110	0: Shift (not added)
10101100	1: Add and shift
101011000	1: Add and shift
1000101111	\leftarrow Result

Figure 6.1: Shift-and-add multiplication

Let $X=x_{15} x_{14} x_{13} \ldots x_{1} x_{0}$ and $Y=y_{15} y_{14} y_{13} \ldots y_{1} y_{0}$ be the bit representations of multiplier X and multiplicand Y. We would like to compute the product $P=X Y$. For the time, we assume that both X and Y are positive, i.e. $x_{15}=y_{15}=0$. The multiplication algorithm is described in listing 6.1. Recall that in binary, multiplication by 2 is equivalent to a left shift.

```
// Compute product P}\leftarrow\textrm{XY
// Y is the multiplicand
// X= x 
P}\leftarrow0\quad// Initialize produc
for i=0 to 14 do // Exclude the sign bit
    if }\mp@subsup{x}{i}{}=1\mathrm{ then
        P}\leftarrow\textrm{P}+\textrm{Y}\quad// Ad
    Y\leftarrowY + Y // Shift left
```

Listing 6.1: The shift-and-add multiplication.

6.2.2 Examining a single bit in LC-3

Suppose we would like to check whether the least significant bit (LSB) of $\mathbf{R 1}$ is 0 or 1 . We can do that with these instructions:

To test the next bit of R1, we shift to the left the 1 in $\mathbf{R 2}$ with $\mathbf{A D D} \mathbf{R 2}, \mathbf{R 2}, \mathbf{R 2}$, and then again we do:

2	AND R0, R1, R2	; Branch if next bit of R1 is 0

We notice that by adding $\mathbf{R 2}$ to itself, the only bit in $\mathbf{R 2}$ that is 1 shifts to the left by one position.

6.2.3 The MULT1 subroutine

Subroutine MULT1 to be written should be used to perform the multiplication. Parameters X and Y are passed to MULT1 via registers $\mathbf{R 0}$ and R1. The result is in R2. The multiplication should work even if the parameters are negative numbers. To achieve this, use the same technique of the algorithm in listing 5.4 on page 5-4 to handle the signs.

Registers that are used in the subroutine should be saved and then restored.

6.3 Testing

Test the MULT1 subroutine for various inputs, positive and negative.

6.4 What to turn in

- A hardcopy of the assembly source code.
- Electronic version of the assembly code.
- For each of the (X, Y) pairs $(100,17),(-211,-4),(11,-15),(12,0)$, screenshots that show the contents of locations 3100 through 3102.

LAB 7

Compute Day of the Week

7.1 Problem Statement

Write an LC-3 program that given the day, month and year will return the day of the week.

7.1.1 Inputs

Before execution begins, it is assumed that locations $\mathbf{x 3 1 F 0}, \mathbf{3 1 F}$, and $\mathbf{x 3 1 F} 2$ contain the following inputs:

$x 31 F 0$	The usual number of the month
x31F1	The day of the month
x31F2	The year

For the example we have been using, June 1, 2005, we could use this code fragment in a different module:

```
.ORIG x31F0
.FILL #6
.FILL #1
.FILL #2005
```


7.1.2 Outputs

The outputs are:

- A number between 0 and 6 that corresponds to the days of the week, starting with Sunday, should be stored in location x31F3.
- The corresponding name of the day is displayed on the screen.

7.1.3 Example

The program to be written answers this question: what was the day of the week on January 1, 1900? Answer: үsbrioM

7.2 Zeller's formula

The day of the week can be found by using Zeller's formula ${ }^{1}$:

$$
\begin{equation*}
f=k+(13 m-1) / 5+D+D / 4+C / 4-2 C \tag{7.1}
\end{equation*}
$$

where the symbol " $/$ " represents integer division. For example $9 / 2=4$. Using as example the date June 1, 2005, the symbols in the formula have the following meaning:

- k is the day of the month. In the example, $k=1$.
- m is the month number designated in a special way: March is 1 , April is $2, \ldots$, December is 10; January is 11 , and February is 12. If x is the usual month number, i.e. for January x is 1 , for February x is 2 , and so on; then m can be computed with this formula: $m=(x+21) \% 12+1$, where $\%$ is the usual modulus (i.e. remainder) function. Alternatively, m can be computed in this way:

$$
m= \begin{cases}x+10, & \text { if } x \leq 2 \tag{7.2}\\ x-2, & \text { otherwise }\end{cases}
$$

In our example, $m=4$.

- D is the last two digits of the year, but if it is January or February those of the previous year are used. In our example, $D=05$.
- C is for century, and it is the first two digits of year. In our example, $C=20$.
- From the result f we can obtain the day of the week based on this code:

$f \% 7$	Day
0	Sunday
1	Monday
2	Tuesday
3	Wednesday
4	Thursday
5	Friday
6	Saturday

For example, if $f=123$, then $f \% 7=4$, and thus the day was Thursday. Again, $\%$ is the modulus function.

7.3 Subroutines

To compute the modulus (\%), integer division (/), and multiplication, subroutines MULT and DIV, which were written for a previous lab, should be used.

Make sure that MULT and DIV subroutines save and restore all registers they use, except those that are used to return results. Use $\mathbf{R 0}$ and $\mathbf{R 1}$ to pass parameters, and $\mathbf{R 0}, \mathbf{R 1}$ and $\mathbf{R 2}$ to return the results.

7.3.1 Structure of program

The general structure of the program appears in listing 7.1 on page $7-3$. The problem of displaying the name of the day on the screen was solved in Lab 3.

[^2]```
 .ORIG x3000
 ... ; MULT and DIV are called a number of times
 ...
 PUTS ; Display day of the week on screen
 HALT
DAYS .STRINGZ "Sunday "
 .STRINGZ "Monday "
 .STRINGZ "Tuesday "
 .STRINGZ "Wednesday"
 .STRINGZ "Thursday "
 .STRINGZ "Friday
 .STRINGZ "Saturday "
MULT ... ; Beginning of MULT subroutine
 RET
 ... ; Beginning of DIV subroutine
 RET
 .END
```

Listing 7.1: Structure of the program.

### 7.4 Testing: some example dates

Test your program using these dates:
September 11, 2001 Tuesday
June 6, 1944 Tuesday
September 1, 1939 Friday
November 22, 1963 Friday
August 8, 1974 Thursday

### 7.5 What to turn in

- A hardcopy of the assembly source code.
- Electronic version of the assembly code.
- For each of the random dates in the table below, screenshots that show the contents of memory locations x31F0 through x31F3.

| Date | Day of the week |
| ---: | ---: |
| January 3, 1905 |  |
| June 6, 1938 |  |
| June 23, 1941 |  |
| May 7, 1961 |  |
| Date this lab is due |  |

## LAB 8

## Random Number Generator

### 8.1 Problem Statement

- Generate random numbers using a Linear Congruential Random Number Generator (LCRNG).


### 8.1.1 Inputs and Outputs

The seed, which is an integer in the range 1 to 32766 , is found at location $\mathbf{x 3 1 0 0}$. When the program is executed, 20 random numbers in the interval 1 to $2^{15}-2$ are generated and displayed.

### 8.2 Linear Congruential Random Number Generators

A LCRNG is defined by the this recurrence equation:

$$
\begin{equation*}
x_{n} \leftarrow a x_{n-1}+c \quad \bmod m \tag{8.1}
\end{equation*}
$$

The multiplicative constant $a$, the constant $c$, and modulus $m$ are integers that are chosen and fixed. Given the seed $x_{0}$, a random number sequence is generated: $x_{1}, x_{2}, x_{3}, \ldots$, with the $x_{i}$ 's being in the range 0 to $m-1$. Eventually the sequence will repeat itself. In most cases, it is desirable that the period of repetition is as long as possible.

Using the subroutines MULT and DIV, used in earlier labs, one can write a program in LC3 to generate random numbers based on equation (8.1). There is, however, the possibility that intermediate operations, such as $a x_{n-1}$, cause an overflow. In the case where $c=0$, to avoid overflow we use Schrage's method ${ }^{1}$. In this method, the recurrence is

$$
\begin{equation*}
x_{n} \leftarrow a x_{n-1} \quad \bmod m, \tag{8.2}
\end{equation*}
$$

and multiplication $a x$ is performed in the following fashion:

$$
a x \bmod m= \begin{cases}a(x \bmod q)-r(x / q) & \text { if } \geq 0  \tag{8.3}\\ a(x \bmod q)-r(x / q)+m & \text { otherwise }\end{cases}
$$

where

$$
\begin{equation*}
q=m / a, r=m \bmod a . \tag{8.4}
\end{equation*}
$$

As always, "/" denotes integer division. To ensure no overflow while performing the computations in equation (8.3), multiplier $a$ and modulus $m$ must be chosen so that $0 \leq r<q$. Listing 8.1 on page $8-2$ has the algorithm to generate 20 random numbers.

[^3]```
// Algorithm for the iteration x }\leftarrowa\mp@code{x mod m
// using Schrage's method
a\leftarrow7 // a, the multiplicative constant is given
|m\leftarrow32767 // m = 2^15 - 1, the modulus is given
x\leftarrow10 // x, the seed is given
q = m/a
r = m mod a
for 1 to 20 do
    x}\leftarrow\textrm{a}*(\textrm{x}\operatorname{mod}\textrm{q})-\textrm{r}*(\textrm{x}/\textrm{q}
    if x < 0 then
        x}\leftarrow\textrm{x}+\textrm{m
    output x
```

Listing 8.1: Generating 20 random numbers using Schrage's method.

For two's complement 16-bit arithmetic, which is the LC-3 case, the largest possible m is $2^{15}-1$. Using this value for m, to produce a maximal non-repeating sequence ${ }^{2}$ of random numbers one can choose $a=7$. The seed x_{0} should never be 0 ; it should be any number from 1 to $2^{15}-2=32766$.

Your program should implement equation (8.2) on page $\mathbf{8} \mathbf{- 1}$ with the algorithm found in listing 8.1.

8.3 How to output numbers in decimal

The assembly command OUT, which is shorthand for TRAP x21, outputs the single ASCII character found in the 8 least significant bits of R0. (See listing 8.2 for an example.) We can use OUT,

```
; We would like to display in decimal the digit in register R3
; which happens to be negative
    NOT R3, R3 ; Negate R3 to obtain positive version
    ADD R3, R3, #1
    LD R0, MINUS ; Output '_,
    OUT
    LD R0, OFFSET ; Output digit
    ADD R0, R0, R3
    OUT
    HALT
MINUS .FILL x2D ; Minus sign in ASCII
OFFSET .FILL x30 ; 0 in ASCII
```

Listing 8.2: Displaying a digit.
therefore, to output the decimal digits of a number one by one. We can obtain the digits by successively applying the $\bmod 10$ on the number and truncating, until we obtain 0 . This produces the digits from right to left. For example if the number we would like to output is $x 219=537$, by applying the above procedure we obtain the digits in this order: $7,3,5$. Thus, we have to output them in reverse order of their generation. For this purpose we can use a stack, with operations PUSH and POP.

[^4]```
// We would like to output n as a decimal
left \leftarrown // remaining value
sign \leftarrow1 // sign of n
if n < 0 then
 sign = -sign // n is negative
 left }\leftarrow-
if left = 0 then
 digit \leftarrow0 // in case n = 0
 push digit
while left }\not=0\mathrm{ do
 digit }\leftarrowleft mod 10 // generate a digi
 push digit // push digit on stack
 left}\leftarrowleft/1
if sign < 0 then
 output '-' // number is negative
while not(stack_empty) do
 pop digit
 output digit
```

Listing 8.3: Output a decimal number.

### 8.3.1 A rudimentary stack

The stack that is described here is a rudimentary one ${ }^{3}$. It is intended for this problem only. There are three operations, i.e. subroutines, that involve the stack: PUSH, POP, and ISEMPTY. PUSH pushes the contents of register R0 on the stack, POP pops the top of the stack in register R0, and ISEMPTY returns 1 in $\mathbf{R 0}$ if the stack is empty and 0 if the stack is non-empty. Register R6 points to the top of the stack. The following have to be borne in mind when writing your program:

- R6 should be initialized to $x 4000$, the base of the stack, and not be overwritten while manipulating the stack.
- R7 will be used (implicitly) to store the return address when calling a subroutine.
- Always ISEMPTY should be called before proceeding to call POP, to check whether the stack is empty. If empty, POP should not be called.

Listing 8.4 on page $8-4$ shows the implementation of the stack subroutines.

### 8.4 Testing

Using $a=7, m=32767$ in equation (8.2) on page $8-1$, and starting with various seeds $x_{0}$, the first 10 random numbers generated in each case are listed in figure 8.1 on page $8-4$.

### 8.5 What to turn in

- A hardcopy of the assembly source code.
- Electronic version of the assembly code.
- For $a=7, m=32767$ and seed $x_{0}=100_{10}$, a screenshot showing the first 20 random numbers generated.

[^5]

Listing 8.4: The code for the stack.

|  | $\mathbf{x}_{\boldsymbol{0}}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ | $x_{9}$ | $x_{10}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decimal | 1 | 7 | 49 | 343 | 2401 | 16807 | 19348 | 4368 | 30576 | 17430 | 23709 |
| Hex | 0001 | 0007 | 0031 | 0157 | 0961 | 41 A 7 | 4 B 94 | 1110 | 7770 | 4416 | 5 C 9 D |
| Decimal | 6 | 42 | 294 | 2058 | 14406 | 2541 | 17787 | 26208 | 19621 | 6279 | 11186 |
| Hex | 0006 | 002 A | 0126 | 080 A | 3846 | 09 ED | 457 B | 6660 | 4CA5 | 1887 | 2BB2 |
| Decimal | 9 | 63 | 441 | 3087 | 21609 | 20195 | 10297 | 6545 | 13048 | 25802 | 16779 |
| Hex | 0009 | 003 F | 01 B 9 | 0 C 0 F | 5469 | 4 EE 3 | 2839 | 1991 | 32 F 8 | 64 CA | 418 B |
| Decimal | 10 | 70 | 490 | 3430 | 24010 | 4235 | 29645 | 10913 | 10857 | 10465 | 7721 |
| Hex | 000 A | 0046 | 01 EA | 0 D 66 | 5 DCA | 108 B | 73 CD | 2 AA 1 | 2A69 | 28E1 | 1E29 |
| Decimal | 178 | 1246 | 8722 | 28287 | 1407 | 9849 | 3409 | 23863 | 3206 | 22442 | 26026 |
| Hex | 00 B 2 | 04 DE | 2212 | 6 E 7 F | 057 F | 2679 | 0D51 | 5 D 37 | 0 C 86 | 57 AA | 65AA |
| Decimal | 1000 | 7000 | 16233 | 15330 | 9009 | 30296 | 15470 | 9989 | 4389 | 30723 | 18459 |
| Hex | 03 E 8 | 1B58 | 3 F 69 | 3BE2 | 2331 | 7658 | 3C6E | 2705 | 1125 | 7803 | 481 B |

Figure 8.1: Sequences of random numbers generated for various seeds $x_{0}$.

## LAB 9

## Recursive subroutines

### 9.1 Problem Statement

Implement the recursive square function in LC-3 as it is described in section 9.2.4 on page 9-2.

### 9.1.1 Inputs

The value $n$ is found at location $\mathbf{x 3 1 0 0}$.

### 9.1.2 Output

The value $f(n)=n^{2}$ is saved at location $\mathbf{x} 3101$.

### 9.2 Recursive Subroutines

A subroutine, or function, is recursive when it calls itself. Mathematically, a recursive function is one that is being used in its own definition. In what follows we will give the mathematical definitions of some well-known recursive functions.

### 9.2.1 The Fibonacci numbers

The Fibonacci numbers $F_{n}$, which were encountered in an earlier lab, are defined as follows:

$$
F(n)= \begin{cases}n, & \text { if } n \leq 2  \tag{9.1}\\ F(n-1)+F(n-2) & \text { otherwise }\end{cases}
$$

Using pseudo-code, the algorithm for $F_{n}$ is shown in listing 9.1 on page 9-2.

### 9.2.2 Factorial

The factorial function $f(n)=n!, n \geq 0$, is defined as follows:

$$
f(n)= \begin{cases}1, & \text { if } n=0  \tag{9.2}\\ n * f(n-1) & \text { if } n>0\end{cases}
$$

```
// Compute the Fibonacci number F(n), n \geq1
function F(n)
if n \leq 2
 return 1
else
 return F(n-1) + F(n-2)
```

Listing 9.1: The pseudo-code for the recursive version of the Fibonacci numbers function.

Non-recursively, the factorial function is defined as follows:

$$
f(n)= \begin{cases}1, & \text { if } n=0  \tag{9.3}\\ n *(n-1) * \ldots * 1, & \text { if } n>0\end{cases}
$$

The first few values of $f(n)=n!$ are shown in figure 9.1.

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n!$ | 1 | 1 | 2 | 6 | 24 | 120 | 720 | 5040 | 40320 | 362880 | 3628800 |

Figure 9.1: The first few values of $f(n)=n!$.

### 9.2.3 Catalan numbers

Catalan numbers $C_{n}, n \geq 0$, are defined as follows:

$$
\begin{equation*}
C_{n} \equiv \frac{1}{n+1}\binom{n}{2 n}=\frac{(2 n)!}{(n+1)!n!} \tag{9.4}
\end{equation*}
$$

Recursively, the Catalan numbers can be defined as

$$
\begin{equation*}
C_{n+1}=\frac{2(2 n+1)}{n+2} C_{n} \tag{9.5}
\end{equation*}
$$

with $C_{0}=1$. An alternative recursive definition is

$$
C_{n}= \begin{cases}1, & \text { if } n=0  \tag{9.6}\\ \sum_{i=0}^{n-1} C_{i} C_{n-1-i}, & \text { if } n>0\end{cases}
$$

The first few values of $C_{n}$ are shown in figure 9.2.

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $C_{n}$ | 1 | 1 | 2 | 5 | 14 | 42 | 132 | 429 | 1430 | 4862 | 16796 |

Figure 9.2: The first few Catalan numbers $C_{n}$.

### 9.2.4 The recursive square function.

The familiar square function square $(n)=n^{2}$ can be defined recursively as well:

$$
\operatorname{square}(n)= \begin{cases}0, & \text { if } n=0  \tag{9.7}\\ \operatorname{square}(n-1)+2 n-1, & \text { if } n>0\end{cases}
$$

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| square $(n)$ | 0 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 |

Figure 9.3: Some values of square ( $n$ ).

The first few values of square $(n)$ are shown in figure 9.3.
In this lab, you asked to implement the recursive square function as a subroutine, and call it from the main program. Your program should work for negative numbers as well, however the square $(n)$ subroutine should never be called with a negative argument: there will be a stack overflow, which is explained in the section that follows. In that and the other sections that follow you will find details that will help you in the implementation of the square $(n)$ subroutine.

### 9.3 Stack Frames

When a program (or subroutine) A calls a subroutine B with one of either instruction JSR and JSRR, automatically the return address to A is saved in register $\mathbf{R 7}$. While executing, if subroutine $B$ calls another subroutine C , then the return address to B will again be saved in $\mathbf{R 7}$, which would overwrite the previous value. When it is time to return to A , there will be no record of the proper return address. This situation shows the need to have a bookkeeping method that will save return addresses. This need is further demonstrated when having a subroutine that calls itself, i.e. a recursive subroutine. In this case, beyond the return address other information, such as parameters and return value, needs to be allocated for each invocation of the subroutine. The efficient solution to this problem is to have that information saved on a stack.

The space on the stack associated with the invocation of a subroutine is called frame. The stack consists of many frames, stacked in the order by which they are called from their corresponding subroutines. If subroutine A calls subroutine, B calls subroutine C, and C calls itself two times, the stack will have the structure of figure 9.4. When a subroutine returns, its corresponding frame is removed from the stack.


Figure 9.4: The structure of the stack.

A typical frame has the structure in figure 9.5 on page 9-4. The frame pointer, also known known as dynamic link, points to the first parameter and is used to refer to items within the frame via offsets. Register R5 is used hold the value of the current frame pointer. The frame pointer of the calling subroutine is saved on the frame of the called subroutine. When the called subroutine returns, the frame pointer is restored in $\mathbf{R 5}$, and is ready to be used in referring to items within the current frame.

During the execution of a program, while subroutines are called and return, the stack grows and shrinks accordingly. Every time a subroutine is entered, a frame is created; by the time a subroutine returns, all the elements of the frame will have been popped from the stack, and the frame will not exist anymore. If the size of the stack grows too large, i.e. there are too many outstanding subroutines, there is the danger of not having sufficient space to accommodate it, and it will cause an error, which is commonly referred to as stack overflow.

The pseudo-code algorithm to implement recursive subroutines is shown in listing 9.2 on page 94. It demonstrates how subroutine frames are created on the run-time stack, and destroyed. It is a
$\left.\begin{array}{|c|}\hline \text { Local Variable 2 } \\ \hline \text { Local Variable 1 } \\ \hline \text { Frame Pointer } \\ \hline \text { Return Address } \\ \hline \text { Return Value } \\ \hline \text { Parameter } 2 \\ \hline \text { Parameter } 1 \\ \hline\end{array}\right\}$ Frame

Figure 9.5: A typical frame
summary of the description in the textbook ${ }^{1}$.


Listing 9.2: The pseudo-code for the algorithm that implements recursive subroutines.

Register R6 is used as the stack pointer, which points to the top of the stack. When referring to a variable on the stack, one should access it through reference to the Frame Pointer, which is Register $\mathbf{R 5}$. For example, suppose the function is nearly complete and the return value is in $\mathbf{R 0}$ and it is

[^6]desired to store it at the Return Value location on the stack. Assuming only one parameter and only one register saved on the stack, the offset will be 3, as seen by the figure below:

| Offset | Ptr Location | Stack |
| :---: | :--- | :--- |
| 0 | Current FramePointer $\longrightarrow$ | Register1 |
| 1 |  | FramePointer (for last function) |
| 2 |  | ReturnAddress |
| 3 |  | ReturnValue |
| 4 |  | Parameter1 |

To store $\mathbf{R 0}$ at the ReturnValue location, following instruction is used:
1 STR $\quad$ R0, R5, \#3 $\quad$ store the return value on the stack

### 9.4 The McCarthy 91 function: an example in LC-3

### 9.4.1 Definition

The McCarthy 91 function $M(n)$ has been invented by John McCarthy, the inventor of the Lisp programming language (late 1950's). It is defined for $n=1,2,3, \ldots$, as follows:

$$
M(n)= \begin{cases}M(M(n+11)), & \text { if } 1 \leq n \leq 100  \tag{9.8}\\ n-10, & \text { if } n>100\end{cases}
$$

Remarkably, $M(n)$ takes the value 91 for $1 \leq n \leq 101$. For values $n \geq 102$ it takes the value $n-10$. In listing 9.3 the algorithm of $M(n)$ is specified in pseudo-code.

```
// Compute the McCarthy 91 function M(n), n is a positive integer
function M(n)
// n is \geq1
if n \leq 100
 return M(M(n+11))
else
 return n - 10
```

Listing 9.3: The pseudo-code for the recursive McCarthy 91 function.

### 9.4.2 Some facts about the McCarthy 91 function

The McCarthy $91 M(n)$ function for some numbers, $1 \leq n \leq 100$, while executing calls itself a number of times, while for $n>100 M(n)$ is called once. Figure 9.6 on page 9-6 shows the growth and shrinkage of the stack during execution for $n=1,20,50,80$, and 99 . A unit of time corresponds to either creation or destruction of a frame on the stack.

For $n=1$, since the curve becomes 0 at time $=402, M(n)$ is executed 201 times. Figure 9.7 on page 9-6 shows the number of times $M(n)$ is executed for various $n$.

The size of the stack measured as the number of frames on it for each $n$ in the range $1 . .123$ is shown in figure 9.8 on page $9-8$.

### 9.4.3 Implementation of McCarthy 91 in LC-3

As an example, in this section we give the implementation of the McCarthy 91 function in LC-3. The general algorithm of listing 9.2 on page $9-4$ is (slightly) modified in two ways:


Figure 9.6: Stack size in frames during execution.

| $n$ | Number of times $M(n)$ called |
| :--- | :---: |
| 1 | 201 |
| 20 | 163 |
| 50 | 103 |
| 80 | 43 |
| 99 | 5 |
| 100 | 3 |
| 101 | 1 |
| 102 | 1 |

Figure 9.7: Table that shows how many times the function $M(n)$ is executed before it returns the value for various $n$.

- The Return Address register R7 is saved to a temporary location (R0) immediately after the function F() is called because PUSH and POP will overwrite $\mathbf{R 7}$.
- The second change is that registers will be used for temporary storage, as opposed to using local variables, and thus registers used will be saved and then restored.

The modified algorithm with these changes is shown in listing 9.4 on page 9-7.
The source code for the program that calls the McCarthy 91 subroutine appears in listing 9.5 on page $9-8$, the push and pop subroutines in listing 9.6 on page $9-9$, and the McCarthy 91 subroutine itself on listing 9.7 on page $9-9$. The complete program, which is a concatenation of the code in the three aforementioned figures, can be saved on your disk, if your pdf browser supports it, by right-clicking here $\rightarrow=$.

```
 // The calling program
...
```



```
...
// The function (subroutine) F
F() // beginning of function F
13 TempVar \leftarrowReturnAddress // save ReturnAddress (R7) to a temp
 //variable (R0)
14 PUSH ReturnValue // create a place on the stack for the
 //return value
15 PUSH TempVar // push the ReturnAddress onto the stack
1 6 \text { PUSH FramePointer // push the FramePointer for previous}
 //function
7 FramePointer }\leftarrow\mathrm{ StackPointer - 1 // set the new frame pointer to
 //the location of the
```



```
 //needed
20
 //needed
2 2 ~ F r a m e P o i n t e r ~ \leftarrow ~ P O P ~ / / ~ r e s t o r e ~ t h e ~ o l d ~ f r a m e ~ p o i n t e r ~
2 3 \text { ReturnAddress } \leftarrow \text { POP // restore ReturnAddress so the caller can}
 // be
 // returned to
return // return to the caller, end of F()
```

Listing 9.4: The pseudo-code for the McCarthy 91 recursive subroutine.

### 9.5 Testing

Test the square $(n)$ subroutine for various inputs, positive and negative. Reminder: You should never pass a negative parameter to square $(n)$. First convert it to positive.

### 9.6 What to turn in

- A hardcopy of the assembly source code.
- Electronic version of the assembly code.
- For each of the inputs $0,1,7,-35$, screenshots that show the contents of locations $\mathbf{x 3 1 0 0}$ through $\mathbf{x} 3101$.
- Answer of this question: for each input above what is the maximum size of the stack in terms of frames?


Figure 9.8: Maximum size of stack in terms of frames for $n$.


Listing 9.5: The program that calls the McCarthy 91 subroutine.


Listing 9.6: The stack subroutines PUSH and POP.



Listing 9.7: The McCarthy 91 subroutine


[^0]:    ${ }^{1}$ Subtrahend is a quantity which is subtracted from another, the minuend.

[^1]:    ${ }^{1}$ The pseudo-code is close to the one used in Fundamentals of Algorithmics by G. Brassard and P. Bratley, Prentice Hall, 1996.

[^2]:    1 "Kalender-Formeln" von Rektor Chr. Zeller in Markgröningen, Mathematisch-naturwissenschaftliche Mitteilungen des mathematisch-naturwissenschaftlichen Vereins in Wrttemberg, ser. 1, 1 (1885), pp.54-58 - in German.

[^3]:    ${ }^{1}$ Schrage, L. 1979, ACM Transactions on Mathematical Software, vol. 5, pp. 132-138.

[^4]:    ${ }^{2}$ I.e., all integers in the range 1 to $2^{15}-2$, will be generated before the sequence will repeat itself.

[^5]:    ${ }^{3}$ For a more sophisticated implementation of a stack see Chapter 10 of the textbook Introduction to Computing Systems by Patt and Patel

[^6]:    ${ }^{1}$ Introduction to Computing System, by Yale N. Patt and Sanjay J. Patel, pages 385-393

