
Stability vs. Diversity: Understanding the Dynamics
of Actors in Time-varying Affiliation Networks

Hossam Sharara∗, Lisa Singh†, Lise Getoor∗ and Janet Mann‡
∗Computer Science Department, University of Maryland, College Park

†Department of Computer Science, Georgetown University, Washington DC
‡Departments of Biology and Psychology, Georgetown University, Washington DC

Abstract—Most networks contain embedded communities or
groups that impact the overall gathering and dissemination
of ideas and information. These groups consist of important
or prominent individuals who actively participate in network
activities over time. In this paper, we introduce a new method for
identifying actors with prominent group memberships in time-
varying affiliation networks. We define a prominent actor to be
one who participates in the same group regularly (stable par-
ticipation) and participates across different groups consistently
(diverse participation), thereby having a position of structural
influence in the network. Our proposed methods for quantifying
stable and diverse participation takes into consideration the
underlying semantics for group participation as well as the level
of impact of an actor’s history on his or her current behavior.
We illustrate the semantics of our measures on real-world data
sets with varying temporal connectivity structures.

I. MOTIVATION

Much research has focused on identifying influential indi-
viduals and opinion leaders in a social network; that is, those
who have high social capital, or who help maximize the spread
of information and ideas. While identifying these individuals
is useful for macro-level diffusion analysis, it is less useful
for understanding the structural influence of individuals in
embedded communities or groups in the network. In this
context, we introduce the concept of prominent individuals
to denote those individuals who, through their position in the
network, can have the greatest influence on its underlying
groups. More specifically, a prominent individual is one that
participates regularly within a group (stable participation)
and consistently across many groups (diverse participation)
compared to others in the network. These individuals are
important to the network because they have access to more
information than those that participate in only one or two
groups and they have the potential to disseminate information
since they participate consistently across many groups.

As an example, consider an epidemiological network where
groups are based on exposure to different disease strains.
Stable actors represent vulnerable individuals who are con-
sistently and recently exposed to a certain disease. Diverse
actors represent those that have repeatedly had exposure
to a large number of disease groups. While each of these
measures provide meaningful insight into the implications of
different types of disease exposures, studying the behavior of
individuals who had elongated exposure to different types of
diseases is crucial in understanding the vulnerability of the

network as a whole, and the dynamics of spread of different
disease strains.

In this paper, we extend the work we proposed in [1] for
quantifying user loyalty to a social group into a more general
formulation for identifying prominent users based on both their
stability in their corresponding groups, as well their diversity
across different groups in networks. The contributions of this
paper are as follows. First, we propose a new method for
identifying individuals who have both stable and extended
reach in a network that is tunable for networks with vary-
ing characteristics, including different semantics for network
group participation and for past participation. Second, we
show how our method can be used in time-varying affiliation
networks; specifically, how we can use the affiliation events to
define the groups that actors belong to. Third, we demonstrate
the utility of the measures on three real world data sets. An
extended version of this paper is presented in [2].

II. RELATED WORK

Recently, researchers have begun to analyze the dynamics of
communities over time [3]–[10]. Much of this research focuses
on two questions: what are the communities that exist in a
particular data set, and how do they change or evolve over
time.

In contrast, the approach we propose in this paper is a
micro-level analysis technique that focuses on the dynamics
of specific actors or individuals within different groups in the
network. Our analysis of actors can be conducted using the
groups identified by any of the aforementioned dynamic com-
munity detection algorithms on a single mode social network.
Once the social groups or communities are established, our
goal is to understand the dynamics of actors and their social
relationships in the context of these predefined groups.

Habiba et al. [11] proposed a set of methods for identifying
important actors in dynamic networks. The authors identified
nodes in single mode networks that are likely to be good
“spread blockers”. To accomplish this, they introduced dy-
namic measures for density, diameter, degree, betweenness,
closeness and clustering coefficient. Their measure of dynamic
average degree is semantically meaningful in the context of
time-varying affiliation networks. We show that it is a special
case of our diversity measure when there is no discount
function. While all of these approaches are important for
micro-level analysis of dynamic social networks, none of them



identify individuals that are structurally well positioned in the
network to gather and disseminate information.

III. DEFINITIONS AND BACKGROUND

In this section, we define the notions of dynamic groups
and affiliation networks. We then explain a novel approach
for defining groups from affiliation networks.

A. Temporal Social Groups

The groups that we focus on are temporal, so an actor’s
participation varies with time. In addition, we allow actors
to be members of multiple groups at each time step since
this property is more typical in real-world networks. More
formally, given a single mode graph G(A, E) containing a
set of actor nodes A = {a1, a2, a3, . . . , an} and edges that
connect actors, E = {(ai, aj)|ai and aj ∈ A}, we define a
collection of groups, G = {g1, g2, g3, . . . , gl}, and a boolean
relationship that describes temporal group memberships of
an actor, GroupMember(ai, gj , t). We also define a tem-
poral social group as a subset of actors having the same
group value gj at time t: SocialGroup(gj , t) = {ai|ai ∈
A, GroupMember(ai, gj , t)}.

The above construct is general and can be applied in a
variety of settings depending on the semantics of the un-
derlying analysis task. One could group actors based on the
output of a dynamic community detection algorithm discussed
in the previous section. Another method would be to group
actors based on common attribute values or common event
participation. We now describe this method in the context of
affiliation networks.

B. Event-Based Grouping from Affiliation Networks

An affiliation network is represented as a graph G(A, E ,P)
containing a set of actor nodes A = {a1, a2, a3, . . . , an}, a
set of event nodes E = {e1, e2, e3, . . . , em}, and a set of
participation edges P that connect actors in A to events in E .
Here, P = {(ai, ej)|ai ∈ A, ej ∈ E , and ai participates in ej}.
In addition, we assume that actors and events have attributes or
features associated with them. In order to emphasize the event
relation’s temporal component, it explicitly contains a time
attribute, Etime, that can be used to associate specific time
points to abstract groups of actors. An example of an affiliation
network is an author publication network. In such a network,
the actors are the authors, the events are the publications,
and the participation relationship indicates the authors of a
publication. This affiliation network is temporal because each
publication event has a date of publication.

The grouping construct we propose for affiliation net-
works incorporates the semantics of events into the grouping
definition. Specifically, we propose defining a group based
on shared event attribute values. We consider any attribute
(or combination of attributes) of the event relation to be
a grouping abstraction that can be used to define a set of
groups. Assume each attribute Ek of Event has a domain of
values, Domain(Ek) = {g1, g2, . . . .gp}. In order to construct
an event-based grouping abstraction, we define the temporal

group membership as follows: GroupMember(ai, gj , Etime)
where gj is in Domain(Ek), and Etime is the time point when
the group membership is valid. For simplicity, our definition
focuses on the case where groups are based on a single
attribute Ek. It is straightforward to extend this definition to
consider multiple attributes.

Returning to our publication network with authors as actors
and publications as events, we focus on the three attributes
associated with the publication event - publication topic,
publication venue, and publication authors. Each attribute is an
abstraction through which actors can be grouped. Using this
formulation, we have multiple ways an actor relates to other
actors through a particular event. An example social group
belonging to the topic grouping abstraction is data mining,
e.g., actors who have published on the topic data mining.

There are several advantages to our group formulation.
First, our approach, while very simple, is surprisingly flexible.
Second, actors can belong to multiple affiliation-based groups
at a particular time. In other words, membership in different
groups can be overlapping. Third, actors are not required to
be part of an event (or group) at every time t.

IV. QUANTIFYING ACTOR PARTICIPATION

Formally, we are interested in the following problem: Given
a dynamic affiliation network G, identify the top-k prominent
actors P in the network. Intuitively, an actor that is prominent
has two characteristics. First, the actor participates within a
dynamic social group consistently over time and hence, is
considered a stable actor. Second, the actor participates across
many different groups consistently over time and therefore,
is considered a diverse actor. We now define actor stability,
diversity, and prominence in the remainder of this section.

A. Actor Stability

Different static and temporal definitions can exist for stabil-
ity. We consider two of them in this paper: frequency-based
stability and consistency-based stability.

1) Frequency-based Stability: One possible definition for
stability considers the number of times an actor participates
in a group. Let ns(ai, gj) be the number of time points that
actor ai participates in group gj . Let Tmax be the maximum
number of time points that any of the actors in the network
participated in any group in G. Then the stability of actor ai
in a group gj is defined as the ratio between the number of
time points ai participates in a particular group gj and the
maximum number of time points Tmax:

S(ai, gj) =
ns(ai, gj)

Tmax

While this definition takes into consideration the dynamics
between actors and groups, it does not capture the temporal
component of the actor participation.

2) Consistency-based Stability: In some domains, it is
important to favor consistent and recent actor participation
over irregular and outdated participations. This is especially
relevant in the case of data sets with large number of time



periods, in which it is valuable to highlight the duration(s)
for which a stable member possesses this property. To this
extent, we introduce a discount function that serves as the
mechanism for taking the temporal component of the actor’s
participation into account. As a result, instead of using the total
number of a given actor’s participations in a corresponding
group when calculating stability, we can alter the effect over
time depending on the discount function used.

The main inputs to the discount function are the previous
value of the actor’s participation in group gj and the difference
in time between the current time point and the previous time
point where the actor’s last activity was monitored, t− tprev .
The output of the function is the discounted value of the actor’s
participation at the current time step t. Examples of common
discount functions are linear (F(x, y) = x

α.y ) and exponential
decay (F(x, y) = x

eα.y ). We place no constraint on which
function is used. Any model of decay that suits the domain
being studied is reasonable.

We calculate the discounted sum of the actor participation
at each time point as follows:

Ns(ai, gj , t) = δ(ai, gj , t) t = t0
= δ(ai, gj , t)

+(F(Ns(ai, gj , tprev), t− tprev))
t > t0

where Ns(ai, gj , t) is the discounted value of actor ai’s
participation in group gj up to time point t, F is the user-
defined discount function, t0 is the initial time point where
actor ai participated in group gj , tprev is the last time point the
actor participated in before t, and δ(ai, gj , t) is a participation
function that evaluates to one when actor ai participates in
group gj at time t or zero when actor ai does not. We then
evaluate stability at the time point of interest, tf , using the
discounted value of the actor participation up until that point
by augmenting the original stability measure as follows:

S(ai, gj , tf ) =
Ns(ai, gj , tf )

Tmax

where Tmax is the maximum number of time points from t0
until time point tf that any actor in A participated in any
group in G. Here, we use Tmax to normalize the scores. We
could simply use the total number of time points; however, if
most actors participate in a small fraction of time steps, using
the maximum participation of any actor results in a wider
distribution of stability values.

B. Actor Diversity

Similar to stability, different static and temporal definitions
can exist for diversity. Two that we consider in this paper are
frequency-based diversity and consistency-based diversity.

1) Frequency-based Diversity: One possible definition for
actor diversity considers the number of groups in which an
actor participates. Let nd(ai) represent the number of groups
that actor ai participates in over all time points and let
Gmax be the total number of groups with at least one actor

participation in the network, where Gmax ≤ |G|. Then the
diversity of actor ai is defined as the number of groups ai
actually participates in over the number of groups ai can
participate in:

D(ai) =
nd(ai)

Gmax

2) Consistency-based Diversity: Similar to stability, we are
interested in favoring recent and consistent diversity. There-
fore, we will also use a discount function for the actor’s
diversity. We first calculate the discounted sum of actor
participations at each time point:

Nd(ai, t) = nd(ai, t) t = t0
= nd(ai, t)

+(F(Nd(ai, tprev), t− tprev))
t > t0

whereNd(ai, t) is the discounted value of actor ai’s number of
group participations up to time point t, F is the user-defined
discount function, and tprev is the last time point the actor
participated in prior to t. Then, the diversity at the time point
of interest, tf , is calculated using the discounted value of the
actor’s number of group participations up to tf divided by the
number of groups in the network times the number of time
points the actor participated in.

D(ai, tf ) =
Nd(ai, tf )

Gmax × Tmax
where Tmax is the maximum number of time points that any
of the actors in Actor participated in any group in G until
time point tf .

C. Actor Prominence

Once we have the stability for all actors in their corre-
sponding groups, as well as their overall diversity, we can
use these measures to determine the set of prominent actors
in the affiliation network.

DEFINITION 1: A prominent actor P has both a high
stability S within groups in G and a high diversity D across
groups in G over time.

We define SAk(gj , t) to be the top-k stable actors for
group gj at time point t and SAk(G, t) =

⋃
gj∈G SAk(gj , t).

Similarly, we define DAk(t) to be the top-k diverse actors at
time point t. Then prominence P (t) is calculated as follows:

1) Calculate D(ai, t) and S(ai, gj , t) for all ai and gj .
2) Determine SAk(G, t) and DAk(t).
3) Intersect top-k stability and diversity sets to find

prominent actors Pk(t) = SAk(G, t)) ∩ DAk(t)).
This final set will contain the actors who possess both high

stability and high diversity measures. Notice that it is possible
for a particular data set to contain no prominent actors. For
example, there may be affiliation networks that contain stable
members that are not diverse. In such cases, the intersection
will yield an empty set of prominent actors. To avoid elevating
non-prominent actors in data sets containing low diversity and
stability values for all the actors, we can include a minimum



(a) Publication network group stability

(b) Senate network group stability

(c) Dolphin network group stability

Fig. 1. Stability of actors across various groups

threshold so that only actors above the minimum thresholds
for stability and diversity are candidates for prominence.

V. EXPERIMENTAL RESULTS

We begin by analyzing our proposed measures, stability,
diversity, and prominence, on three affiliation networks: a sci-
entific publication network, a senate bill sponsorship network,
and a dolphin social network. We analyze the distribution of
values for each data set and illustrate meaningful character-
istics of the actors in the networks. A more extensive set of
experiments are presented in the extended version of this paper
[2].

A. Data Sets

Scientific publication network: This network is based
on publications in the ACM Computer-Human Interaction
(ACMCHI) conference from 1982 until 2004. Similar to our
running example, this data set describes an author/publication
affiliation network. It was extracted from the ACM Digital
Library and contains 4,073 publications and 6,358 authors.
There are 12,727 participation relationships (edges) between
authors and publications. Since we are interested in the tem-
poral dynamics of the actors, single actor participations are
removed as a preprocessing step for all the data sets. We
grouped publications using the topic attribute. There are 15
values for this attribute.

Senate bill sponsorship network: This network is based on
data collected about senators and the bills they sponsor [12].
The data contains each senator’s demographic information and
the bills each senator sponsored or co-sponsored from 1993
through February 2008. There are 1896 senators, 28,949 bills,
and 191,097 sponsorship/co-sponsorship relationships between
the senators and the bills in this affiliation network. Each
bill has a date and topics associated with it. We group the
bills using their general topic. After removing the senators
that do not sponsor a bill, the bills that do not have a topic,
and preprocessing the data, our analysis uses 181 senators,
28,372 bills, and 188,040 participation relationships spanning
100 general topics. While we used all the groups for our
analysis, due to space limitations we illustrate the results using
only a subset of the 100 topics.

Dolphin behavioral network: This network is based on a
data set accumulated over the last 25 years on a population
of wild bottle-nose dolphins in Shark Bay, Australia. The
dolphin population has been monitored annually since 1984
by members of the Shark Bay Dolphin Research Project.
They have collected 13,400 observation surveys of dolphin
groups. Each observation of a group of dolphins represents
a ’snapshot’ of associations and behaviors. In this affiliation
network, dolphins are defined as actors and surveys as events.
Dolphins observed in a survey constitutes the participation re-
lationship. Our analysis includes 560 dolphins, 10,731 surveys,
and 36,404 relationships between dolphins and surveys. We
group survey observations together by the location (latitude-
longitude) of the survey. Seven different predetermined areas
of approximately equal size (75 sq km.) were used as groups
for this data set.

B. Measuring Stability

The results of measuring the stability of actors to different
groups in each network are summarized in Figures 1(a) -
1(c). Here the x-axis represents the stability value and the y-
axis contains the group names. Except where noted otherwise,
we use a linear discount function with α = 1 for all the
results reported. As can be seen from the figures, because
the semantics and evolution of each network are different,
the overall actor stability varies across the data sets with the
average stability being lowest for the publication data set and
highest for the senate data set. The low average stability of



Fig. 2. Actor diversity

the authors to publication topics in the scientific publication
data set results because most of the authors do not publish
in this venue every year on the same topic. This may lead
one to believe that these authors are diverse. As we will see
later, while there are some diverse authors, the majority are
not. In fact, the majority of authors do not consistently stay
a member of a single group and do not consistently publish
across groups. In this data set, the low stability scores is
an indication that very few people in the network are well
positioned to have a strong, continual impact on authors in
these different groups.

Figure 1(b) shows the results on the senate bill sponsorship
network. Here we notice that the average stability of senators
in different groups is much higher than that of the publication
network with some having a score above 0.8. This means that
senators are regularly sponsoring bills of a certain type. This
is particularly true for bills sponsored within certain topics,
e.g., commemorations, foreign policy, taxation. However, other
topics, including environmental policy and women, have sig-
nificantly less stable membership (average stability less than
0.1).

Figure 1(c) shows the results on the dolphin network.
Here we see that dolphin stability is more variable than the
previous data sets. There are three locations with more stable
membership than the others. The average stability is highest
for the ’East’ location, but the most stable dolphins in the
data set are in ’Red Cliff Bay’ and ’Whale Bight’. While
some of this may be explained by heavier sampling in certain
regions, biologists believe this is likely to be a result of habitat
structure in the region [13]. For example, ’East’, which has
the highest average stability, is mostly deep channels bisected
by shallow sea grass banks. Dolphins with high stability
in the ’East’ have certain foraging specializations (channel
foragers or sea grass bed foragers). Since many dolphins
spend a large amount of time foraging, a high stability in
regions where specialized foraging is necessary is consistent
with biologists’ interpretation of dolphin behavior. Dynamic
measures like stability provide observational scientists with a
tool for measuring and comparing social variability throughout
an animal’s life history.

C. Measuring Diversity

In Figure 2, we compute the diversity distribution among
the actors of each network. To make the figure easier to read,

we sorted the diversity values for each data set from highest
to lowest along the x-axis. The figure shows that the average
diversity is highest for senators, while the range of diversity
values is widest for the dolphins. The diversity of actors in
the scientific publication network is very low (average <
0.05). This is an indication that authors are not publishing
consistently across topics. The diversity values for the senator
sponsorship network may seem low since they are all below
0.5 and intuitively, we expect senators to sponsor bills across
a range of topics. However, this is not surprising because there
are 100 different bill topics, and the number of topics is part of
the denominator of the diversity equation. Finally, the range
in dolphin diversity is much higher than the other two data
sets. Again, this is consistent with biologists’ interpretation of
dolphin behavior. While many dolphins settle in some areas
(bights or bays), others spend more time in adjacent bays
at specific stages in their life history (e.g., juvenile period
or adulthood), thereby increasing their diversity score with
respect to location.

D. Prominent Actors

Recall that prominent actors are structurally well positioned
in the network to both gather new information and ideas
from different groups (diversity), as well as disseminate them
to members of groups they actively participate in (stability).
In order to find the prominent actors, we apply the method
discussed in section IV-C using (k=10). We highlight some
interesting findings. First, none of the data sets have 10
prominent actors. In other words, few actors in the data sets
are both stable and diverse. The dolphin data set, which has
the highest stability and diversity scores, returns the fewest
prominent actors (4). The senator network has the largest
number of prominent actors (8), and the publication data set
is in the middle (6).

Focusing on the senator data set, the following actors
are considered prominent: Sen. Jeff Bingaman, Sen. Barbara
Boxer, Sen. Diane Fienstein, Sen. Edward Kennedy, Sen. John
Kerry, Sen. Patrick Leahy, Sen. Joseph Lieberman, and Sen.
Patricia Murray - all well-known Democratic senators. We
have similar findings for the publication data set. Finally,
prominent actors in the dolphin network all have high stability
and diversity in the same location groups. Scientists who mon-
itor the dolphins know these dolphins to be highly sociable,
i.e. since the 1980s, their rate of contact with other dolphins



is high. These dolphins are sighted regularly in many different
locations and are rarely sighted alone. This is consistent with
the definition of prominence.

VI. CONCLUSIONS

In this paper, we introduce the concepts of stable, diverse
and prominent actors in a network and exhibit methods for
identifying them in the case of dynamic affiliation networks.
Because these networks are more nuanced then traditional
static social networks, the measures are more complex, and
capture both the temporal aspects of the networks and the
variety of ways of defining groups within an affiliation net-
work. We illustrate the utility of our measures of stability and
diversity on several real-world networks.
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