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Abstract. Extending graph models to incorporate uncertainty is im-
portant for many applications, including disease transmission networks,
where edges may have a disease transmission probability associated with
them, and social networks, where nodes may have an existence probabil-
ity associated with them. Analysts need tools that support analysis and
comparision of these uncertain graphs. To this end, we have developed
a prototype SQL-like graph query language with emphasis on operators
for uncertain graph comparison. In order to facilitate adding new op-
erators and to enable developers to use existing operators as building
blocks for more complex ones, we have implemented a query engine with
an extensible system architecture. The utility of our query language and
operators in analyzing uncertain graph data is illustrated using two real
world data sets: a dolphin observation network and a citation network.
Our approach serves as an example for developing simple query languages
that enables users to write their own ad-hoc uncertain graph comparison
queries without extensive programming knowledge.
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1 Introduction

Traditional graph models can be extended to incorporate uncertainty about ver-
tex / edge existence and attribute values. Applications data that could benefit
from uncertain graph models, include disease transmission networks with disease
transmission probabilities, observed social networks with node existence proba-
bilities, and physical computer networks with associated reliability probabilities.

A variety of tools, databases, algorithms, and research consider analysis of
probabilistic data [16,26,27]. Analysis of graph data is a subject of another large,
but mostly unrelated research area [8, 9, 11–13]. We are interested in combining
both in a general way to give users the capability to examine and compare
uncertain graphs.

While uncertain graph analysis and comparison is relevant to a number of
different domains, we focus on two settings in this work, uncertainty occurring
during scientific observation and uncertainty resulting from data analysis.
Observational scientific data: Observational scientists study animal societies
in their natural settings, often, with the purpose of understanding the social re-
lationships and behaviors within the society. Such social network data can be
captured as a graph, where nodes represent observed animals and edges between



nodes represent sightings of both animals together. A researcher observing a
particular animal may be uncertain about its identification, features, or behav-
ior. This uncertainty can be expressed as existence probabilities between 0 and
1, associated with nodes and/or edges, and represented as representing discrete
probability distributions over the set of possible categorical attribute values. An-
alyzing and comparing uncertain graphs can be useful for answering questions
about changes in animal sociality over time, similarities of local animal com-
munities to the general animal population, differences among animal subgroups
across locations, and observation bias across researchers.
Analysis output data: A second setting we consider involves machine learning
algorithms generating uncertain graphs that can be used as the basis for pre-
diction, generalization, and statistical analysis. One specific example is a node
labeling algorithm. These algorithms can be used to predict the topics of each
publication in a citation network, predict which customers will recommend prod-
ucts to their friends using a customer network, or predict the political affiliations
of people in a social network [23]. They take as input a partially observed graph
to predict the label (attribute value) of nodes in the graph. The output of such
algorithms is an uncertain graph containing a probability distribution across the
possible set of labels for each node. Comparing and contrasting these uncertain
graphs to each other or to a ground-truth graph allows researchers to analyze
the performance of different machine learning algorithms, experiment with a
single algorithm under different assumptions, and examine the graph dataset by
highlighting parts of data where the algorithms disagree in their predictions or
perform poorly.

Contributions: Our focus is on uncertain graph analysis with an emphasis
on comparison of them. The contributions of this work are as follows:
1. A basic SQL-like language, which incorporates uncertain graph analysis and

comparison operators, while taking advantage of most of the SQL capabil-
ities. The semantics of this proposed language is a combination between
relational database and uncertain graph semantics, part of which is novel
and part of which is necessary for the language to be applicable. Section 4
introduces the language.

2. A set of composable, comparative operators for uncertain graphs, where
the previous literature focuses on single graph operators, on specific graph
algorithms in the presence of uncertainty, or on operators for multiple certain
graphs. We introduce operators for estimating similarity between graphs,
nodes, edges, and their attributes, including finding a common subgraph that
exists across two graphs containing edges with high certainty and identifying
a set of nodes that have the same predicted node label across two uncertain
graphs. Section 5 describes our proposed operators in more detail.

3. A novel system framework that (1) uses a combination of a layered and a
service oriented architecture, and (2) is extensible, modular, and expand-
able, allowing for easy integration of new operations. The novelty of our
design is the focus on extensibility and modularity. Traditionally, databases
construct query trees whose set of possible operations is predefined. This
design allows for query optimization by applying a set of rewrite rules. Our



approach provides a flexible mapping of operators to their implementation.
The query engine can, therefore, support easy integration of new operators
without affecting the existing ones and without requiring significant changes
to the framework itself. Section 6 presents our high level system architecture
emphasizing details related to operator extensibility and composition.

4. An implementation of our query framework and an empirical analysis using
two real world data sets (presented in Section 7).

2 Related Literature

Storage, analysis, and manipulation of graph data is a vast area of interest for
both the research community and the industry. In particular, there are multiple
graph databases in existence: [2,4–7], to name a few, offering efficient data stor-
age and access, as well as scalability and transaction management. The query
options sometimes include proprietary APIs (Neo4j Traverser) or proprietary
SQL-like query languages [6]; in other cases ( [1, 2, 5–7]) there is support for
Gremlin [3] or SPARQL [20]. SPARQL is a query language for the RDF format
with similarities to our approach in terms of semantics and SQL-like syntax,
including joins and the capability to retrieve and combine data from several
graphs. In comparison to our language, SPARQL offers more flexible pattern
matching, but is more restricted in that its standard data types are XML-based,
its set of operators is more limited, and it does not offer extended SQL-like
constructs such as MERGE BY and SPLIT BY. Gremlin is a relatively simple
but powerful language for graph traversal and manipulation supporting built-in
functions such as union, difference, intersection that are applicable to graph com-
parison. Neither of these languages focus on uncertain graphs. Similarly, many
of the languages suggested in existing research [8,9,11–13] often do not consider
uncertainty during graph analysis and comparison across multiple graphs.

Querying similar graphs in graph databases has been studied in recent years
[30]; however, existing works mainly focus on structural information and con-
nectivity. Uncertainty is often incorporated in the context of specific algorithms
[14, 15, 18, 19, 24, 32]. These problems are important in answering some of the
possible uncertain graph queries, yet our goal is to create a more comprehensive
set of albeit simpler uncertain comparison operators. Other researchers study
uncertainty arising from approximate queries rather than uncertain data [29].

Probabilistic databases, on the other hand, typically support queries based
on the concept of Possible World Semantics [16,26,27]. Recently researchers have
extended the Possible World Semantics to uncertain graphs [31], [28]. While ap-
plicable for many problems, this concept is different from our focus on graph
comparison regardless of the nature of the underlying probabilities. We do, how-
ever, build upon operators for comparison of probabilistic attributes [26], as they
are applicable for uncertain graph attributes.

Finally, there are a number of visual graph tools, including [23], [10]. Excellent
for visual comparison of uncertain graphs, they could complement rather than
substitute the capability to execute user-defined queries.



3 Probabilistic Formulation

Throughout the subsequent sections we use the following background defini-
tions, underlying assumptions, and notation. The central object of interest are
uncertain graphs that represent a generalization of exact graphs, incorporating
uncertainty about vertex / edge existence and attribute values. The existence
probability of an edge is assumed to be conditional upon the existence of its
endpoints. Uncertain attributes contain probabilities associated with each pos-
sible value from their domain, expressing the likelihood that the attribute takes
on this particular value. To broaden the application of our model, we make no
assumptions about the nature of probability values assigned to the graphs that
we need to compare. In other words, the analyst can decide if the probabilities
are marginal or posterior.

Uncertain Graph. An uncertain graph G = (V,E,AV , AE , PAV , PAE) has
a non-empty finite set of vertices, V = {v1, . . . vm}, and a finite set of undirected
edges, E = {e1, . . . en}, where each edge ey is a pair of vertices, ey ∈ V × V ,
and V × V = {(vi, vj)|vi ∈ V, vj ∈ V }; AV = {A1, . . . Ap} is a set of (certain)
attributes for vertices; AE = {A1, . . . Aq} is a set of (certain) attributes for
edges; PAV = {PA1, PA2, . . . PAr} is a set of uncertain attributes for vertices;
and PAE = {PA1, PA2, . . . PAt} is a set of uncertain attributes for edges. The
attributes are consistent across vertices and across edges respectively, i.e. all
vertices have the same schema and so do all edges. We refer to both edges and
vertices as graph elements.

Certain Attributes. The set of all certain attributes is defined as A =
{A1, A2, . . . As} = AV ∪AE . Given an attribute Aj ∈ AV , its domain Dj , and a
vertex vi ∈ V , we associate a value pk ∈ {Dj} with the pair (vi, Aj) and denote it
using the notation a(vi, Aj) = pk. As shorthand, we use aij . Similarly, a(ei, Aj) =
pk. To express structural uncertainty, we designate one of the attributes in AV

and AE to store our confidence about existence of the corresponding graph
element: ∃Aj : aij ∈ [0, 1], ∀i ∈ [1,m] and ∃Aj : aij ∈ [0, 1], ∀i ∈ [1, n].
Henceforth, we refer to this attribute as ‘conf’ or ‘confidence’.

Uncertain Attributes. By analogy, the set of all uncertain attributes is
PA = {PA1, PA2, . . . PAo} = PAV ∪PAE . Uncertain attributes allow the data
model to express semantic uncertainty in the graph. The value of an uncertain
attribute PAj is a set of pairs of each possible attribute value and a probability
associated with each possible value. For example, an uncertain attribute sex with
value domain {male, female} reflects the researcher’s uncertainty about the sex
of the observed animal. For a specific vertex, the set of its value pairs could be
{(male, 0.8), (female, 0.2)}.

More precisely, value domain V Dj is the constrained (discrete) domain of
possible values associated with attribute PAj . The value domain is ordered and
we use the notation atj to designate the t-th member of V Dj , where t ∈ [1, |V Dj |].

Given an uncertain attribute PAj ∈ PAV and a vertex vi ∈ V , we associate
a value pk ∈ {PDj} with the pair (vi, PAj) and denote it using the notation
pa(vi, PAj) = pk. As shorthand, we use paij . Similarly, given an attribute PAj ∈
PAE and an edge ei ∈ E, we associate a value pk ∈ {PDj} with the pair



(ei, PAj) and denote it using the notation pa(ei, PAj) = pk. As shorthand, we
again use paij .

By analogy to using atj to refer to members of value domain V Dj , the
shorthand ptij refers to the corresponding probability f(atj), associated with
value atj for vertex vi. We define the set of uncertain attributes for a partic-

ular vertex vi as PA(vi) = {PAj : PAj ∈ PAV and pa(vi, PAj) 6= null}.
Similarly, the set of uncertain attributes for a particular edge ei is defined as
PA(ei) = {PAj : PAj ∈ PAE and pa(ei, PAj) 6= null}.

Assumptions. In comparing two graphs g1 and g2, we use the simplifying
assumption that the following partial mapping exists between their elements: (1)
the vertex mapping consists of a bijective mapping function for those vertices
that are mapped, plus a set of unmapped vertices in each of the graphs g1
and g2; and (2) edge mapping is equivalent to vertex mapping, with the added
constraint that edges g1.e and g2.f can be mapped to each other only if both
of their endpoint vertices are also mapped. We refer to two graphs with this
property as aligned graphs. Different alignment schemas may be possible. Unless
stated otherwise, alignment is assumed to be based on element id: elements from
graph g1 are mapped to elements with the same unique id in graph g2; they are
unmapped if there is no corresponding element with the same id.

4 Query Language

Our approach was to take advantage of the SQL semantics by handling graphs,
graph elements, and attributes using relations. We chose to base our query lan-
guage on SQL because it is a mature, proven, and well-known language. While
we do not claim that it is the best language for the purpose, we believe it is suf-
ficient for expressing a wide range of uncertain graph comparison queries using
our set of operators. Using these operators directly with traditional SQL was
certainly another option; however, there are several disadvantages. On a syn-
tactic and semantic level, a dedicated query language allows the flexibility for
any modifications that best suit the specifics of uncertain graph analysis. On an
implementation level, extending an existing SQL query engine effectively would
mean using a relational database as storage for uncertain graph data. Instead,
our goal was to develop an approach that borrows important SQL semantics
without being restricted to a particular storage.

Our query language supports the major SQL operations, such as SELECT,
FROM, JOIN, WHERE, GROUP BY, HAVING, and ORDER BY, introducing
modifications and extensions to accommodate the specifics of graph comparison.
For example, the FROM operation can extract individual nodes, edges, both
nodes and edges, attributes from the specified graph (creating a tuple for each of
them), or return the graph as a whole in a table as a single tuple. An example that
returns a table containing edges from graph g1 with high existence probability
along with the confidence of existence sorted by confidence is as follows:

SELECT e, conf(e)



FROM g1 TYPE edge AS e

WHERE conf(e) > 0.5

ORDER BY conf(e) DESC

We introduce two new operations, MERGE BY and SPLIT BY, to support
collections that are returned by some common operators, such as adjacentV ertices().
The SPLIT BY c operation is used to ”flatten out” a relation, when column c
may contain a set of values rather than a single value. In the returned relation,
each tuple t in the source relation is replaced by a number of tuples, one for every
value in the set of values from t in column c. MERGE BY is similar to GROUP
BY, but retains the remaining columns, which are not part of the clause, ”vis-
ible” to subsequent non-aggregate operators by collapsing the values from the
original tuples into a collection.

While this approach has many strengths, the main advantages are the use
of a familiar query language in SQL and the additional operation extensions
for collections that improve the flexibility of querying uncertain graphs, without
being restricted to a particular storage.

5 Proposed Operators

While we take advantage of the SQL-like operations to retrieve, filter, sort, group,
and join data, individual operators are used within each of these clauses to specify
the required behavior. As shown in the query example, the same operator can
be re-used with several operations, subject to rules between aggregate vs. non-
aggregate operators and operations. Because limited space precludes us from
describing all operators within the text, we provide a list of operators, categorized
based on their target, i.e. those that apply to attributes (Table 2), graph elements
(Table 1), and ego-networks and graphs (Table 3). Each of these tables contains
the name of the operator, a brief description, and in some cases, an example
result based on the sample graph in Figure 1.

More specifically, because the attribute value represents a discrete proba-
bility distribution, the proposed attribute operators’ functionality ranges from
simply extracting the most / least probable value to analyzing the shape of the
distribution. For example, peakToNextDist() can be used to identify uncer-
tain attributes with a dominant (peak) probability that significantly exceeds the
probabilities for the remaining values. Graph element operators may be incor-
porated into a query such as the introductory example in section 4 to identify
weak connections within a single graph or to compare the confidence of the cor-
responding elements across two aligned graphs, isolating the elements not only
based on their low or high confidence, but also on whether the two graphs agree
or differ significantly. Common usage examples of graph and ego-net operators
are provided in Table 3.

We focus the remainder of this section on our similarity operators since they
are most relevant to the uncertain graph comparison tasks outlined in the mo-
tivating examples.



Operator Description

conf() confidence of element’s existence - conf(v1) = 0.8

bin() true or false bin, corresponding to high or low conf()
relative to a threshold. Ex. bin(v1, 0.5) = true

compBin() “high”, “opposite”, or “low”, depending on the re-
lationship between the output of the bin() oper-
ator applied to each of the two operands. Ex.
compBin(v1, v2) = high

magnitudeDiff() difference between confidence of existence of 2 ele-
ments. Ex. magnitudeDiff(v1, v2) = 0.2

diffSignificance() whether the absolute value of magni-
tude difference is above a threshold. Ex.
diffSignificance(v1, v2, 0.1) = true

valueCertaintyScore() average maxV alueCertainty() of all un-
certain attributes of the element. Ex.
valueCertaintyScore(v1) = 0.6

sim() similarity score between 2 elements of the same type
(vertices or edges), typically in the range [0, 1]

Table 1. Graph Element Operators: Most of these operators serve to query and analyze the
confidence of existence of a single graph element or relative to another vertex or edge. Other operators
in this group aggregate the results from attribute-level operators for the given graph element.

Uncertain Attribute Similarity. The sim() operator is one of our novel op-
erators for comparing uncertain attributes paij and palj . In the proposed set
of measures, similarity is classified as either structural or semantic. The former
identifies the similarity between the general shapes of the two distributions, ig-
noring the attribute values and their arrangement relative to each other. For
example, attribute {(a, 0.8), (b, 0.1), (c, 0.1)} should be considered structurally
equivalent to attribute {(a, 0.1), (b, 0.1), (c, 0.8)}, as both have a dominant value
(peak) of 0.8. We support two structural similarity measures, entropy ratio and
absolute distance ratio, where the entropy ratio compares the distribution spread
for the specified uncertain attribute and the absolute distance ratio compares the
magnitude of the distance between the different uncertain attribute values. For

example, the absolute distance is calculated as: AD(paij) =
∑|V Dj |

t=2 |ptij − pt−1
ij |

and by analogy, for palj . To correctly reflect structural similarity through abso-
lute distance, probability sets in both attributes must first be sorted.

The semantic similarity, on the other hand, compares probabilities between
the corresponding attribute values. An instance of an uncertain attribute can

Fig. 1. Sample network for operator examples.



Operator Description

mpv(), lpv() most / least probable attribute value. Ex. mpv(v1.loc) =
“PN”

valueCertainty() probability that the attribute has a specific value from
the domain. Ex. valueCertainty(v1.loc, “WB”) = 0.2

maxV alueCertainty(),
minV alueCertainty(),
avgV alueCertainty(),
medianV alueCertainty()

max, min, mean, or median probability among
all probabilities associated with an attribute. Ex.
maxV alueCertainty(v1.loc) = 0.6

peakToAvgDist() difference between the max and the average certainty. Ex.
peakToAvgDist(v1.loc) = 0.4

peakToNextDist() difference between the max and the second-highest at-
tribute value probability. Ex. peakToNextDist(v1.loc) =
0.4

valueCertaintyDev() standard deviation of probabilities for an uncertain at-
tribute

valueCertaintyRange() difference between highest and lowest probability of an
attribute. Ex. valueCertaintyRange(v1.loc) = 0.6

sim() similarity score between two uncertain attributes of the
same type, typically in the range [0, 1]. It is generally
measured between the two sets of their respective at-
tribute values and probabilities. The specific similarity
measures are described in this section.

Table 2. Uncertain Attribute Operators: These operators answer queries about values and
probabilities associated with one or more uncertain attributes.

be represented as a histogram. We refer to each possible attribute value as a
‘bin’ in the histogram, conceptually containing the associated probability. This
representation allows us to use a number of measures that have been proposed
for histogram similarity. They generally fall into two categories [21]. The bin-by-
bin similarity compares the contents of only corresponding bins, or in our case,
probabilities for the same attribute values in two attribute instances. Cross-bin
measures, on the other hand, compare non-corresponding bins. This is possible
only if the ground distance between pairs of non-corresponding attribute values
is known. In this work, we focus on the following bin-by-bin similarity measures

[21]: (1) Default: sim(paij , palj) = 1 −
∑|V Dj |

t=1
|pt

ij−p
t
lj |

2 ; (2) Minkowski-Form
Distance; (3) Histogram intersection; (4) K-L divergence.

Ego network similarity The egoSim() operator uses a variety of similarity
measures and algorithms depending on user-specified constraints and on ego net-
work containment within the same or different graphs. For measuring similarity
between two ego networks (or ego-nets), the two center nodes are mapped to
each other, each of the non-center nodes from the first subgraph is mapped to 0
or 1 non-center nodes from the second subgraph, and vice versa. Depending on
existence and on alignment between the two ego-nets, similarity can be aligned
and unaligned. In the aligned case, the mapping is determined by the align-
ment scheme. If no alignment scheme is chosen (not aligned case), the ego-nets’
elements are mapped in a way that maximizes similarity.



Operator Description

egoNet() given a vertex vi, returns the set of vertices and
edges that are part of vi’s ego-network, including
vi itself

egoSim(v1, v2) similarity score between two ego-networks defined
by their center vertices v1 and v2, respectively,
typically in the range [0, 1]

intersect(), union(),
difference(),
bidirectionalDifference()

creates a new graph that represents, respec-
tively, an intersection, union, difference, and bi-
directional difference of two graphs

toGraph() recreates a graph from a set of vertices and edges

toElements() breaks down a given graph into a set of vertices
and edges

Table 3. Graph and ego-net operators: Operators allowing for structural graph compari-
son based on graph alignment include: intersect(g1, g2), union(g1, g2), difference(g1, g2), and
bidirectionalDifference(g1, g2). For example, by intersecting the ego networks (subgraphs con-
sisting of the starting node vi (center), all of its adjacent nodes, and all edges between them) of
two specific dolphins in the same graph, the analyst can discover their common friends. The graph
reconstruction operator, toGraph(), can be used in a query to derive a subgraph based on speci-
fied conditions. For example, to obtain a subgraph of high-confidence elements, it can be combined
with the bin() operator and MERGE BY clause. While this operator is not as sophisticated as pat-
tern matching [13], it does provide the possibility of subgraph filtering based on a flexible set of
conditions.

Ego-net similarity can be structural, semantic or both. Structural similarity
only takes into account the existence or confidence of existence of vertices and
edges in each mapped pair between the two ego-nets, while ignoring attributes
and their values. Semantic similarity, on the other hand, ignores confidence and
derives the similarity score by only using similarity measures between the indi-
vidual nodes and edges in the mapped pairs. Structural-semantic similarity is a
combination of both.

We now intuitively describe different types of ego-net similarity. They are
the cornerstone of our uncertain comparative operators, allowing researchers to
better compare graph substructures, not just the entire graph or single graph
elements. Due to space limitations, we cannot describe them more formally. We
have an extended version of this paper that contains those details.

We propose the following three different structural similarity operators for
uncertain graphs. Topological similarity compares the structure of the two ego-
nets based on the existence of their elements, but not on confidence values as-
sociated with existence. Probabilistic-topological similarity takes into account
the confidence values associated with edges and non-center vertices. Compari-
son count is simply a count of aligned non-center nodes between the two ego-
networks. It is useful when the researcher is interested in an absolute similarity
measure, related to the size of the ego-networks, rather than in a ratio between 0
and 1 that is returned by the topological and probabilistic-topological similarity.

Semantic similarity takes into account uncertain attribute values and proba-
bilities, rather than confidence of existence of mapped vertices and edges. In the
aligned case, similarity is measured by aggregating similarities between pairs of
attributes with the same name and definition, belonging to each pair of aligned



vertices. In the unaligned case, alignment is chosen in an attempt to maximize
the total similarity of all attribute pairs between aligned vertices - usually by
greedy heuristics.

Depending on the number of attributes under consideration, the measure can
be either single- or multiple-attribute. In both of those cases, similarity between
a pair of uncertain attributes can be estimated using different measures. We
propose two of them: mpv and distribution similarity. The former calculates the
similarity between a pair of attributes to be 1 if there is either a full or a partial
match between their sets of mpv values, and 0 otherwise. The latter represents
the user’s choice of one of the uncertain attribute similarity measures, described
in a previous section. In the aligned case, attribute similarity is calculated as
average pairwise similarity between mapped vertices.

In the unaligned case, we restrict the similarity measure to a single attribute
for considerations of computational complexity. Even in the case of a single at-
tribute, the brute force approach for finding the alignment that would maximize
similarity is highly inefficient in some cases. In those cases, we propose using a
greedy heuristics, similar to the merge-sort algorithm, that reduces running time
but does not guarantee optimality. As in the aligned case, the user has a choice
of two similarity measures, MPV and distribution based similarity.
Other operators: In addition to operators related to uncertain graph compar-
ison, the proposed query language supports general operators, most of which
are commonly present in many other languages, including SQL, e.g. aggregate
operators, logical operators, set operators, etc.
Route operators: While path operators are central to graph query languages,
their use is not as central as similarity for uncertain graph comparison. Some
operators that are useful in this context include: comparing high confidence
path existence between two nodes or ego-nets, comparing high confidence short-
est paths, and comparing connected components when taking into account the
confidence of existence of graph elements.

6 System Architecture

6.1 System overview

Our highest priority design goals in developing the query engine architecture
and prototype implementation include:
Extensibility. Because we intend to continue building upon our initial query
language, allowing for extensibility at all levels was our highest priority. At
the lowest level, it must allow easy integration of any additional operators and
operations. When concepts that do not fit in the existing implementation are
introduced, for example, aggregate operators, it is desirable to minimize the
required changes to the query processing framework. We refer to this as mid-
level extensibility. At a high level, the design must provide room for new system
capabilities, such as plugging in different data storage implementations.
Operator composition. Operators sometimes re-use the functionality of other
existing operators. For example, vertex and ego-network similarity operators



Fig. 2. Layered architecture.

build upon different attribute similarity operators. Because we anticipate that
being a common situation, the system should provide re-use of existing opera-
tors to the programmer, who creates new operators. The user can also compose
operators implicitly within the limits of the query language by creating expres-
sions or within the limits of the pre-programmed sub-operator selections, such
as choosing an underlying attribute similarity measure.

Adaptability. Capabilities to introduce future optimizations specific to our data
model and query language without restricting the implementation to a particular
platform or data storage.

To meet these goals, we use a combination of layered and service-oriented
architecture, illustrated in Figure 2. The main component of this architecture is
the query engine, a lightweight and generic platform for deployment of modules
responsible for the individual steps in the query processing workflow, such as
parsing, compilation, optimization, validation, and execution. The set of included
modules, represented as services, is not pre-defined, making it different from
traditional database query engines.

The engine offers two important capabilities: service configuration and ser-
vice lookup. The former allows parameter tuning without code recompilation,
including deploying the same implementation under different configurations. The
latter allows flexible and dynamic linking of services, e.g. transparent replace-
ment of the underlying data storage implementation. The individual modules are
designed with the goal of decoupling them from each other and, in turn, they
can be customized by plugging in implementations of their sub-components. For
example, an operation registry is the sub-component that provides the default
mapping between operators and their compiled representations. For integrating
simple operators, it is sufficient to add a reference to the registry.

The query execution process is as follows. It begins when the Parser module
transforms the textual representation of a query into an abstract syntax tree
(AST), which we refer to as logical query. The Compiler module translates the
AST using a post-order traversal of operations in the logical tree into an inter-
nal representation suitable for optimization and execution. Next, the Optimizer
module generates and evaluates several alternative execution plans, choosing the
best one. The Executor is the key module where the operations and operators
that make up the query are executed. The Validator module can be invoked



at different stages to ensure compliance with the pre-defined rules. The Facade
and Connector modules provide the interface for interaction between external
systems and the query processing workflow. Data Store serves to retrieve the
data requested in the query. Due to space limitations, we cannot go through the
details of each step. Instead, we focus on how one develops and composes new
operators given the extensible system design.

6.2 Developing and Composing Operators

Traditionally, databases construct query trees whose set of possible operations
is predefined. This design allows for query optimization by applying a set of
rewrite rules. Our approach differs because we provides a flexible mapping of
operators to their implementation. This allows the query engine to support easy
integration of new operators without affecting the existing ones and without
requiring significant changes to the framework itself.

Developing an operator involves implementing a simple interface with two
methods. The first method allows the Executor to set the operator’s input pa-
rameters. Then, the second method is called, in which the operator performs its
calculations over these supplied parameters and returns the result. In the sim-
ple case, no other code is required. Adding the operator to the configuration of
the OperationRegistry is sufficient to incorporate it into the query language, as
the registry is used for both compilation and execution. Composing an operator
using operators that are already in the language is also straightforward, as the
framework supports their lookup and execution from the dependent operator.

7 Empirical Evaluation

To show the utility and composition ability of our operators, we have integrated
our query engine with Invenio [25], a visual analytic tool for graph mining. We
use the two motivating scenarios presented in section 1 to highlight a subset of
our operators.

7.1 Dolphin observation network

The Shark Bay Research Project studies dolphins in Shark Bay, Australia for
over 30 years [17]. Our data set includes demographic data about approximately
800 dolphins, represented as graph nodes with certain attributes (id, conf, dol-
phin name, birth date) and uncertain attributes (sex code, location, mortal-
ity status code). Survey data about social interactions between these dolphins
are captured as approximately 29,000 edges with attributes (id, conf).

Our team met with researchers on this project and developed a list of typi-
cal queries that observational scientists would like the capability to issue when
analyzing these dolphin social network and its inherent uncertainty:
– Selecting the number of associates and sex composition of associates for

male and female dolphins, respectively, using the most probable value of the
sex code attribute.



– Visualizing the union, intersection, difference, and bi-directional difference
between the ego-networks of a particular dolphin during two different years,
where the confidence of relationship existence is above a specified threshold.

– Finding the common associates (friends) of two specific dolphins with a
relationship confidence above a certain threshold.

– Finding all dolphins having associates whose most probable location is dif-
ferent from their own.

– Calculating a measure of structural and semantic similarity between ego-
networks of two particular dolphins.

– Selecting the subgraph that consists only of dolphins linked by observations
with low confidence of existence (lower than a specified threshold). The re-
sults of this query tell researchers if observers are having difficulty identifying
certain dolphins.

The query in Table 4 is an example that shows counts by sex of dolphins seen
together (task 1). The inner query selects pairs of dolphins seen together and
uses SPLIT BY to split into a set of rows the collection that is returned by the
adjacentV ertices() operator. The outer select produces counts for each possible
sex combination, grouping the nodes based on the most probable sex code. Re-
searchers can use the resulting table to see that dolphins who are most probably
males are seen together more often than any of the other combinations.

SELECT sex, sexAdj, count(adj) AS cntFriends
FROM (

SELECT *
FROM
(

SELECT n, adjacentVertices(n) AS adj
FROM g1 TYPE node AS n

)
SPLIT BY adj
)

GROUP BY first(mpv(n.sex_code)) AS sex,
first(mpv(adj.sex_code)) AS sexAdj

MALE MALE 9930
MALE FEMALE 6184
FEMALE MALE 6184
FEMALE FEMALE 6092

Table 4. Sample query and its result.

The second task focuses on determining the union, intersection, difference,
and bi-directional difference between the ego-networks of a particular dolphin
during two different years. It introduces a time component. The results for a
particular dolphin are displayed in graph format in Figure 3. It is easy to see that
the dolphin has almost as many new associates as repeat associates, i.e. occurring
during both years. Researchers can then visually explore who these associates
are, what sex they are, etc., to gain more insight about dolphin sociality.

To validate the significance of our similarity operators, we evaluate one of
the more complex measures. We estimate the ego-network semantic similarity
between dolphin JOY and other dolphins in the same graph, in absense of align-
ment, using the most probable location attribute. By picking dolphins with dif-



ferent characteristics, we can demonstrate the behavior and validity of the chosen
similarity measure. For example, we discovered that the average ego-net simi-
larity by location is twice as high for dolphins located in the same area as JOY,
e.g. RCB: 0.28 vs 0.14. This is the expected result, since dolphins are likely to
have associates mostly in their primary location.

To compare uncertain ego-nets, we randomly chose several dolphins from
different locations with high and low similarity relative to JOY’s. For every
dolphin under consideration, we ran a query to retrieve their most probable lo-
cation, their ego-network location similarity to that of JOY, and a breakdown
by location of the dolphin’s ego-network. The results are summarized in Table
5. They are consistent across the two cases of same and different location. Both
LITTLE and WHELK differ from JOY in their most probable location; how-
ever, the ego-network’s location composition between LITTLE and JOY results
in a much higher similarity score. PUCK and JOYSFRIEND reside in the same
location as JOY, share many associates with her, and have a very similar dis-
tribution of associates by location. These commonalities lead to a particularly
high similarity score. MYRTLE, on the other hand, who only shares 88 out of
147 associates with JOY despite the same location, is average in similarity. For
WANDA, the most probable location is a tie between WB and RCB, which is
also reflected in having associates from mostly those locations. This difference
with JOY’s ego-network again corresponds to the lower similarity.

Overall, examining different cases confirms that the similarity measure pro-
vides a relevant single numeric value that correlates with the semantic compo-
sition of a pair of ego-networks based on the chosen attribute. Researchers can
use this simple result to identify and rank potentially similar ego-networks.

The query also shows operator re-use and composition from the user’s per-
spective. By supplying context parameters, the user configures the general ego-
net similarity operator. Specifying the mpv-based similarity measure and at-
tribute name causes the similarity operator to re-use the mpv() operator to
retrieve the most probable attribute value.

Fig. 3. Clockwise from upper left: complete dolphin network, union, intersection, dif-
ference of ego-networks of dolphin ’JOY’ between years 2010 & 2009



JOY LITTLE WHELK PUCK JOYSFRIEND MYRTLE WANDA
RCB 211 125 1 171 172 92 56
EA 38 5 43 32 47 6 7
WB 28 48 7 8 45 33
HB 4 1 4
PN 5
sim with JOY 0.56 0.14 0.75 0.78 0.44 0.32
primary loc RCB WB EA RCB RCB RCB WB, RCB

Table 5. Ego-network similarity results.

7.2 Citation network

In the second scenario, we examine the output of two different node labeling
algorithms. For this analysis, we use the CiteSeer paper citation data set from
[22]. It consists of 3312 scientific publications classified into one of six topics. In
the citation network each publication is a node and each citation is an edge. We
use partially observed citation data to predict the probability distribution of the
topic attribute of each paper by applying two different classification algorithms.
The queries of interest deal with understanding the similarities and differences
between most probable node labels across the two classification algorithms and
include:
– Selecting the papers, whose topic certainty is significantly higher in one

uncertain graph when compared to the other.

– Selecting the papers, for which the predicted discrete probability distribution
differs the most between the two graphs, using different attribute similar-
ity measures, e.g. KL divergence, Minkowski-form distance, and histogram
intersection.

– Counting the number of papers that are misclassified by both models.

– Selecting the papers, which are misclassified with high confidence by both
classifiers.

Due to space limitations, we cannot show the actual queries in the paper.
Some of the results we found using this data set are as follows: model 1 misclas-
sified fewer documents (83) than model 2 (103); of the documents misclassified
by both classifiers (65), both models misclassify them with the same label; and
8 of the 10 largest ego neworks were in the area of information retrieval.

Because our experiments focus on expressibility, we do not include a perfor-
mance evaluation. Yet it should be noted that all of the presented queries were
completed within a couple of seconds on a personal computer with a moderate
dual core 2.4 GhZ processor and 4 GB of memory. Optimizing performance is
an important direction for future research.

These usage examples demonstrate how our language and implementation
enable scientists to formulate a wide range of ad-hoc queries that can be used
to analyze and compare uncertain graphs without the need for custom program-
ming.

8 Conclusions

A need exists to compare graphs with uncertainty using a flexible set of operators
that consider the graph structure, the graph semantics, and the inherent uncer-



tainty in the application domain. In this paper, we develop a query engine with
a SQL-type language, set of comparative operators for uncertain graphs, and
an extensible system framework that combines layered and service-oriented ar-
chitecture. Our language combines elements of relational, uncertain, and graph
databases, with operators introduced especially for the purpose of uncertain
graph analysis and comparison. We also present complimentary use cases and
empirically illustrate their utility on two real world data sets.

There are many future directions, including optimizations on certain similar-
ity measures, efficient measures for unaligned graphs, and measures that combine
both similarity and routing.
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