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Abstract—This paper presents a framework for identifying
persistent groups and individuals across multiple time granular-
ities in dynamic graphs. Understanding the longevity of groups
and the relevance of individuals within a group is important in
many fields, including sociology, biology, economics, psychology,
and political science. Different clustering algorithms have been
proposed for static and dynamic graphs. However, using the
clustering results to understand the changing dynamics of groups
can be difficult. In order to better understand how groups evolve
and the level of cohesion within these groups, we propose a
holistic dynamic clustering framework that allows the user to
adjust the underlying algorithms for clustering nodes in a graph
that changes over time and then use the final clusters to produce
a time hierarchy that highlights the groups and individuals
persistent during different time periods. We test our framework
and algorithm both on synthetic and real world data. Our findings
indicate that our approach not only yields highly accurate results,
but also detects unexpected variations in group structure.

I. BACKGROUND AND MOTIVATION

Understanding of the stable and changing behavior of
groups is important for many applications. When do groups
form? How do they evolve or change over time? How stable
or transient are different members of a group? Answering
these questions offers insight into the nature of online social
networks, citation networks, and animal communities, etc. To
address these questions, we present a flexible framework for
identifying and exploring these evolving group structures in
social network graphs across different time granularities.

Many graph clustering/community detection algorithms
have been proposed. While some find communities or groups
in static graphs [1][2][3][4][5][6][7] and others find them in
dynamic graphs [8][9][10][11][12][13], we identify structural
clusters at different time granularities for visual analysis. To
accomplish this, we propose a holistic framework that incorpo-
rates three complementary components: dynamic graph clus-
tering, multi-granular dynamic alliance detection, and temporal
visual exploration. Figure 1 shows the different components of
our framework. Given a dynamic graph, the framework begins
by computing clusters at each time point. Those clusters are
then used to create a hierarchy that shows group alliances (see
below) at different time resolutions. Both the clusters and the
alliances can then be explored using an interactive visualization
to analyze the stable and changing group structure at different
time scales. We now describe and highlight the contributions
of each component.

A. Dynamic Graph Clustering

Different dynamic graph clustering algorithms have been
proposed in the literature [8][9][10][11][12][13]. Many of
these algorithms begin with or embed an initial clustering

based on a static clustering algorithm. Unfortunately, for
different applications, it is not always obvious how to transition
these static clustering algorithms through time or which static
clustering algorithm will lead to meaningful clusters. To that
end, we propose a dynamic graph clustering framework that
(1) allows researchers to adjust the underlying static clustering
algorithms within the framework of a single dynamic clustering
algorithm; (2) preserves structural continuity over time; and
(3) uses a greedy algorithm to identify important structural
changes in clusters at a particular time point and focuses re-
clustering to only those parts of the graph.

B. Multi-resolution Dynamic Alliance Detection

Dynamic graph clustering algorithms capture time at a
single resolution. Having the ability to identify short-term and
long-term clusters, i.e. clusters at different time resolutions,
provides researchers with insight into the changing and stable
social structures of a population. Individuals that are members
of a group or community for a long period of time form a
group alliance. Individuals that switch from group to group
may be characterized as social butterflies or transients, who are
members of different groups or communities over time, but do
not exhibit a strong preference toward one particular group
or community. To capture these different group dynamics,
we propose detecting multi-granular, dynamic alliances. We
accomplish this by using frequent pattern mining on base-
resolution dynamic clusters to identify alliances and social
butterflies at multiple time resolutions, where each resolution
is represented as a different level of a time-hierarchy.

C. Temporal Visual Exploration

While researchers can investigate individuals in the differ-
ent levels of the hierarchy textually, hierarchies naturally lend
themselves to visual analytics. Therefore, we also present an
implementation of an interactive visual application for time-
based hierarchical analysis of clusters. By giving users the
ability to visually interact with base-level clusters and multi-
granular alliances, researchers can better understand temporal
community dynamics. Because of space limitations. we will
focus on the other two components of the framework.

The contributions of this work are as follows: (1) a holis-
tic approach to multi-granular, dynamic network clustering; (2)
a localized greedy algorithm for single resolution, dynamic
network clustering; (3) a frequent graph mining algorithm for
detecting multi-granular, time-based groups and alliances; (4)
an empirical analysis of both algorithms on synthetic data and
real world animal community.

The remainder of this paper is organized as follows.
Section II presents related literature. We describe our dynamic



A graph G

Divide G into subgraphs 

Subgraph G(t1) Subgraph G(tr)

Dynamic clustering 

 G(t1)'s clustering  G(tr)'s clustering

t1 t2

t1,t2 t2,t3

t3

t1,t2,t3

t1-tr

tr

Multi-resolution alliance detection Visual analysis 

Fig. 1: A high level view of the proposed framework

clustering framework in section III. Our clustering evaluation
on synthetic data and real world data, as well as an expert
evaluation of the alliance detection algorithm are presented in
IV. Finally, conclusions are presented in section V.

II. RELATED LITERATURE

Clustering of time series and temporal data is an active
area of research. We refer you to surveys by Liao [14] and
Antunes and Oliveira [15] for an overview of the area. While
the techniques presented in those surveys are very relevant to
our approach, our work is focused on using graph structure at
different time points to identify similarities, differences, and
changes in clusters and groups over time.

Das et al. [16] present a dynamic clustering algorithm
that clusters data at each time step. Their goal is to iden-
tify and group time steps with similar clusters. In contrast,
our goal is to identify clusters and individuals that exist at
different resolutions of time. Chakrabarti et al. [17] proposes
an evolutionary clustering algorithm that uses k-means and
agglomerative hierarchical clustering in conjunction with the
history of previous time steps when clustering the current time
step. Similar to our work, they look to maintain consistency
among clusters across time steps. However, their approach uses
the history of many time steps, while ours is a local greedy
strategy that is more incremental.

Other relevant dynamic graph research includes the evo-
lution of graphs based on various topological properties [18],
group formation [19], group evolution [20], identification of
behavioral events and key patterns [21], actors that change
affiliations together [22], and identification of spread blockers
[23], and prominent actors in dynamic affiliation networks
[24], to name a few. None of these mentioned worked consider
multi-resolution clusters.

Tantipathananandh et al. [8] treat cluster identification as
a combinatorial optimization problem with two subproblems:
identifying which groups at time t map to which groups at
t + 1 and assigning individuals to those groups. Palla et al.
[9] also proposed a dynamic community detection algorithm
that uses the clique percolation method at each time point to
identify k-clique communities. While both these works have
similar notions of capturing the dynamics between time steps,
their formulations differ from ours since they are identifying
cliques in overlapping communities. We do not require our
communities to be cliques and at a single time point, our

communities do not overlap. Similarly, Aggarwal et al. [10]
also use clique percolation to investigate time dependencies
of overlapping communities. Their focus is on estimating a
community’s lifetime.

Gorke et al. [11] propose a dynamic graph clustering algo-
rithm that uses minimum-cut trees for determining clusters and
maintaining temporal smoothness. Hopcroft et al. [12] present
an approach for identifying natural or stable communities
using an agglomerative clustering algorithm with a similarity
distance based on a cosine function.

Both of these mentioned algorithms are complementary
approaches for identifying dynamic clusters. An approach
that considers communities across varying time intervals is
proposed by Sun et al. [13]. Their method finds similar
communities from consecutive time steps by minimizing an
objective function based on encoding length. Our approach
differs from both these works since it explicitly lets the user
adjust the static component of the algorithm and incorporates
multi-resolution groups.

III. DYNAMIC CLUSTERING FRAMEWORK

We represent a network as a graph G = (V,E), where the
graph is composed of a set of nodes V (G) = {v1, . . . , vn}
and a set of edges E(G) = {e1, . . . , em}. We define a cluster
as a set of nodes from our graph that have been grouped
together and combined with associated edges. A cluster Ci,
thus, has a set of nodes contained in the cluster, V (Ci), and a
set of in-cluster edges, E(Ci), composed of all edges such that
both endpoints of the edge are contained in V (Ci). We further
define cross-cluster edges E(Ci, Cj) for clusters Ci and Cj as
the set of edges such that each edge has one endpoint in Ci and
the other endpoint in Cj . A cluster set C is defined as a group
of clusters {C1, . . . , Cp}, where p is the number of clusters in
the cluster set,

⋃p
i=1 V (Ci) = V (G), and V (Ci)∩V (Cj) = ∅.

Since we are interested in dynamic networks, we assume
each edge in the graph is associated with a time point tk, and
T = {t1, t2, ..., tr} represents the set of time points. Then all
the edges associated with time point tk and all the incident
nodes compose a graph G(tk), a sub-graph of G(t) 1. A
node might occur in multiple subgraphs. Similar to our static
clustering notation, let Ci(tk) represent a cluster at time point
tk and C(tk) represent a cluster set at time point tk, where

1We will use G and G(t) interchangeably in this work



Fig. 2: An example time hierarchy⋃p
i=1 V (Ci(tk)) = V (G(tk)), and V (Ci(tk)) ∩ V (Cj(tk)) =
∅. Then the dynamic clustering results across T are represented
as {C(t1), . . . ,C(tr)}.

Lastly, let T be a generalized time hierarchy of height h,
where each level of T represents a different time resolution,
and the nodes at each level map to a time window, w(l),
containing l time points. The resolution of a level of the time
tree equals 1/l. The leaf nodes of T (the highest resolution)
map to one time point, ti (see Figure 2 for an example). For
each subsequent level of the tree, the number of time points
that map to a node increases by one. The root node maps to
a window containing all the time points (lowest resolution).
Because two adjacent nodes at the same level differ in only
one time point, each node in the hierarchy (except for the root
node) has two parents, allowing for overlapping windows at a
single resolution.

A. Dynamic Clustering Algorithm

Objective: Given a dynamic graph G(t), find a set of clusters
C(ti) at each time point ti where structural continuity is
maintained, the number of nodes that need to be re-clustered
in G(ti) is minimized, and the accuracy of the clusters is high.

One approach to dynamic clustering is to apply a static
clustering algorithm to each subgraph G(ti). Unfortunately,
this approach requires re-clustering all the nodes at each time
point. It does not optimize to reduce the number of nodes that
need to be re-clustered at each time point or maintain structural
continuity, i.e. only re-clustering those parts of the graph that
have a large number of changes.

To address these issues, we propose a localized, greedy,
dynamic clustering algorithm. At a particular time point tk,
our algorithm clusters nodes that are not in the previous time
point, tk−1 and re-clusters nodes that are in clusters having
significant change from one time point to the next. This allows
us to maintain structural continuity from one time point to the
next and avoid recomputing all the clusters at each time step.

A high level view of this greedy algorithm is presented
in Algorithm 1. We can use any static algorithm designed for
graphs, e.g. Newman’s modularity clustering [2], for the initial
clustering at time t1 (Line 2), while for every subsequent time
step, we begin with the clusters from the previous time step
and update them using our operations: add/remove (Line 5 -
6), split (Line 7), recluster (Line 8), and disband (Line 9). We
pause to mention that reordering the operations can lead to
different clustering results. This ordering was selected based

Algorithm 1: DYNAMIC CLUSTERER
Input:
A series of dynamic subgraphs: {G(t1), . . . , G(tr)}
Splitting Threshold: L
Reclustering Threshold: H
Disbanding Threshold: M

Output: {C(t1), . . . ,C(tk)}

Create a set of cluster sets {C(t1), . . . ,C(tk)} ;1
C(t1)← STATIC CLUSTERING (G(t1)) ;2
for k ← 2 to r do3

C(tk)← C(tk−1) ;4
C(tk)← REMOVE ELEMENTS (C(tk), G(tk)) ;5
C(tk)← ADD ELEMENTS (C(tk), G(tk)) ;6
C(tk)← SPLIT CLUSTERS (C(tk), L) ;7
C(tk)← RECLUSTER (C(tk), H) ;8
C(tk)← DISBAND CLUSTERS (C(tk),M) ;9

on empirical analysis. We now give a brief description of each
of the main operations in Algorithm 1.
Add/Remove Elements Operation - Since nodes and edges
do not necessarily appear at every time point, this operation
adds or removes them from our clusters at each time point.
When removing a node no longer associated with the current
time point, the cluster after this operation contains the follow-
ing nodes: Ci(tk) = Ci(tk−1) \ {v : v ∈ Ci(tk−1) ∧ v 6∈
G(tk)}. When adding a vertex that was not present in the
previous time slice to Ci(tk), the cluster after this operation
contains the following nodes: Ci(tk) = Ci(tk) ∪ {v} s. t.
v ∈ (G(tk) \G(tk − 1)) ∀Cj(tk) ∈ C(tk), Cp(Ci(tk), {v}) ≥
Cp(Cj(tk), {v}).

Cluster Splitting Operation - For this operation we want
to use the percentage decrease in cluster density to de-
termine whether or not we should attempt to split a
given cluster into multiple clusters. The change in den-
sity of a cluster Ci(tk−1) after it has changed to Ci(tk)
is defined as ∆D(Ci(tk), Ci(tk−1)) = (D(Ci(tk−1)) −
D(Ci(tk)))/D(Ci(tk)). The density of a cluster is D(Ci) =
|E(Ci)|/(0.5 × |V (Ci)| × (|V (Ci)| − 1)). When the Density
Percent Decrease of Ci from tk−1 to tk exceeds the Splitting
Threshold L, ∆D(Ci(tk), Ci(tk−1)) > L we split Ci(tk) by
running a pass of our static algorithm. The full cluster splitting
operation considers every cluster in C(tk−1) for splitting, and
returns a modified set of clusters. Figure 3 shows a cluster
where ∆D(Ct2 , Ct1) = 0.28. If L is less than 0.28, then nodes
in this cluster will be reclustered.

Cluster Group Reclustering Operation - This operation
works by using a pairwise connectivity measure to find groups
of clusters that could benefit from having their component
nodes and edges reclustered using a pass of the static al-
gorithm. In order to create groups of clusters needing to be
reclustered, we will iterate over our clusters using a modified

Fig. 3: An example of a cluster Ci at time t1 (left) and Ci at time t2 (right)
that loses edges from time t1 to t2. The cluster density decrease will cause

the cluster to be split into two clusters at t2.



Fig. 4: A set of clusters to be operated on by the Cluster Group Reclustering
Operation. Lines between clusters represent cross-cluster edges.

Breadth-First traversal. We define a cluster Ci to be a neighbor
of another cluster Cj if E(Ci, Cj) 6= ∅. Thus, we can traverse
over incident edge sets E(Ci, Cj) as if they were edges,
and clusters as if they were nodes, using the Breadth-First
traversal. In order to reduce the number of edges that need
to be traversed, we will only traverse over an edge set when
the Pairwise Connectivity Rp(Ci, Cj) exceeds the Reclustering
Threshold H . Here, Rp(Ci, Cj) = |E(Ci, Cj)|/|E(Cj)|. Thus,
pair connectivity describes how strong the edge connectivity
between any two clusters is compared to the internal edge
connectivity of one of the clusters.

A traversal containing more than one cluster is considered
a group, Q, where Q = Q∪{Cj} : ∃Ci ∈ Q, Rp(Ci, Cj) > H
∨Rp(Cj , Ci) > H Then we run a pass of the static algorithm
to recluster all the nodes and edges in this cluster group. Figure
4 shows an example with seven clusters. The two clusters
on the left side of the figure will not need to be reclustered.
However, the three on the top right and the two on the bottom
right will need to be reclustered as separate subgroups based
on this operation. This is the most powerful operation in our
dynamic clustering algorithm because its reclustering is very
versatile, allowing for merging of clusters, redistributing of
nodes within multiple clusters, and splitting of larger clusters
into smaller ones.

Cluster Disbanding Operation - Our final operation exam-
ines a single cluster, Ci, and its One-to-Many Connectiv-
ity, Rm(Ci,C). Rm(Ci,C) = (

∑n
j=1,j 6=i E(Ci, Cj))/E(Ci).

One-to-Many connectivity represents the number of outgoing
edges from Ci to other clusters versus in-cluster edges of Ci.
It describes how strongly Ci is connected to other clusters
in the graph compared to its own internal connectedness.
If a cluster, Ci’s one-to-many connectivity is greater than
Disbanding Threshold M , Cm(Ci,C) > M , then we make the
judgment that Ci is too weakly connected in itself compared
to its connectivity to other clusters, so we simply “disband”
it and redistribute its component nodes and edges among the
other clusters to which it is strongly connected. This operation
is very useful as a cleanup operation to eliminate weak clusters
that may have arisen during the reclustering operation.

B. Multi-resolution Dynamic Alliance Detection Algorithm

Objective: Given a dynamic graph G(t), find groups/alliances
that occur frequently during different resolutions of time.

Our dynamic clustering algorithm outputs a set of cluster
sets, {C(t1), . . . ,C(tr)}, at a single detailed resolution, a
cluster per time point. Based on these clusters, our multi-
resolution dynamic alliance detection algorithm identifies
common groups and individuals persistent across different time
resolutions in the generalized time hierarchy T. Algorithm 2

Algorithm 2: ALLIANCE DETECTION
Input:
Dynamic Clustering Results: {C(t1), . . . ,C(tr)}
Frequent Itemset Support Threshold: S

Output:
Hierarchy T;

Create a set of frequent item sets {Ii,j} ;1
for j ← 1 to r do2

I1,j ← C(tj);3

for i← 2 to r do4
for j ← 1 to r − i do5

Ii,j ← FrequentItemsetMining(Ii−1,j , Ii−1,j+1, S) ;6

Construct a hierachy (T, {Ii,j}) ;7

gives us a high level view of our multi-resolution dynamic
alliance detection algorithm. Each cluster set, C(tk), maps
to a leaf node T (Line 3). In order to identify the persistent
alliances and social butterflies for the other nodes in the tree,
we apply frequent itemset mining [25] to this problem. In
this formulation, each graph vertex is considered an item and
each cluster is considered an itemset. The hierarchy is built
bottom-up by recursively applying frequent itemset mining
to the itemsets of two adjacent nodes and populating their
common parent node with the result. In the algorithm, Ii,j is
the j-th node at the i-th level of T. The process continues
until the root node is populated (Line 4 - 6). Thus, each
node in T contains frequent itemsets (groups/alliances or
individuals/social butterflys) in its corresponding time period,
and frequent itemsets at different level nodes represent groups
persistent through different time resolutions.

In our hierarchy, the time window associated with a node
increases by one when traversing up the tree to produce a
generalized binary hierarchy. In principle, there is no reason
that this framework could not be generalized to an m-ary
hierarchy, where the time window associated with a node
increases by m when traversing up each level of the tree.

IV. DYNAMIC FRAMEWORK EVALUATION

We now evaluate the different components of our frame-
work. After describing our data sets and evaluation metrics, we
begin by evaluating the complete dynamic clustering frame-
work and each of the three operations’ contribution to the
whole framework. We then explore the parameter setting for
our dynamic framework, followed by an efficiency evaluation
of our dynamic clustering against running static clustering
algorithm for each subgraph repeatedly. Then we evaluate our
alliance detection methodology and conduct a case study to
show the benefit of our approach for finding both expected
and unexpected group patterns.

A. Data Set Explanation

Because clusters are not always known apriori, using syn-
thetic data sets to evaluate a clustering algorithm is meaningful.
We have five synthetic data sets (1-2 Split, Merge, 2-3 Split,
Disband, Multi-purpose). Each of the first four data sets are
designed to highlight one or two of the three cluster updating
operations. The 1-2 Split data set begins with two clusters,
and in each successive time step one of the clusters splits into



TABLE I: Our data sets’ statistics

#Node #Edge #Time slice

1-2 Split 16 128 3

Merge 16 129 3

2-3 Split 16 149 3

Disband 20 90 3

Multi-purpose 25 268 10

Dolphin-months 303 3,873 6

Dolphin-years 712 117,769 24

two clusters, highlighting the splitting operation. The Merge
data set is essentially the opposite of the 1-2 Split, highlighting
both reclustering and disbanding operations. The 2-3 Split data
set highlights the reclustering operation. It begins with two
clusters in the first time step, and in each successive time
step two clusters are reorganized into three clusters. For the
Disband data set, disbanding operation is the key to the correct
clustering. Our last synthetic data set Multi-purpose needs all
the operations to accurately cluster the graph.

While the synthetic data sets help us determine if our
algorithm has the expected behavior, we use real world data
sets to understand how well the dynamic clustering framework
captures persistent and changing group structures. Specifically,
we use a data set about a bottlenose dolphin society in
Shark Bay, Australia. Researchers have been monitoring these
dolphins for over 25 years [26]. A social network graph
generated using the observation data of the dolphin society
is structured such that each node represents a dolphin, and
each edge, associated with the observation date, represents
two dolphins observed together. A data set (Dolphin-months)
focusing on short term dynamics from June 1995 to November
1995 is used to assess the base resolution dynamic clustering
network. We use another data set (Dolphin-years) spanning
from 1988 to 2011 to evaluate our multi-resolution algorithm.
Table I shows all the data sets’ statistics.

B. Evaluation Mertics

To validate the accuracy of our results, we compute R-E
ratio, precision, recall, and F1.

Result-Expect Cluster Ratio (R-E ratio) - This ratio
|C(tk)|/|S(tk)| compares the count of the a cluster set C(tk)
to the count of the expected cluster set S(tk).

Precision - The precision of a cluster Ci is P (Ci) = (|V (Ci)∩
V (Sj)|)/|V (Ci)|, where Sj is the expected cluster which
shares the most nodes with Ci. Then the precision of a cluster
set C is

∑
P (Ci)/|C|. Further, we average the cluster set

precision to get the overall precision of the set of cluster sets
generated by our dynamic clustering framework.

Recall - The recall of a cluster Ci is R(Ci) = (|V (Ci) ∩
V (Sj)|)/|V (Sj)|. We also calculate the cluster set recall∑

R(Ci)/|C| and the overall recall of the set of cluster sets
generated by our dynamic clustering framework.

F1 Score - F1(Ci) = 2× (P (Ci)×R(Ci))/(P (Ci) +R(Ci))
integrates precision and recall into a single metric.

C. Dynamic Clustering Accuracy

We test our dynamic algorithm integrating three popular
static algorithms - modularity clustering [2] and edge between-
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Fig. 5: Clustering performance of the framework with no dynamic
operations, a single dynamic operation, or all the dynamic operations on five

synthetic data sets.

ness clustering [1]. We use the following dynamic framework
configuration: Splitting Threshold L = 0.15, Reclustering
Threshold H = 0.6, and Disbanding Threshold M = 1.2. Fig-
ure 5 shows the average F1 score produced by the framework
with none of the three dynamic operations, with the splitting
operation, with the reclustering operation, with the disbanding
operation, and using the complete dynamic framework, respec-
tively. We do not consider the Add/Remove elements operation
as a distinct factor like the other operations, since the entire
framework depends on it for renovating the subgraph G(tk−1)
to G(tk).

As expected, the framework with one operation always
outperforms the framework with no operation. The splitting op-
eration works much better than the other two operations for the
1-2 Split data set. Similarly, the reclustering operation performs
best for the 2-3 Split data set, and the disbanding operation is
best for the Disband data set. Because both reclustering and
disbanding operations have the ability to merge clusters, both
achieve a 100% F1 score on the Merge data set. We observe
that for these five data sets using the frameworks with one or
all the operations generally outperform the empty framework.
The exception is when the splitting operation performs worse
than the empty framework for the last two data sets. This
results because our framework with only splitting operation
tends to produce very small clusters. Such a clustering has
a high precision but a comparably low recall, which incurs a
low F1. Finally, we observe that the trend of accuracy results is
similar for both modularity and betweenness with modularity
generally producing slightly better accuracy results.

We also compare the performance of our dynamic frame-
work against applying a static algorithm to all time slices of
the dynamic graph repeatedly on the Multi-purpose data set.
The comparison is shown in Table II. The parameter setting
is same as in the above experiments. We observe that the
precision results are very comparable, as are the recall results
using modularity. For edge-betweenness the recall of the static
clustering is much lower. For the other four synthetic data
sets, both of the static and dynamic algorithms produce the
correct clusterings. While the advantage of our approach is
less visible for these synthetic data sets, we will show that
for a real world data set that contains less ’clear’ clusters,
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Fig. 6: Clustering performance of the complete framework and the
framework with a single operation removed (L = 0.15 M = 1.2 H = 0.6).

our dynamic framework has a higher accuracy and is more
efficient.

For the dolphin-months data set, we apply our dynamic
clustering on a monthly time scale since all dolphins are
not observed every day. To evaluate our results, we had a
domain expert who has been studying the Shark Bay dolphin
population for over 20 years look at the clusters produced by
four algorithms, static clustering at each time point using edge
betweenness (SE), static clustering at each time point using
modularity (SM), dynamic clustering using edge betweenness
(DE) and dynamic clustering using modularity (DM). She rank
ordered them as follows: DE, DM, SM, SE. She indicated that
DE and DM were definitely better. SM was reasonable, but SE
was not a good clustering.

D. Lesion Study

Figure 6 illustrates each operation’s contribution to the
overall framework clustering accuracy on the Multi-purpose
data set. The first three bars represent the average F1 score
produced by the framework with each of the three operations
removed, respectively. The fourth bar represents the average F1
score of the complete framework (It is also shown in Figure
5. It is included here for comparison purpose). The results
show that each operation makes its own contribution to the
framework: the F1 score of the framework with one operation
removed is always less than that of the complete framework.

E. Parameter Setting

Our dynamic framework involves three parameters: Split-
ting Threshold L for splitting operations, Reclustering Thresh-
old H for reclustering operations, and Disbanding Threshold
M for disbanding operations. To better understand the effect of
the parameter setting’s on the dynamic framework clustering
results, we run the dynamic framework on the Multi-purpose
data set with different combinations of parameter setting. The
default setting is L = 0.15, H = 0.6, M = 1.2. Figure
7 shows the F1 score comparison when one parameter is
varied and the others are stable. In general, we find that
modularity is a little less sensitive to parameter selection than
edge betweenness.

F. Efficiency Evaluation

Since our dynamic clustering algorithm does not re-cluster
all the nodes at each time step, while the static clustering

TABLE II: Performance comparison between dynamic framework and
running a static algorithm at each time slice

Modularity Edge Betweenness
Dynamic Static Dynamic Static

Multi-purpose
Precision 94.4% 91.2% 92.8% 97.2%

Recall 93.8% 94.6% 94.7% 66.1%

TABLE III: Efficiency evaluation between dynamic and static clustering on
the Dolphin-months data set (L = 0.15 M = 1.2 H = 0.6). Total node =
the total number of nodes in a time slice, Dynamic node = the number of
nodes re-clustered using dynamic clustering, Static node = the number of

nodes re-clustered using static clustering, Dynamic time = dynamic
clustering run time(ms), Static time = static clustering run time (ms).

Jul Aug Sept Oct Nov

Total node 139 58 108 123 141

Modularity

Static node 139 58 108 123 141
Dynamic node 64 34 51 92 103

Static time 6,966 905 3,436 6,168 6,969
Dynamic time 956 456 186 2716 2,290

Edge betweenness

Static node 139 58 108 123 141
Dynamic node 96 34 52 104 103

Static time 28,949 156 2,150 33,448 24,462
Dynamic time 2,017 132 309 2,188 1,739

algorithm does, we also present the execution time and the
number of nodes that are re-clustered (participate in at least one
of the three dynamic operations) at each time step using our
dynamic framework and compare them to the time needed to
run the static algorithm. We report results for Dolphin-months
data set in Table III. As our dynamic clustering framework
actually runs static clustering for the first time slice, we only
show the results starting from the second time slice. When
edge betweenness clustering serves as the static clustering
algorithm, the run time for the dynamic clustering algorithm
is approximately one tenth that of the static algorithm. The
large difference in run time can be attributed to the cost of
calculating the shortest paths for the betweenness measure
[1]. When modularity clustering serves as the static clustering
algorithm, the run time for the dynamic clustering algorithm is
approximately one third that of the static algorithm. The dif-
ference can be attributed to the cost of eigenvector calculation
[2]. Given that our dynamic clustering framework produces
no worse (or even better) clusterings, as shown in Table II,
the dynamic framework clearly outperforms running the static
algorithm repeatedly.

G. Alliance Detection Evaluation

We evaluate alliance detection results using three alliance
trees T for Dolphin-years data set, where a different alliance
tree is created for each season of data (Biologists studying dol-
phins divide the calendar into three seasons). We accomplish
this by showing the resulting multi-resolution clusters to our
domain expert and asking her to identify the clusters that had
at least one incorrect member based on her understanding of
the dolphin community structure. The results of our analysis
are shown in Table IV. For this analysis, we chose modularity
as our static algorithm. Our domain expert indicated that the
multi-resolution clustering was much more informative than
the single resolution. This is because dolphins change groups
frequently and the detailed temporal changes are not indicative
of group alliance structures. Over the course of a dolphin’s
life, groups change. Without multi-resolution analysis, captur-
ing these changing group structures that span different time
resolutions is a more difficult task for biologists.

Even though the focus of this paper is not the visual
analytic component of the framework, we pause to mention
that when our domain expert used our visualization tool to
explore the dolphin data set, she found supporting evidence
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Fig. 7: Dynamic clustering accuracy on the Multi-purpose data set. (a) Splitting Threshold vs. F1 (H = 0.6 M = 1.2). (b) Reclustering Threshold vs. F1
(L = 0.15 M = 1.2). (c) Disbanding Threshold vs. F1 (L = 0.15 H = 0.6).

for a behavior members of her lab were aware of, but had not
sufficiently explored - the changing social groups of juvenile
males. While biologists realize that juvenile males switch
between groups when they are trying to establish an alliance,
the hierarchical multi-resolution visualization gave insight into
how many groups the juvenile males joined and how often they
switched groups. Using this visual analytic tool provided our
domain expert with potential directions for new research.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents a holistic approach for identifying
evolving groups and multi-resolution alliances. Providing sci-
entists with a platform for comparing clustering results, com-
puting multi-resolution groups and social butterflies, and visu-
alizing the varying structures is important for a better under-
standing of complex time varying networks. Promising future
directions include: investigating overlapping communities with
this framework, considering semantic based dynamic cluster-
ing algorithms and improving the clustering performance.
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