Evaluation of Web Search Engines: High Precision Search

• Traditional IR systems are evaluated based on precision and recall.

• Web search engines are evaluated based on top N documents.
 • Recall estimation is very difficult
 • Precision is of limited concern, as many users do not look beyond 1st screen.

\Rightarrow How fast and accurate the first results screen is generated?
Web Page Ranking

- Evidence of quality for ranking:
 - Domain names -- .edu...
 - Text content -- term count, BM 25,....
 - Links -- anchor text, number of in/out links, (Alg.: HITS, PageRank)
 - Web usage log -- clickthrough data, eye tracking, geographical info (IP address, language...), query history...
 - Query patterns -- certain day, time... for improving efficiency & quality
 - Page layout -- title, font size, html tags, positions on page...
 - A problem: Web spam

Anchor Text

- Short, 2-3 terms, describe the linked/destination page.
- May/may not be a different point of view than the author’s.
- Anchor text of links to a doc d_i included in index for d_i
- Extended anchor text (text surrounding anchor text) may also be used
- Generally weighted based on frequency (notion of idf)
- Spamming problem
Localized Search

• Using geographic information to modify the ranking of results (in addition to SC scores, link based scores,…).

• Geographic information maybe derived from:
 • Location of device sending the query
 • Context of query
 • restaurant near Al Capone’s home’s town
 • restaurant near White Sox stadium
 • Geographic location in the query
 • Chicago restaurants
 • Geographic location in a document metadata

Link-based Ranking: Authorities and Hub (HITS)

• (HITS: Hyperlink-Induced Topic Search, 1999) – Kleinberg
• Links can indicate popularity
• Assigning each retrieved web page two scores: Authority and Hub scores (thus, query dependant & query independent)
 • Authority page: an authoritative source on a given topic
 • Hub page: page listing pointers to authority pages on a topic
 • Authority score: summation of scores of all the hubs pointing to that authority page
 • Hub score: summation of scores of all authority pages the hub is pointing to
Computing Authority and Hub Scores

- Retrieve all pages containing the query term \(t \). This is called root set. (~200 pgs)
- Create a set including union of root set pages, pages that point to root set pages, and pages that root set pages point to. This is called base set.
- Using the base set \(s \) to compute the hub and authority scores.
- An iterative algorithm:
 - Initialize hubs and authorities with a score, ex. 1
 - Update \(H(p) \) and \(A(p) \)
 \[
 H(p) = \sum_{u \in S_{p}} A(u) \quad A(p) = \sum_{u \in S_{p}} H(u)
 \]

Link-based Ranking: Page Rank

- Mid 90’s by Larry Page & Sergey Brin
- A scoring mechanism in Web search (trade marked by Google and patented by Stanford)
- Generally calculated at the time of crawling (query independent)
- Using incoming and outgoing links as an indicator of popularity, adjusts Web page score
- Popular page is defined as a page that
 - Many Web pages link to it (inlinks)
 - Important (popular) pages link to it
Page Rank

\[
\text{PageRank}(A) = \frac{(1-d)}{N} + d \sum \frac{\text{PageRank}(D_i)}{C(D_i)}
\]

- PageRank of (A) is defined based on some ratio of PageRank score of each page \(D_i\) linking into A
- \(C(D_i)\): number of links out from page \(D_i\)
- \(d\): damping factor (from 0-1; commonly 0.85; ~15% cases are random visits)
- \(N\): total number of pages

An Iterative Algorithm:

Initially all pages are assigned an arbitrary page rank (1/n), summing to 1

Iteratively calculate the scores until the new scores do not change significantly

To converge faster, may initialize page ranks based on number of inlinks, log info, etc.

Web Page Ranking

- Considering both query dependant and query independent scores (captured during indexing), a global score is generated for each page:
 - For retrieved results based on query dependant ranking (ex. BM25), rank using Page Rank
 - Or,
 - Use a linear combination of various relevance evidence (textual, BM25, link,…)

\[
SC(D, Q) = a \text{ BM25 } (Q,D) + (1-a) \text{ PageRank } (D)
\]