Measuring Effectiveness

- An algorithm is deemed incorrect if it does not have a “right” answer.

- A heuristic tries to guess something close to the right answer. Heuristics are measured on “how close” they come to a right answer.

- IR techniques are essentially heuristics because we do not know the right answer.

- So we have to measure how close to the right answer we can come.
Experimental Evaluations

• Batch (ad hoc) processing evaluations
 – Set of queries are run against a static collection
 – Relevance judgments identified by human evaluators are used to evaluate system

• User-based evaluation
 – Complementary to batch processing evaluation
 – Evaluation of users as they perform search are used to evaluate system (time, clickthrough log analysis, frequency of use, interview, …)

Some of IR Evaluation Issues

• How/what data set should be used?
• How many queries (topics) should be evaluated?
• What metrics should be used to compare systems?
• How often should evaluation be repeated?
Existing Testbeds mainly used for Academic Research

- Cranfield (1970): A small (megabytes) domain specific testbed with fixed documents and queries, along with an exhaustive set of relevance judgment.

- TREC (Text Retrieval Conference sponsored by NIST; starting 1992): Various data sets for different tasks.
 - Most use 25-50 queries (topics)
 - Collections size (2GB, 10GB, half a TByte (GOV2), …….and 25 TB ClueWeb)
 - No exhaustive relevance judgment

Existing Testbeds (Cont’d)

- GOV2 (Terabyte):
 - 25 million pages of web; 100-10,000 queries; 426 GB

- Genomics:
 - 162,259 documents from the 49 journals; 12.3 GB

- ClueWeb09:
 - 1 billion web pages (ten languages)

- ClueWeb12:
 - 870 million English web pages

- Text Classification datasets:
 - Reuters-21578 (newswires)
 - Reuters RCV1 (806,791 docs),
 - 20 Newsgroups (20,000 docs; 1000 doc per 20 categories)
 - Others: WebKB (8,282), OHSUMED(54,710), GENOMICS (4.5 million),….
TREC

- Text Retrieval Conference- sponsored by NIST
- Various benchmarks for evaluating IR systems.
- Sample tasks:
 - Ad-hoc: evaluation using new queries
 - Routing: evaluation using new documents
 - Other tracks: CLIR, Multimedia, Question Answering, Biomedical Search, etc.
 - For more info see: http://trec.nist.gov/

TREC Relevance Information & Pooling

- TREC uses pooling to approximate the number of relevant documents and identify these documents, called relevance judgments (qrels)
- For this, TREC maintains a set of documents, queries, and a set of relevance judgments that list which documents should be retrieved for each query (topics)
- In pooling, only top documents returned by the participating systems are evaluated, and the rest of documents, even relevant, are deemed non-relevant
Problem…

- Building larger test collections along with complete relevance judgment is difficult or impossible, as it demands assessor time and many diverse retrieval runs.

Evaluating Various Search tasks

- TREC evaluation paradigm, using Pooling, has shown success for specific user task of *topical information (ad hoc)*.

- Other users tasks:
 - *Navigational:* finding specific sites
 - *Transactional:* finding specific item (buy books, etc.)

➤ Not dealing with set of relevant documents but with rather a single correct answer!
Logging

- Search companies utilize query logs containing user interaction with a search engine
- Much more data available
- Privacy issues need to be considered
- Relevance judgment done via
 - Using clickthrough data -- biased towards highly ranked pages or pages with good snippets
 - Page dwell time

Evaluating Web Search Engines

- Dynamic environment (Facts):
 - Collection grows/changes rapidly and indices are constantly updated
 - User interests and popular queries change
 - Web queries are typically short (1-3 terms), thus difficult to capture users’ need
 - Search algorithms are continually refined
 - Users only view top 10 results for 85% of their queries
 - Users do not revise their query after the first try for 75% of their queries
 - Majority of queries occur only a few times (55% occurs less than 5 times)
 - Top queries are changing over time too.
Evaluating Web Search Engines (Cont’d)

- Web is too large to calculate recall, thus need measures that are not recall-based
- Hundreds of millions of queries per day, thus need large sample of queries to represent the population of even one day
- Repeat evaluations frequently

Measures in Evaluating IR

- Recall is the fraction of relevant documents retrieved from the set of total relevant documents collection-wide. Also called true positive rate.
- Precision is the fraction of relevant documents retrieved from the total number retrieved.
Precision / Recall

Example

- Consider a query that retrieves 10 documents.
- Let's say the result set is.

 D1
 D2
 D3
 D4
 D5
 D6
 D7
 D8
 D9
 D10

- With all 10 being relevant, Precision is 100%
- Having only 10 relevant in the whole collection, Recall is 100%
Example (continued)

- Now let's say that only documents two and five are relevant.
- Consider these results:

 D1
 D2
 D3
 D4
 D5
 D6
 D7
 D8
 D9
 D10

- Two out of 10 retrieved documents are relevant thus, precision is 20%. Recall is (2/total relevant) in entire collection.

Levels of Recall

- If we keep retrieving documents, we will ultimately retrieve all documents and achieve 100 percent recall.
- That means that we can keep retrieving documents until we reach x% of recall.
Levels of Recall (example)

- Retrieve top 2000 documents.
- Five relevant documents exist and are also retrieved.

<table>
<thead>
<tr>
<th>DocId</th>
<th>Recall</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>.20</td>
<td>.01</td>
</tr>
<tr>
<td>200</td>
<td>.40</td>
<td>.01</td>
</tr>
<tr>
<td>500</td>
<td>.60</td>
<td>.006</td>
</tr>
<tr>
<td>1000</td>
<td>.80</td>
<td>.004</td>
</tr>
<tr>
<td>1500</td>
<td>1.0</td>
<td>.003</td>
</tr>
</tbody>
</table>

Recall / Precision Graph

- Compute precision (interpolated) at 0.0 to 1.0, in intervals of 0.1, levels of recall.
- Optimal graph would have straight line -- precision always at 1, recall always at 1.
- Typically, as recall increases, precision drops.
Precision/Recall Tradeoff

Search Tasks

- **Precision-Oriented** (such as in web search)
- **Recall-Oriented** (such as analyst task)
 number of relevant documents that can be identified in a time frame. Usually ~5 minutes time frame is chosen.
More Measures…

- **F Measure** – *trade off precision versus recall*

\[
F \text{ Measure} = \frac{\left(\beta^2 + 1\right)PR}{\beta^2 P + R}
\]

- Balanced **F Measure** considers equal weight on Precision and Recall:

\[
F_{\beta=1} = \frac{2PR}{P + R}
\]

More Measures…

- **MAP** (Mean average Precision)
 - **Average Precision** – Mean of the precision scores for a single query after each relevant document is retrieved.
 * Commonly 10-points of recall is used!
 - **MAP** is the mean of average precisions for a query batch

- **P@10** - Precision at 10 documents retrieved (in Web searching). Problem: the cut-off at x represents many different recall levels for different queries - also **P@1**. (P@x)

- **R-Precision** – Precision after R documents are retrieved; where R is number of relevant documents for a given query.
Example

- For Q1: D2 and D5 are only relevant:
 \(D_1, D_2, D_3 \) not judged, \(D_4, D_5, D_6, D_7, D_8, D_9, D_{10} \)
- For Q2: D1, D2, D3 and D5 are only relevant:
 \(D_1, D_2, D_3, D_4, D_5, D_6, D_7, D_8, D_9, D_{10} \)

\(P \) of Q1: 20%
\(AP \) of Q1: \((1/2 + 2/5)/2 = 0.45 \)
\(P \) of Q2: 40%
\(AP \) of Q2: \((1+1+1+4/5)/4 = 0.95 \)
\(MAP \) of system: \((AP_{q1} + AP_{q2})/2 = (0.45 + 0.94)/2 = 0.69 \)
\(P@1 \) for Q1: 0; \(P@1 \) for Q2: 100%;
\(R\)-Precision Q1: 50%; Q2: 75%

<table>
<thead>
<tr>
<th>Recall points</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{Q1})</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Recall points</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>(P_{Q2})</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>(AP_{Q1&2})</td>
<td>0.75</td>
</tr>
<tr>
<td>MAP_{Q1&2}</td>
<td>0.73</td>
<td></td>
</tr>
</tbody>
</table>
More Measures…

Discounted Cumulative Gain (DCG)

- Another measure (Reported to be used in Web search) that considers the top ranked retrieved documents.
- Considers the position of the document in the result set (graded relevance) to measure gain or usefulness.
 - The lower the position of a relevant document, less useful for the user
 - Highly relevant documents are better than marginally relevant ones
 - The gain is accumulated starting at the top at a particular rank p
 - The gain is discounted for lower ranked documents

Normalized Discounted Cumulative Gain (NDCG)

- Manual relevance is given to the retrieved documents as 0-3 (0=non-relevant, 3=highly relevant)

\[
DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}
\]

- Generally normalized using the ideal DCG, $IDCG_p$, defined as the ordered documents in the decreasing order of relevance.

\[
nDCG_p = \frac{DCG_p}{IDCG_p}
\]

- Generally is calculated over a set of queries
nDCG (Example)

- \(d1, d2, d3, d4, d5\) (in the order of their rank)
- Relevance: 3, 3, 1, 0, 2

\[
\text{DCG}_p = 3 + (3/1 + 1/1.59 + 0 + 2/2.32) = 7.49
\]

- Ideal order based on relevance: 3, 3, 2, 1, 0
- \(\text{IDCG} = 3 + (3/1 + 2/1.59 + 1/2 + 0) = 7.75\)
- \(\text{nDCG}_p = \frac{\text{DCG}}{\text{IDCG}} = \frac{7.49}{7.75} = 0.96\)

Known-item Search Evaluation

- Ranking the best site or item being searched
 - find a single known resource for a given query. Closer the rank of the item to the top, better for the user.
 - Evaluation Metric: \textit{Mean Reciprocal Ranking (MRR)}
 - Weight of item (correct answer) in location 1 is 1
 - Weight of item in location \(n\) is \(1/n\)

\[
MRR = \frac{\sum_{q=1}^{n} \frac{1}{\text{rank}_q}}{n}
\]
Known-Item Search & MRR

\[MRR = \frac{\sum_{q=1}^{n} \frac{1}{rank_q}}{n} \]

Example:
– MRR=0.25 means on average the system finds the known-item in position number 4 of result set.

– MRR= 0.75 means finding the item between ranks 1 and 2 on average.

Cost of Manual Evaluation

Search engines: 5
Queries: 300
Top documents: 20
Time to evaluate each result: 30 seconds (optimistic)
\[(300q * 20r * 5s) = 30,000 \text{ results to evaluate} \]
\[10.4 \text{ days to complete the task (not sleeping!)} \]
\[31 \text{ days (8-hour working days) to complete} \]

\[\Rightarrow \Rightarrow \text{ Not scalable to dynamic env. such as Web!} \]
(Research in progress!)
Measuring Efficiency

- Indexing time
- Indexing temporary space
- Index size
- Query throughput (number of queries processed per second)
- Query latency (time taken in milliseconds till a user query is answered)