Cluster Hypothesis:

By clustering, documents relevant to the same topics tend to be grouped together.

What can be Clustered?

- **Collection (Pre-retrieval)**
 - Reducing the search space to smaller subset -- not generally used due to expense in generating clusters.
 - Improving UI with displaying groups of topics -- have to label the clusters
 - Scatter-gather – the user selected clusters are merged and re-clustered

- **Result Set (Post-retrieval)**
 - Improving the ranking (re-ranking)
 - Utilizing in query refinement -- Relevance feedback
 - Improving UI to display clustered search results

- **Query**
 - Understanding the intent of a user query
 - Suggesting query to users

Document/Web Clustering

- **Input**: set of documents, [k clusters]
- **Output**: document assignments to clusters
- **Features**
 - Text – from document/snippet (words: single; phrase)
 - Link and anchor text
 - URL
 - Tag (social bookmarking websites allow users to tag documents)
 - (likely more features)
- **Term weight** (tf, tf-idf,....)
- **Distance measure**: Euclidian, Cosine...
- **Evaluation**
 - Manual -- difficult
 - Web directories

© Goharian, 2011
Result Set Clustering

• Clusters are generated online (during query processing)

Retrieved Result

url, title, Snippets, tags

Result Set Clustering

• To improve efficiency, clusters may be generated from document snippets.

• Clusters for popular queries may be cached

• Clusters maybe labeled into categories, providing the advantage of both query & category information for the search

• Clustering result set as a whole or per site

• Stemming can help due to limited result set
Cluster Labeling

- The goal is to create “meaningful” labels
- Approaches:
 - Manually (not a good idea)
 - Using already tagged documents (not always available)
 - Using external knowledge such as Wikipedia, etc.
 - Using each cluster’s data to determine label
 - Cluster’s Centroid terms/phrases -- frequency & importance
 - Title of document centroid or closest document to centroid can be used
 - Using also other clusters’ data to determine label
 - Cluster’s Hierarchical information (sibling/parent) of terms/phrases
Query Clustering Approach to Query Suggestion

- Exploit information on past users’ queries
- Propose to a user a list of queries related to the one (or the ones, considering past queries in the same session/log) submitted
- Various approaches to consider both query terms and documents

Tutorial by: Salvatore Orlando, University of Venice, Italy & Fabrizio Silvestri, ISTI - CNR, Pisa, Italy, 2009

Baeza-Yates et al. use a clustering approach

- A two tier approach
 - An offline component clusters past queries using query text along with the text of clicked URLs.
 - An online component that recommends queries based on an incoming query and using clusters generated in the offline mode

Tutorial by: Salvatore Orlando, University of Venice, Italy & Fabrizio Silvestri, ISTI - CNR, Pisa, Italy, 2009
Query Clustering Approach to Query Suggestion

• Offline component:

 – Clustering algorithm operates over queries enriched by a selection of terms extracted from the documents pointed by the user clicked URLs.

 – Clusters computed by using an implementation of \(k \)-means
 • different values of \(k \)
 • \(SSE \) becomes even smaller by increasing \(k \)

 – Similarity between queries computed according to a vector-space approach
 • Vectors \(\vec{q} \) of \(n \) dimensions, one for each term

Tutorial by: Salvatore Orlando, University of Venice, Italy & Fabrizio Silvestri, ISTI - CNR, Pisa, Italy, 2009

Query Clustering Approach to Query Suggestion

Baeza-Yates et al. use a clustering approach (cont’d)

• Online component:

 (I) given an input query the most representative (i.e. similar) cluster is found
 • each cluster has a natural representative, i.e. its centroid

 (II) ranking of the queries of the cluster, according to:
 • attractiveness of query answer, i.e. the fraction of the documents returned by the query that captured the attention of users (clicked documents)
 • similarity wrt the input query (the same distance used for clustering)
 • popularity of query, i.e. the frequency of the occurrences of queries

Tutorial by: Salvatore Orlando, University of Venice, Italy & Fabrizio Silvestri, ISTI - CNR, Pisa, Italy, 2009
Clustering

• Automatically group related data into clusters.
• An unsupervised approach -- no training data is needed.

• A data object may belong to
 – only one cluster (Hard clustering)
 – overlapped clusters (Soft Clustering)

• Set of clusters may
 – relate to each other (Hierarchical clustering)
 – have no explicit structure between clusters (Flat clustering)

Considerations…

• Number of clusters
 – Cardinality of a clustering (# of clusters)

• Objective functions
 – Evaluates the quality (structural properties) of clusters; often defined using distance/similarity measures
 – External quality measures such as: F measure; classification accuracy of clusters (using: annotated document set; existing directories; manual evaluation of documents)
Distance/Similarity Measures

Euclidean Distance

\[dist(d_i, d_j) = \sqrt{\left| d_{i1} - d_{j1} \right|^2 + \left| d_{i2} - d_{j2} \right|^2 + \ldots + \left| d_{ip} - d_{jp} \right|^2} \]

Cosine

\[Sim(d_i, d_j) = \frac{\sum_{k=1}^{t} d_{ik} \times d_{jk}}{\sqrt{\sum_{k=1}^{j} (d_{ik})^2 \sum_{k=1}^{j} (d_{jk})^2}} \]

Structural Properties of Clusters

• Good clusters have:
 – high intra-class similarity
 – low inter-class similarity

• Calculate the sum of squared error (Commonly done in K-means)
 – Goal is to minimize SSE (intra-cluster variance):
 \[SSE = \sum_{i=1}^{k} \sum_{p \in c_i} \left| p - m_i \right|^2 \]
External Quality Measures

- Macro average precision -- measure the precision of each cluster (ratio of members that belong to that *class label*), and average over all clusters.

- Micro average precision -- precision over all elements in all clusters

- Accuracy: \(\frac{tp + tn}{tp + tn + fp + fn} \)

- F1 measure

Clustering Algorithms

- **Hierarchical** – A set of nested clusters are generated, represented as *dendrogram*.
 - Agglomerative (bottom-up) – *a more common approach*
 - Divisive (top-down)

- Partitioning (**Flat Clustering**)– no link (no overlapping) among the generated clusters
The *K-Means* Clustering Method

- A *Flat* clustering algorithm
- A *Hard* clustering
- A Partitioning (Iterative) Clustering
- Start with *k* random cluster centroids and iteratively adjust (redistribute) until some termination condition is set.
- Number of cluster *k* is an input in the algorithm. The outcome is *k* clusters.

The *K-Means* Clustering Method

Pick *k* documents as your initial *k* clusters
Partition documents into *k* closests cluster centroids (centroid: mean of document vectors; consider most significant terms to reduce the distance computations)
Re-calculate the centroid of each cluster
Re-distribute documents to clusters till a termination condition is met

- Relatively efficient: *O*(tkn),
 - *n*: number of documents
 - *k*: number of clusters
 - *t*: number of iterations Normally, *k*, *t* << *n*
The *K-Means* Clustering Method

• Example

![Example Diagram](image)

© Jiawei Han and Micheline Kamber

Limiting Random Initialization in *K-Means*

Various methods, such as:

• *Various K* may be good candidates

• Take *sample* number of documents and perform *hierarchical clustering*, take them as *initial centroids*

• Select *more than k initial centroids* (choose the ones that are further away from each other)

• Perform clustering and *merge closer clusters*

• Try *various starting seeds* and pick the better choices
The *K-Means* Clustering Method

Re-calculting Centroid:
- Updating centroids after each iteration (all documents are assigned to clusters)
- Updating after each document is assigned.
 - More calculations
 - More order dependency

Termination Condition:
- A fixed number of iterations
- Reduction in re-distribution (no changes to centroids)
- Reduction in SSE
Effect of Outliers

• Outliers are documents that are far from other documents.

• Outlier documents create a singleton (cluster with only one member)

• Outliers should be removed and not picked as the initialization seed (centroid)

Evaluate Quality in K-Means

• Calculate the sum of squared error (Commonly done in K-means)
 – Goal is to minimize SSE (intra-cluster variance):

\[
SSE = \sum_{i=1}^{k} \sum_{p \in c_i} \left| p - m_i \right|^2
\]
Hierarchical Agglomerative Clustering (HAC)

- Treats documents as singleton clusters, then merge pairs of clusters till reaching one big cluster of all documents.

- Any k number of clusters may be picked at any level of the tree (using thresholds, e.g., SSE)

- Each element belongs to one cluster or to the superset cluster; but does not belong to more than one cluster.

Example

- Singletons A, D, E, and B are clustered.

Hierarchical Agglomerative

- Create NxN doc-doc similarity matrix
- Each document starts as a cluster of size one
- Do Until there is only one cluster
 - Combine the best two clusters based on cluster similarities using one of these criteria: single linkage, complete linkage, average linkage, centroid, Ward’s method.
 - Update the doc-doc matrix

- Note: Similarity is defined as vector space similarity (e.g., Cosine) or Euclidian distance

Merging Criteria

- Various functions in computing the cluster similarity result in clusters with different characteristics.
- The goal is to minimize any of the following functions:
 - Single Link/MIN (minimum distance between documents of two clusters)
 - Complete Linkage/MAX (maximum distance between documents of two clusters)
 - Average Linkage (average of pair-wise distances)
 - Centroid (centroid distances)
 - Ward’s Method (intra-cluster variance)

How to do Query Processing

- Calculate the centroid of each cluster.
- Calculate the SC between the query vector and each cluster centroid.
- Pick the cluster with higher SC.
- Continue the process toward the leaves of the subtree of the cluster with higher SC.
Analysis

• Hierarchical clustering requires:
 – $O(n^2)$ to compute the doc-doc similarity matrix
 – One node is added during each round of clustering, thus n steps
 – For each clustering step we must re-compute the DOC-DOC matrix. That is finding the “closest” is $O(n^2)$ plus re-computing the similarity in $O(n)$ steps. Thus:
 $O(n^2 + n)$
 – Thus, we have:
 $O(n^2) + O(n)(n^2+n) = O(n^3)$
 (with an efficient implementation in some cases may accomplish finding the “closest” in $O(n\log n)$ steps; Thus:
 $O(n^2) + (n)(n\log n+n) = O(n^2\log n)$ Thus, very expensive!

Buckshot Clustering

• A hybrid approach (HAC & K-Means)
• To avoid building the DOC-DOC matrix:
 – Buckshot (building similarity matrix for a subset)
• Goal is to reduce run time to $O(kn)$ instead of $O(n^3)$ or $O(n^2\log n)$ of HAC.
Buckshot Algorithm

- Randomly select d documents where d is \sqrt{n} or \sqrt{kn}
- Cluster these using *hierarchical* clustering algorithm into k clusters: $\sim O(\sqrt{n})^2$
- Compute the centroid of each of the k clusters: $O(\sqrt{n})$
- Scan remaining documents and assign them to the closest of the k clusters (*k-means*): $O(n - \sqrt{n})$
- Thus: $O(\sqrt{n})^2 + O(\sqrt{n}) + O(n - \sqrt{n}) \sim O(n)$

Summary

- Clustering provides users an overview of the contents of a document collection
- Commonly used in organizing search results
- Cluster labeling aims to make the clusters meaningful for users
- Can reduce the search space and improve efficiency, and potentially accuracy
- HAC is computationally expensive
- K-Means suits for clustering large data sets
- Difficulty in evaluating the quality of clusters