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ABSTRACT

PROGRESSIVE PARTIAL MEMORY LEARNING

Marcus A. Maloof

George Mason University, 1996

Dissertation Director: Ryszard S. Michalski

A learning methodology called Progressive Partial Memory Learning (PPML) is presented.

PPML takes a partial memory approach to progressive inductive learning problems in

which training examples are distributed over time.  The partial memory approach retains

and uses representative examples and induced concept descriptions for future learning.

Representative examples are those training examples that maximally expand and constrain

concept descriptions in the representation space.  Mechanisms such as the selection of

representative examples, forgetting, and aging allow the system to efficiently learn concepts

over time and to track changing concepts through a representation space.  Key components

of the methodology are implemented in an experimental system called AQ-Partial Memory

(AQ-PM), which is based on the AQ15c inductive learning system.  AQ-PM is

experimentally validated against a baseline AQ15c learning algorithm using both synthetic

and real-world data sets.  Synthetic data sets include problems in which concepts change or

drift in the representation space.  Real-world problems include applications to dynamic

knowledge bases (i.e., computer intrusion detection), intelligent agents (i.e., email

sorting), and computer vision (i.e., blasting cap detection in x-ray images).  Results

demonstrate that the methodology is able to perform well on a variety of problems.

Specifically, the method considerably improves memory requirements and learning time

with slight decreases in predictive accuracy when compared to the baseline learner.



Furthermore, the method is also able to track concept drift.  Results are presented for the

STAGGER concepts in which AQ-PM achieves predictive accuracies comparable to the

FLORA systems, but requires much less memory.  Comparisons are made to the AQ11 and

GEM incremental learning systems using the blasting cap detection and computer intrusion

detection problems in which they learned more predictive, but more complex concept

descriptions than AQ-PM.  Partial memory learning is also conducted using the incremental

learning algorithms of AQ11 and GEM for the blasting cap detection and computer

intrusion detection problems.  Results for the partial memory versions of these learners,

when compared to the unmodified versions, show slight decreases in predictive accuracy

and concept complexity with considerable decreases in learning time.
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Chapter 1: Introduction

Two years ago during a research meeting, we were discussing an incident in which a

hacker broke into a university administrator’s account.  The hacker’s activity was

characterized by late night logins and intense usage of computing resources.  In short, the

hacker was doing things the true owner of the account would have never done.  As a

student in machine learning, it seemed natural to use machine learning to develop

behavioral profiles of the various users of a computing system, and if a given user did not

match a historical profile, then either the actual user was not the true user, or the system

needed more training.

After gathering three weeks of audit records, the odyssey of finding an appropriate

representation space for learning began.  It took a while — about a year of repeatedly

leaving the problem and coming back to it — but once it was found, the learning results

were quite good.  Naturally, the next step was to make several comparisons among various

learning methods and report how well each did on this problem.

Yet, the engineering question is, How would one build a system to do intrusion

detection?  The system must constantly learn and classify.  It must be able to incorporate

feedback from the system administrator in the event of an erroneous classification.  It

should use little computing and storage resources, meaning fast learning and recognition

and low memory requirements, since it would be nice not to have to buy a computing

system to protect a computing system.

Learning over time means progressive learning (Michalski 1996).  By progressive

learning, we mean a learning process of building hypotheses from consecutively obtained
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sets of training data.  Learning over time is an important special case of progressive

learning.  After looking at the current literature on intrusion detection and on systems that

learn over time, under the influence of current course work, readings, and lengthy chats

with colleagues, a design for a progressive learning system began to materialize.  Initially,

experimentation with the progressive partial memory learning system was not fully

automated, which provided the opportunity to truly look at what was happening with the

problem.  As time progressed and the system received more and more training examples,

the examples retained in earlier steps of learning were either in conflict with examples

retained in later learning steps or produced rules covering few examples.  It was apparent

that what was expressed by the earlier training examples was not present in the later

examples.  In other words, the concepts were changing.

Other applications, not just the computer intrusion detection problem, have similar

properties.  These applications include intelligent agents (Maes 1994) and a variety of

vision problems, such as active vision (Aloimonos et al. 1988) and learning to track objects

in video sequences (Blake et al. 1995).  Thus the research question is, What are the

properties of a learning methodology that would allow us to build learning systems for this

class of problems?

We present a learning methodology called Progressive Partial Memory Learning, or

PPML (Maloof and Michalski 1995c).  PPML takes a partial memory approach to

progressive learning in which training examples are distributed over time.  The partial

memory approach retains and uses representative examples and induced concept

descriptions for future learning.  Representative examples are those training examples that

maximally expand and constrain concept descriptions in the representation space.

Mechanisms such as the selection of representative examples, forgetting, and aging allow

the system to efficiently learn concepts over time and to track changing concepts through a

representation space.
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Key components of the methodology are implemented in an experimental system

called AQ-Partial Memory (AQ-PM), which is based on the AQ15c inductive learning

system (Wnek et al. 1995).  AQ-PM is experimentally validated against a baseline AQ15c

learning algorithm using both synthetic and real-world data sets.  Real-world problems

include applications to computer intrusion detection (Maloof and Michalski 1995a), email

sorting (Bloedorn and Michalski 1996), and detecting blasting caps in x-ray images

(Maloof and Michalski 1995d, 1996; Maloof et al. 1996).  Experimental results

demonstrate that the methodology is able to perform well on a variety of problems.

Specifically, the method considerably improves memory requirements and learning time

with slight decreases in predictive accuracy when compared to the AQ15c baseline learner.

The baseline system learned as much as 113% slower, maintained as much as 256% more

data, and performed as little as 4% better on testing data than the AQ partial memory

learner.

  A synthetic problem is considered in which concepts change or drift in the

representation space.  Experimental results are presented for the STAGGER concepts

(Schlimmer and Granger 1986) in which AQ-PM achieves predictive accuracies comparable

to the FLORA systems (Widmer and Kubat 1996), with the FLORA systems requiring, on

average, 116% more memory.

Comparisons are also made to two incremental learning versions of the AQ

algorithm (Michalski 1969): AQ11 (Michalski and Larson 1983), for no memory

incremental learning, and GEM (Reinke and Michalski 1988), for full memory learning.

For the blasting cap detection problem and the computer intrusion detection problem,

experimental results show that AQ11 and GEM learned more predictive (3–7% more

predictive), but more complex (as much as 187% more selectors) concept descriptions than

AQ-PM.
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Finally, progressive partial memory learning is also conducted using the

incremental learning algorithms of AQ11 (Michalski and Larson 1983) and GEM (Reinke

and Michalski 1988) for the blasting caps detection problem and the computer intrusion

detection problem.  Results for the unmodified versions of these learners, when compared

to the partial memory versions, show slight increases in predictive accuracy (1–4%),

considerable increases in learning time (as much as 485%), and slight increases in concept

complexity (as much as 50% more complex rules).  The partial memory approach also

reduced or eliminated fluctuations in concept complexity of the AQ11 incremental learner, a

problem recognized by other researchers (O’Rorke 1982; Becker 1985).
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Chapter 2: Problem Statement

The research problem addressed by this dissertation is the inductive learning of concepts

from examples distributed over time.  A related problem is that of inductively learning a

symbolic concept description of a changing concept.  It is assumed that change occurs over

time, so training examples are distributed over time.  In general, a learner cannot

empirically differentiate between these two problems because of the uncertainty of inductive

inference.  That is, because inductive inference is uncertain, without assumptions, a learner

cannot determine if it is receiving more information about a static concept or about a

changing concept.

The study of these problems is important and relevant for several reasons.  From an

applied perspective, several applications, such as dynamic knowledge-bases and intelligent

agents, operate in a dynamic and changing environment.  Learning systems for these

applications must be able to learn quickly with low memory requirements.  Furthermore,

they must learn changing concepts.  Assume, for example, we have an email sorting agent

that “watches over the shoulder” of a user associating attributes of various emails (e.g.,

sender and subject keywords) with user actions (e.g., such as reading and deleting).  After

a period of training and when the agent can reliably predict its user’s actions, the agent may

request to automate various email sorting tasks for the user.  If the user accepts the agent’s

request, then the agent may automatically prioritize the user’s mail queue, delete unwanted

junk emails, and the like.

If the user is a university professor, then the concept of which emails are important

is likely to change from semester to semester.  That is, the emails from students currently
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enrolled in the professor’s class are likely to be more important than those emails from

students who are not currently enrolled.  Yet, when the semester changes, although we still

have the concept of important emails, the concept has changed because the students in the

professor’s class are no longer the same.  A learning system for this application must learn

over time, since emails are continually arriving, and learn a changing concept, since the

concept itself changes.

From a theoretical perspective, partial memory models are interesting because we

can investigate the rates of growth for the number of training examples maintained during

learning.  Other issues relate to the compromises and gains in predictive accuracy, learning

times, and concept complexity when taking a partial memory approach.  One can also study

the change in these measures as different schemes of computing partial memory are

employed in which differing portions of the original training set are retained for learning.

In the AQ legacy of learning systems, O’Rorke (1982) noted that AQ11 (Michalski

and Larson 1983), a no memory incremental learning system, exhibited cyclic instability in

which there would be wide and unwarranted variations in concept complexity from one

learning step to the next.  One empirical observation made in this dissertation is that

maintaining a set of representative examples eliminates this instability of concept

complexity.

2 . 1 Assumptions

The methodology of progressive partial memory learning makes few assumptions about the

type of inductive learner involved.  It is necessary, however, for the learner to form

concept descriptions so that representative examples can be found.  Naturally, the specific

way in which representative examples are found will vary among learning systems,

depending on their concept representation, but the idea of representative examples is not
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specific to any one learning system.  Furthermore, mechanisms of aging, forgetting, and

inductive support are also non-specific.

The methodology assumes a static representation space; that is, constructive

induction (Michalski 1980) is not considered.  The methodology also assumes a stationary

context (cf. Widmer 1996a).  Note however that both constructive induction and non-

stationary contexts would be fruitful areas for further research.

Assumptions are also made with respect to the implementation of the experimental

system, AQ-PM.  By using AQ15c (Wnek et al. 1995) as the underlying learning system,

we assume that training examples can be represented in a discrete attributional

representation space and that concepts can be represented by one or more axis-parallel

hyper-rectangles.  That is, it is assumed that domain concepts can be represented by a

disjunction of conditions involving attributes but not relations.  This is our representational

bias.  Consequently, the system cannot learn structural or recursive concepts.  Noise is not

considered since other studies have dealt with this problem (Aha et al. 1991; Widmer and

Kubat 1996).

With regard to experimental design, the assumption is made for the problems

involving real-world data sets that training examples, while distributed over time, are not

dependent with respect to time.  This assumption is made for practical reasons.  By making

this assumption, the data sets can be partitioned randomly over time to simulate a time-

distributed problem.  For each of these partitions, we can then use a validation

methodology suggested by Weiss and Kulikowski (1992).  Ultimately, this assumption

reduces our data requirements.  If we were not able to make this assumption, then

gathering experimental data would be impractical, if not impossible.  For example, consider

the computer intrusion detection domain as a learning problem (Maloof and Michalski

1995a).  Given the data set used in the study and based on the minimum number of

examples per class, we should use a validation methodology of 100 iterations of 2-fold
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cross validation.  If we cannot make the time independence assumption, we would have to

collect data from 100 independent periods of time.  The original data set for this problem

was collected over a three week period.  Thus, we would have to collect data for 300

independent weeks of activity.  Similar collection periods would be required for the

intelligent agent and computer vision domains.  Clearly, this is an unrealistic data collection

requirement, hence the assumption.

This assumption, however, is not made for the synthetic data set involving

changing concepts.  The STAGGER concepts (Schlimmer and Granger 1986) were

generated by an algorithm, so data collection is not a problem.  Furthermore, the concepts

for the synthetic data experiment were constructed to be time dependent.

2 . 2 Representation Language

A representation language is needed to express algorithms and concept descriptions.  For

this purpose we will use a simplified version of the Variable-Valued Logic System 1 (VL1),

as described by Michalski (1973), to represent training examples, representative examples,

domain knowledge, and concept descriptions.  VL1 decision rules are of the form:

Di  <:: Cj for i = 1..n, j = 1..m

where

Di is the decision part of the rule and assigns a class label to a decision variable,

Cj is the condition part of the rule (i.e., a complex), and consists of a conjunction

of elementary conditions, and

<:: is the decision assignment operator and is logically equivalent to implication.

An elementary condition, or a selector, is of the form:

‘[’ < referee> <relation> <referent> ‘]’

where

<referee> is a member of the finite set of attributes,
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<relation> is the relational operator =, and

<referent> is a subset of the domain of <referee>.

A referent is of the form:

<referent> ::= <value> [ <list> | <range> ]

<list> ::= ‘∨’ <value> [ <list> | <range> ]

<range> ::= ‘..’ <value> [ <list> ]

where <value> is from the domain of <referee>.  For example, [length = 2mm], [color =

red ∨ blue], and [area = 1..5 ∨ 7 pixels] are elementary conditions.

In a strict matching mode, an elementary condition is satisfied by an object, if the

value of the attribute stated in the condition for this object satisfies the <relation> between

the <referee> and the <referent>.  A complex is true if all of its selectors are true.  A

decision variable is assigned its associated class label if its complex is true.

Training examples and representative examples are represented using decision rules

under the restrictions that a selector must be present for each attribute in the finite set of

attributes and that the cardinality of the referent is singular, i.e., consists of one value from

the domain of the attribute.  See (Michalski 1973) for a complete description of VL1.
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Chapter 3: Related Research

3 . 1 Progressive Learning

Progressive learning is a process in which hypotheses are formed from consecutive sets of

training data (Michalski 1996).  Incremental learning, or on-line learning (Littlestone and

Warmuth 1994), and temporal batch learning are types of progressive learning.

Incremental learning is a process of concept description modification using newly obtained

training examples.  Temporal batch learning is a process of re-learning from some or all of

the past training examples with any newly obtained training examples.

Progressive learning differs from atemporal batch learning in that it is assumed that

training examples are distributed over time.  There are many motivations for making this

assumption.  The obvious one is that the particular problem to which inductive learning is

applied necessitates learning over time.  Such problems include computer intrusion

detection (Denning 1987), intelligent agents (Maes 1994), and robot learning (Salganicoff

et al. 1996).

A second motivation is that the computational demands of the domain exceed

current computational capabilities.  Large training sets can be divided and processed

incrementally providing gains in processing speed, since we need not process training

examples already covered by current hypotheses, and in memory requirements, since we

need not load the entire data set into memory.  Early work in incremental learning stemmed

from this motivation (Michalski and Larson, 1978, 1983; Reinke and Michalski 1988).

Others have observed that incremental learning can lead to improved predictive accuracy

and smaller concepts versus batch learning (Utgoff 1989).  Finally, some have been
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motivated by more cognitive ambitions, since humans and other biological organisms are

inherently incremental learners (Feigenbaum 1963).

Michalski (1985) observed that learning over time can be carried out using two

mechanisms: revolutionary or evolutionary.  With the former case, old concepts are

discarded and new concepts are induced from a set of training examples.  AQ-PM (Maloof

and Michalski 1995c) is an example of a system that operates in a revolutionary, or

temporal batch mode.  With the latter case, existing concepts are modified in light of new

training examples.  AQ11 (Michalski and Larson 1983), STAGGER (Schlimmer 1987b),

and Winnow (Littlestone 1991) are examples of systems that take an evolutionary

approach.  GEM (Reinke and Michalski 1988) and CAP (Mitchell et al. 1994) are examples

of hybrid incremental learning systems.  GEM uses a set of training examples to form an

initial set of concepts, and then specializes or generalizes those concepts using new training

examples.  CAP, on the other hand, learns new rules from new training examples, and

integrates these new rules into the existing set of rules, deleting obsolete rules, if

necessary.

Progressive learning systems must have a memory model, which determines how

the system treats past training examples (Reinke and Michalski 1988).  With a no memory

model, all training examples are forgotten after they are used to update the system’s

concepts.  AQ11 (Michalski and Larson 1983), STAGGER (Schlimmer 1987b),

DISCIPLE (Tecuci and Kodratoff 1990), and Winnow (Littlestone 1991) are systems that

use a no memory model.  With a partial memory model, some of the past training examples

are retained.  IB2 (Aha et al. 1991) is one such system that use a partial memory model.

With a full memory model, all past training examples are kept.  HILLARY (Iba et al.

1988), GEM (Reinke and Michalski 1988), and IB1 (Aha et al., 1991) are examples of

systems that use a full memory model.  Table 1 lists many of the progressive learning

systems developed over the years classified by representation scheme and memory model.
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Table 1: Selection of past progressive learning research.

System/Researcher(s) Representation Memory
Model

EPAM (Feigenbaum 1963) Decision Trees No
Arch (Winston 1975) Semantic Nets No
AQ11 (Michalski and Larson 1978, 1983) Decision Rules No
GEM (Reinke 1984) Decision Rules Full
Split (Becker 1985) Decision Rules Full
AQ15 (Hong et al. 1986) Decision Rules Full
ID4 (Schlimmer and Fisher 1986) Decision Trees No
INDUCE 4 (Mehler et al. 1986) Decision Rules Full
PRG (Lee and Ray 1986) Decision Rules No
UNIMEM (Lebowitz 1986) Decision Trees No
COBWEB (Fisher 1987) Hierarchy No
LAIR (Wantanabe and Elio 1987) Decision Rules Partial
STAGGER (Schlimmer 1987a) Multistrategy No
Gross (1988) Decision Rules No
HILLARY (Iba et al. 1988) Decision Rules Full
ID5 (Utgoff 1988) Decision Trees No
CLASSIT (Gennari et al. 1989) Hierarchy No
Incremental ILS (Widmer 1989) Version Spaces No
Weighted Majority (Littlestone 1989) Perceptron No
Winnow (Littlestone 1989) Perceptron No
DISCIPLE (Tecuci & Kodratoff 1990) Version Spaces No
IB1 (Aha et al. 1991) Instance-based Full
IB2 (Aha et al. 1991) Instance-based Partial
IB3 (Aha et al. 1991) Instance-based Partial
Bhandaru and Murty (1991) Decision Trees Full
Dasgupta and McGregor (1992) Genetic Algorithm No
FAVORIT (Krizakova and Kubat 1992) Hierarchy No
Grefenstette (1992) Genetic Algorithm No
Lim et al. (1992) Connectionist Partial
PRAX (Bala 1992) Decision Rules No
PRORULES (Pitas et al. 1992) Decision Rules No
Weiss and Kulikowski (1992) Connectionist Full
Cobb and Grefenstette (1993) Genetic Algorithm No
DARLING (Salganicoff 1993) Decision Trees No
YAILS (Torgo 1993) Decision Rules No
CAP (Mitchell et al. 1994) Decision Trees No
IVSM (Hirsh 1994) Version Spaces Partial
IA-EBL (Cohen 1994) Decision Rules No
IVS (Sablon et al. 1994) Version Spaces No
EBNN (Thrun and Mitchell 1995) Multistrategy No
HIERARCH (Nevins 1995) Hierarchy No
VOTE (Clyde et al. 1995) Weighted IBL Full
FLORA (Widmer and Kubat 1996) Decision Rules Partial
MetaL(B) (Widmer 1996a) Naive Bayes Partial
MetaL(IB) (Widmer 1996a) Instance-based Partial
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3 . 2 Partial Memory Models

Little research has been conducted in an effort to better understand the performance gains

and compromises by progressively learning using different memory models.  The majority

of progressive learning systems are incremental learning systems that use a no memory

model, while most others use a full memory model.  IB2 and IB3 (Aha et al. 1992) appear

to be two of the first systems to use a partial memory model, but these learning systems do

not form generalized concept descriptions.  New training examples are kept only if they are

misclassified by the system.  IB3 uses a similar scheme, but uses additional processes to

filter noisy examples.

LAIR (Wantanabe and Elio 1987) uses a minimal partial memory model in which

only the last positive example is kept.  Incremental learning uses the last positive training

example and the new training example when updating the current set of concepts by

applying an inductive generalization rule (i.e., climbing a generalization hierarchy).

The FLORA learning systems (Widmer and Kubat 1996), MetaL(B), and

MetaL(IB) (Widmer 1996a) use a partial memory model in which the most recently seen

training examples are kept.  The quantity of kept examples varies based on the size of an

adaptive forgetting window.  Although these examples are kept, once the examples are

used for learning when they first arrive to the system, they are not used in subsequent

inductive learning processes.  Rather, retained positive and negative examples are used to

forget and manage the use of learned concept descriptions.

3 . 3 Representative Examples

Two studies, in particular, discuss representative examples.  The first, by Michalski and

Larson (1988), uses incremental learning as a method for processing large volumes of data.

Representative examples are selected and used for learning to reduce processing

requirements.  In this approach, training examples are ranked as a function of their
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syntactic distance from a standard reference point in n-dimensional space.  The range of

distances is uniformly scaled into a set of r bins, which will likely contain different

numbers of examples.  The set of representative examples is computed by taking the

training examples in each of the r bins and finding those examples that are maximally

distant from each other.  Incremental learning is performed on each reduced bin.  The

important aspects of this approach is that it is a pre-learning process and representative

examples are selected by a syntactic distance measure.

The second study, by Kibler and Aha (1987), discusses representative examples in

the context of memory-based or exemplar-based learning.  Two algorithms are discussed

for selecting a representative set of examples: the growth algorithm and the shrink

algorithm.  With former algorithm, during learning (i.e., example memorization), only

those misclassified examples are kept.  This process results in ordering effects whereby the

order in which examples arrive affects classification performance.  Note that the growth

algorithm is used in IB2 and IB3 (Aha et al. 1991).

Regarding the latter algorithm, the shrink algorithm, all training examples are

memorized.  Then, each training example is tested to see if it would be classified correctly

by the remaining examples.  If it is classified correctly, it is removed; otherwise, it is

retained.  As with the growth algorithm, the shrink algorithm is susceptible to ordering

effects.

Experimental results are presented using the thyroid data set with a standard

memory-based learning algorithm (i.e., the proximity algorithm) as a control and

comparing using predictive accuracy, memory requirements, and learning time.  Although

the growth algorithm stored slightly more training examples than the shrink algorithm, the

growth algorithm had higher predictive accuracies for this data set.  Furthermore, both

algorithms achieved predictive accuracies less than the control algorithm.  Computational

cost was evaluated formally.  If n is the total number of training examples, and m is the
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number of retained training examples, then the control algorithm has a constant update cost

of O(1), the growth algorithm requires O(mn), and the shrink algorithm requires O(n2).

For Kibler and Aha’s work, the important point is that representative example

selection is a post-learning process.  Also, memory-based learning techniques do not form

generalized concept descriptions, and selection of representative examples produces

ordering effects.

3 . 4 Concept Change

If a concept changes, then a natural assumption is that this change, whether gradual or

abrupt, occurs over time.  Evidence of the change in a concept will be communicated by

training examples of that concept, which are distributed over time.  So not only is a

progressive learning system required, but one is required that is capable of learning a

concept or function that is changing, evolving (Maloof and Michalski 1995c), shifting

(Littlestone and Warmuth 1994), drifting (Schlimmer and Granger 1986), or is non-

stationary (Grefenstette 1992; Salganicoff 1993).

STAGGER (Schlimmer 1987a, b) is a multistrategy incremental learning system for

coping with changing concepts.  STAGGER uses a connectionist representation scheme

using nodes to represent Boolean attributes (e.g., color = green) and Bayesian-weighted

connections to associate attribute nodes to a concept node.  STAGGER learns and tracks

changing concepts by adding new attribute nodes or adjusting the connection weights for

the concept’s connections.

The Weighted-Majority and Winnow algorithms (Littlestone 1989), although

studied formally for mistake bounds (i.e., the number of mistakes made during training),

were proposed as learning algorithms for tracking concept change (Littlestone and

Warmuth 1994).  The basic idea behind these algorithms is that a classification problem can

be cast into a smaller subset of a representation space that is linearly separable.  The
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algorithms thus generate all possible couplings, for example, of the attributes, producing

some number of linear classifiers, which are then trained by weight adjustment.

Classification involves polling the classifiers and returning the class label that achieves the

greatest weighted majority of predictions.  Unfortunately, these algorithms have not been

well-studied empirically.  Blum (1995) produced the only known empirical study using a

subset of a calendar scheduling domain (Mitchell et al. 1994), but is more of a study of the

incremental learning properties of these algorithms than a study of their ability to track

changing concepts.

The FLORA systems (Widmer and Kubat 1996) are a collection of inductive rule

learning systems for tracking concept change.  FLORA2 uses an adaptive memory-based

forgetting scheme to implement a partial memory model, which is discussed further in

Section 3.5.  FLORA3 extends FLORA2 and is capable of handling changing contexts by

storing and retrieving past concept descriptions.  An example of a changing context is the

seasons.  While we may have the concept of warm, this concept changes from season to

season.  That is, what we consider warm during the summer months is different during the

winter months.  FLORA4 extends FLORA3 by using mechanisms for coping with noise

that are similar to those in IB3 (Aha et al. 1991).

Extensive experiments were conducted using the FLORA systems on the

“STAGGER concepts” (Schlimmer and Granger 1986).  FLORA2 performs comparably to

STAGGER in terms of predictive accuracy and convergence, but is not as sensitive to over-

training as STAGGER, because of FLORA’s adaptive forgetting policy.  As a context

reoccurrence experiment, three sets of STAGGER concepts were repeated in order.

Comparisons were made between FLORA2 and FLORA3.  FLORA3 achieved higher

predictive accuracy when contexts reappeared because of its ability to store and retrieve past

concept descriptions.
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Experiments were also conducted between FLORA2, FLORA3, and FLORA4 with

varying amounts of random noise, varying rates of change, varying extents of change, and

irrelevant attributes.  To summarize, FLORA4 initially converges more slowly than its two

predecessors, FLORA2 and FLORA3, on the noise-less STAGGER concepts because of

the noise handling mechanisms.  Eventually however, FLORA4 achieves the highest

predictive accuracy.  In the presence of 10, 20, and 40% random noise, FLORA4 once

again converges more slowly than the other two, but eventually achieves a higher predictive

accuracy.

These learners were also compared with varying rates of drift (slow, medium, and

fast).  Rates of drift represent how quickly transitions occur from one concept to the next.

For example, the slower the rate of drift, the longer the period of uncertainty between

concept change.  During this period of uncertainty, a given training example could

probabilistically belong to either the old concept or the new concept.  All three performed

comparably on slow moving concepts, with FLORA4 performing the best at higher rates of

change.

The FLORA systems were tested for their sensitivity to the extent of concept drift.

The extent of concept drift is a measure of dissimilarity between two concepts learned at

different times.  Again, FLORA4 proved to be the best learner.  The final set of

experiments involved repeating the previous experiments, but adding irrelevant attributes.

These learners did show degradation of performance due to irrelevant attributes.  This

degradation is a result of FLORA’s concept formation process in which conjunctive

descriptions are generalized minimally to cover a training example.

Finally, Widmer (1996a) examines how a system can learn and track changing

contexts.  The main idea is best illustrated with an example.  A system may have the

concept of warm, but in reality, the concept of warm is dependent on the time of the year,

the location, and the like.  The seasons are an example of a cyclic context.  The learning
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systems MetaL(B) and MetaL(IB) are able to discover the attributes that are contextually

dependent.  Assuming the seasons are the context, then perhaps a contextual attribute is the

mean daily temperature.  As the context changes, these learners are able to adjust to context

change by monitoring the context dependent attributes.  Concepts are then either adjusted if

the context is new, or simply retrieved and modified if the context is recurrent.

3 . 5 Aging and Forgetting

Little work has been reported in the machine learning literature on aging and forgetting

mechanisms.  Aging is a process in which time is used to affect the influence of training

examples and concept descriptions in learning or decision processes.  Forgetting, on the

other hand, is a learning process that explicitly removes training examples or concept

descriptions, although others have proposed broader definitions (Markovitch and Scott

1988).  This equates to a deductive deletion transmutation, as defined by the Inferential

Theory of Learning (Michalski 1994).  Forgetting techniques can be memory-based, time-

based, proximity-based, frequency-based, or some combination of these.  Memory-based

forgetting techniques are those that limit the number of examples kept and remove examples

when the limit is surpassed.  Time-based forgetting involves removing examples that are

older than a certain age.  Proximity-based techniques delete examples based on their

proximity to other examples in the representation space.  Finally, frequency-based

techniques remove examples based on counting metrics, such as the frequency of

occurrence of an example.

Given the restriction of forgetting defined as a removal process, aging and

forgetting have not been the subject of many research studies, although in some, forgetting

is present, but not focused upon.  Freivalds et al. (1995), for example, formally examine

the impact of forgetting on learning.  Using a formal learning model called Inductive
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Inference Machines (IIM), they prove that any function can be learned with a memory

model having a linear space complexity (i.e., memory can grow only linearly).  If the class

of functions is restricted to those computable by finite automata, then a constant amount of

memory is sufficient for learning.

More empirical studies have also been conducted.  The FAVORIT system

(Krizakova and Kubat 1991; Kubat and Krizakova 1992), which uses a decision tree

representation,  is an extension of EPAM (Feigenbaum 1963).  FAVORIT can positively or

negatively reinforce training examples with respect to time (i.e., the older an example, the

more important, and vice versa).  Two types of forgetting are present.  The first is a

pruning mechanism that is present in UNIMEM (Gennari et al. 1989) in which low-valued

nodes are removed.  The second is a process in which aging weakens unused knowledge to

a point that it contributes little to learning.  Experiments were conducted using the Soybean

data set (Michalski and Chilausky 1980) with varying amounts of random noise (i.e., 0, 5,

10, and 20%) and measuring how different “intensities” of forgetting affected concept

complexity, recognition time, and predictive accuracy.  Experimental results show that

increased forgetting leads to smaller concept descriptions and lower recognition times, for

all levels of noise.  Predictive accuracy is unaffected for low intensity forgetting, but as

forgetting becomes more intense, predictive accuracy drops to unacceptable levels (< 60%).

The DARLING system (Salganicoff 1993), a memory-based learning system, uses

aging and forgetting mechanisms to track changing concepts.  Each training example is

assigned a weight that is decremented at a rate dependent on the number and proximity of

new training examples within an m-nearest neighborhood.  Experimental results show how

the system is able adapt to malfunction (i.e., a finger jam) in a robot grasping domain, but

no comparisons are made to the learning system with forgetting disabled.

Sablon and De Raedt (1995) extend Iterative Version Spaces (Sablon et al. 1994),

or ITVS, using compacting and forgetting mechanisms to remove redundant instances in



20

the sets of generalizations and specializations.  Theorems are presented showing that

extended Iterative Version Spaces preserve the worst case time and space complexities of

the original ITVS algorithm.  No empirical results are presented.

The FLORA systems (Widmer and Kubat 1996), which are also systems for coping

with concept drift, use a memory-based forgetting technique with an adaptive window size.

The size of the window is heuristically set based on system performance.  If the system is

performing well, then the window is decreased to a lower bound.  On the other hand, if the

system is performing poorly, it is assumed that this poor performance is due to concept

change, and the window size is enlarged.  Performance is measured using predictive

accuracy, the size of the current concept description, and the number of training examples

covered by the current concept description.  Experimental results for the FLORA systems

were discussed in Section 3.4.
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Chapter 4: Methodology

4 . 1 Baseline Progressive Learning

Before discussing the PPML methodology, it is useful to introduce the notion of a baseline

progressive learning algorithm.  Virtually any batch machine learning algorithm can be

made to learn over time (i.e., progressively).  We therefore define Algorithm 1 as the

Baseline Progressive Learning Algorithm.

Although simple and perhaps obvious, the Baseline Progressive Learner (BPL) has

several desirable properties, the most important of which is that the algorithm is, in a few

aspects, a worst-case algorithm for a given learner.  The algorithm will have the worst-case

memory requirements and learning times.  On the other hand, if we can assume a perfect

data source and learner, the predictive accuracy of this algorithm will be optimal.

Unfortunately, we cannot say much about concept complexity in this case since complexity

is related more to the distribution of examples in the representation space and the concept

representation language rather than the number of examples in the space (Thrun et al.

1991).

Algorithm 1: Baseline Progressive Learner (BPL)
Given data sets Datat, for t = 1..∞
1. TrainingSet0 = ∅
2. for t = 1 to ∞ do
3. TrainingSett = TrainingSett-1 ∪ Datat

4. Conceptst = Learn(TrainingSett)
5. end
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The motivation for introducing the notion of a baseline progressive learner is two-

fold.  First, for a given learning algorithm (step 4), any progressive version of the

algorithm must be an improvement over the BPL in terms of predictive accuracy, memory

requirements, learning time, concept complexity, or other measures.  Second, experimental

comparisons of the progressive version of the learning algorithm can be made to its

baseline counterpart.  In effect, the BPL is the progressive version of the learning algorithm

with its added progressive extensions disabled.  This is the comparison approach taken by

Aha and Kibler (1987) and Reinke and Michalski (1988).

From an experimental point of view, the baseline learner has an additional important

property.  It is common in the literature to find comparisons between two different learning

systems demonstrating that one rivaled the other in terms of predictive accuracy.  Yet to a

large extent, such comparisons might be unfair since each learner has representational and

inductive biases that could account for the difference in performance.  Consequently, it

seems that any performance evaluation of a progressive learning system should be made

first to its baseline algorithm counterpart.  This way, we have, in some sense, controlled

for unwanted variability and interactions.

This is of course not to say that comparisons between various learners are not

interesting.  It ultimately depends on what one is attempting to demonstrate.  For the most

part, we are empirically examining the effect and or lack of effect of certain mechanisms

that appear to be important for learning concepts over time.  It therefore seems sensible to

make comparisons to the learner without the added mechanisms.  For the STAGGER

concepts (Schlimmer and Granger 1986), however, comparisons are made to the FLORA

systems (Widmer and Kubat 1996).  We also compare AQ-PM to AQ11 (Michalski and

Larson 1983) and GEM (Reinke and Michalski 1988) using their original memory models

(no and full memory models, respectively) and using a partial memory model.
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4 . 2 Model of Time

Few progressive learning systems have an explicitly stated model of time.  Admittedly, a

model of time is not as important in systems such as STAGGER (Schlimmer and Granger

1986) and Winnow (Littlestone 1991), since they are predominantly reactive, weight

learning algorithms and do not explicitly forget aged examples or concepts.  Yet for

systems that are expressly designed to deal with temporal phenomena, such details should

be considered.

This methodology espouses a linear, discrete model of time.  Temporal events are

represented using intervals, during which the system can receive zero or more new training

examples.  This clarification is important because the system can have a richer

understanding of time than other systems that restrict themselves to receiving one example

per time interval (e.g., STAGGER, Winnow, and FLORA).  Because one or more training

examples can arrive during an interval of time, we can use the intervals to model arbitrary

periods of time, such as days or weeks, without having these periods of time explicitly tied

to the arrival of a certain number of new training events.  Furthermore, because we allow

that no training events might arrive during a time interval, the system is able to track the

passage of time.

4 . 3 Methodology Overview

The main objective of the Progressive Partial Memory Learning Methodology is to learn

concepts over time quickly and efficiently.  Although one may argue that all progressive

learning algorithms learn over time, many of these systems view time simply as a conduit

for receiving new training examples, instead of using time to gain potential performance

advantages by using mechanisms such as aging, forgetting, and inductive support.
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The architecture for PPML, shown in Figure 1, consists of integrated modules for

learning and reasoning.  Note that learning can be performed by either incremental or

temporal batch learning methods.  Training examples (i.e., attribute value vectors with

class labels) and observations (i.e., attribute value vectors without class labels) flow from

the environment to the learning and decision modules (arc 1), and to the teacher (arc 2).

The teacher could be a domain expert, the system’s user, the system itself, or some

combination of these.  Since the system operates over time, the teacher may be a different

entity during different periods of time.  The teacher may or may not give feedback to the

learning module about an observation coming from the environment or a decision coming

from the decision module (arc 3).  Without feedback from the teacher, the system must

assume that it is performing properly.

On the other hand, the teacher may choose to classify an observation or provide

feedback for a correct or incorrect decision.  If the teacher classifies an observation, the

system uses its current set of concepts or hypotheses to classify the training example.  If

the example is classified correctly, then the system may strengthen its beliefs for its current

concepts (arc 4), representative examples (arc 5), or both.  If the example is not classified

correctly, then the system learns from the example and updates the current concepts and

representative examples.

The teacher also may decide to provide feedback after the system makes a decision.

If the teacher indicates that the system performed correctly, then it may strengthen its

beliefs in the concepts that produced the decision or in the representative examples from

which the concepts were induced.  If the teacher indicates that the system performed

incorrectly, then the system behaves as if it receives a newly classified example and

modifies its current concepts and representative examples accordingly.
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Figure 1: PPML Architecture.

Algorithm 2 is the high-level PPML algorithm that implements the architecture

pictured in Figure 1.  Hiding within the blocks of the PPML Architecture are various

mechanisms and models that manage the selection of the representative examples, the role

the current concepts play in induction, if and how representative examples are aged and

forgotten, and the like.  These ideas are discussed in further detail in the following

sections.

Referring to Algorithm 2, the system begins with no concepts and no representative

examples, although it may possess an arbitrary amount of background knowledge

(Michalski 1983).  The variable t functions as a temporal counter.  No restrictions are

placed on the set Datat: its cardinality can be greater than or equal to zero.  Note that this is a

deviation from traditional thinking in the machine learning community.  Many stipulate that

the set Datat must contain only one example and view learning from more than one example

in a time step as a type of batch learning.  We do not adopt this convention here because

such a conception of time is too restrictive.

When the temporal counter t is equal to 1, the system will have no concepts or

representative examples.  Consequently, the first learning step will be from the first data
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partition Data1 (steps 4–6).  The concepts induced during this learning step will be used to

determine which of the examples in the set TrainingSet1 are representative (step 7), using

the method described in Section 4.4.

Algorithm 2: Progressive Partial Memory Learning
Given data sets Datat, for t = 1..∞
1. Concepts0 = ∅
2. Representatives0 = ∅
3. for t = 1 to ∞ do
4. Missedt = FindMissedExamples(Conceptst-1, Datat)
5. TrainingSett = Representativest-1 ∪ Missedt
6. Conceptst = Learn(TrainingSett, Conceptst-1)
7. Representativest = FindRepresentativeExamples(Conceptst,TrainingSett)
8. end

For time steps t > 2, the system determines if its concepts require updating by

comparing the decisions made by the decision module with those provided by the teacher.

If one of the system’s decisions does not match the teacher-provided decision, the training

example is added to the set of misclassified training examples Missedt (step 4).  The missed

examples are unioned with the current set of representative examples, although these sets

will be disjoint, to form the new training set (step 5).  This new training set and the current

set of concepts are then used for learning (step 6).

The new concepts induced by the learning algorithm are used to select

representative examples from the training set (step 7).  This selection procedure is

discussed in detail in Section 4.4.  The learning process repeats indefinitely.

4 . 4 Representative Example Selection

By taking a partial memory approach, we commit to maintaining some of the seen training

examples.  The key question is, Which examples should be kept?  Ultimately, we would

like to keep the training examples that best represent a concept.  A representative example is

defined as a training example that maximally expands or constrains the characteristic
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description induced from a set of training examples.  Based on the discussion in Section

3.3, the nature of representative examples as they are considered here differs from that

discussed by Michalski and Larson (1983) and by Kibler and Aha (1987).  The method

described here is a post-learning process (cf. Michalski and Larson 1983), and since

concept descriptions are used to compute representative examples, then for a given training

set presented during a single time interval, there are no ordering effects (cf. Kibler and Aha

1987).  PPML is susceptible to ordering effects across time intervals, as are most

progressive learning methods, but not within time intervals.

Algorithm 3 computes the set of representative examples from a characteristic

concept description and a set of training examples.  Specifically, the algorithm returns the

training examples that lie on the edges of the hyper-rectangle formed by each decision rule.

Variants of this algorithm will compute the sets of representative examples that lie on the

corners or surfaces of the hyper-rectangles formed by each decision rule.

Algorithm 3: FindRepresentatives
Given a set of characteristic concept descriptions Conceptst and a set of training

examples Traint from which Conceptst were induced.
1. Representativest = ∅
2. removeRanges(Conceptst)
3. for each rule ∈ Conceptst do
4. for each selector ∈ rule do
5. newRule = extendRange(selector, rule)
6. Representativest = Representativest ∪ strictMatch(newRule, Traint)
7. end
8. end

While Algorithm 3 easily handles linear, continuous, and cyclic attributes, nominal

attributes present a problem because of their unordered nature.  If we have a representation

space consisting entirely of nominal attributes and a set of characteristic concept

descriptions induced from a set of training examples, a set of representative examples can
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be easily found.  The problem that arises as a result of the unordered nature of nominal

domains is there exists some projection of the representation space for which any removed

training example is representative.  To handle this situation, selectors containing nominal

attributes are skipped by the removeRanges (step 2) and the extendRange (step 5)

functions.

The function removeRanges (step 2) simply removes intermediate attribute values

from each selector of the concept description.  Given the characteristic concept description

[x1 = 1 ∨ 2..5 ∨ 7] & [x2 = 1 ∨ 3 ∨ 5], removeRanges produces [x1 = 1 ∨ 7] & [x2 = 1 ∨

5].

The function extendRange (step 5) extends the interval for the given selector in the

rule.  For instance, given the first selector of the rule [x1 = 1 ∨ 7] & [x2 = 1 ∨ 5],

extendRange produces [x1 = 1..7] & [x2 = 1 ∨ 5].

At this point, we have created syntactically a rule that will match the training

examples that lie on the hyper-rectangle edge produced by the current selector, in this case

[x1 = 1..7].  The function strictMatch (step 6) simply returns those training examples that

match the syntactically modified rule.

Figure 2 is a diagrammatic visualization of the setosa class and a portion of the

versicolor class from a the Iris data (Fisher 1936) taken from the University of California,

Irvine machine learning repository (Merz and Murphy 1996).  The original data set was

discretized using the SCALE implementation (Bloedorn et al. 1993) of the ChiMerge

algorithm (Kerber 1992).  Each example of an iris is expressed using four attributes: petal

length (pl), petal width (pw), sepal length (sl), and sepal width (sw).  The characteristic

concept descriptions induced from these training examples are:

setosa <:: [sl = 0..3] & [sw = 0 ∨ 2..4] &
[pl = 0] & [pw = 0]

versicolor <:: [sl = 1..6] & [pl = 1] & [pw = 1..2]
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