Abstract

Reasoning about events occurring in time is a strong, viable research area in Artificial Intelligence. In
spite of numerous successful temporal reasoning theories and systems, few expert system shells exist with
temporal reasoning capabilities. Those that do are real-time expert system shells; however, the ontological
commitments of these systems limit them to reasoning about past, continuous events. Temporal Production
System (TPS) is a production system augmented with an interval-based temporal knowledge representation
and maintenance routines that provides a unique tool for temporal domain modeling.

TPS: Incorporating Temporal Reasoning
into a Production System

Marcus A. Maloof

March 8, 1995

Acknowledgements

I first want to thank my major professor, Krys Kochut, for his guidance and friendship. Krys’ intellect,
knowledge, and technical competence continually amaze me and are rivaled only by his patience.

I want to thank my committee members, Donald Nute and Walter D. Potter, for their valuable discus-
sions throughout this project. Their respective backgrounds in logic and expert systems gave them unique
perspectives of this work that truly strengthened the final product.

Mr. L. W. Hill of Hill Systems, Inc. also deserves many thanks for providing me the financial assistance
necessary to complete this program of study. I will always remember his generosity and vision.

Others requiring thanks include Michael A. Covington for his work on the UGA style sheet, and Leslie
D. Roberts for her handy expertise on matters of grammar, mechanics, and readability. Finally, without the
support of my family, none of this would have occurred.

Contents

1 Introduction

2 Temporal Logics and Reasoning

2.1 Formal Preliminaries L
2.1.1 A Simple Temporal Logic
2.1.2 Ontological Notions e
2.2 Logics of Programs L
2.3 Temporal Logic Theorem Proving o
2.4 Temporal Logic Programming
2.5 Deductive Databases
2.6 Natural Language L e
3 Temporal Reasoning Systems
3.1 Representation
3.2 Problems in Temporal Reasoning
3.3 Situation Calculus
3.4 Chronos
3.5 Histories
3.6 Time Specialist
3.7 Event Calculus
3.8 McDermott’s Temporal Logic
3.9 Allen’s Interval Logic e
3.10 Non-Monotonic Temporal Logics
4 Related Systems
4.1 Lockheed Expert System Shell
4.2 G2 .o
4.3 Arino’s System L L
5 Production Systems
5.1 Formal Beginnings L
5.2 Production System Architectureo
5.3 General-Purpose Shells
5.4 The Rete Match Algorithm oo
5.0 OPSh . . e
5.6 Rete: The Details
6 Temporal Production System
6.1 Raison d’étre L
6.1.1 The Specific Case
6.1.2 The General Case
6.2 Ontological Considerations e

W oW W

©

6.2.1 Temporal Primitives
6.2.2 Temporal Relations
6.2.3 The Nature of Time
6.3 Time Map Representation
6.4 Temporal Knowledge Maintenance L
6.5 Syntactic Interface
6.5.1 Other TPS Commands.
6.6 Modifications to Rete
6.6.1 Consistency Maintenance Lo
6.7 Examples
6.7.1 Thunder and Lightning
6.7.2 Terrorism
Conclusions

Additional Details for Completeness

B Running TPS

B.0.3 Macintosh Common Lisp
B.0.4 Austin Kyoto Common Lisp
B.0.5 Allegro Common Lisp

Thunder and Lightning Example
C.1 TPS Program
C.2 Sample Run

Terrorism Example
D.1 TPS Program
D.2 Sample Runs

TPS Code

OPS5 Code

42

48

50
50
50
51

52
52
53

56
56
60

65

66

List of Figures

2.1

4.1
4.2

5.1

6.1
6.2
6.3
6.4
6.5
6.6

Al

Thirteen interval relations. 10
Temporal events over time L L e 22
A temporal network. 23
Network representation for trivial-rule. 28
Thunder and Lightning o 33
Constraints Algorithm oL 35
Add Algorithm oL 35
Open and closed intervals 37
Network representation for temporal-rulel. 38
Network representation for temporal-rule2. 39
Proof required for completeness. 49

List of Tables

3.1 Temporal operator comparison

Chapter 1

Introduction

Reasoning about events occurring in time and its related formalisms have pervaded several areas of computer
science and Artificial Intelligence (AI). The amount of interest in capturing notions of time, formally and
programmatically, has blossomed over the past two decades.

The need for temporal reasoning in medical diagnosis, for example, became evident with INTERNIST-1
(Pople 1977), an internal medicine diagnosis system. Miller et al. (1984) cited INTERNIST’s lack of temporal
reasoning as one of its main design flaws. INTERNIST’s inability to reason temporally hindered severity
diagnoses which are partially a function of time.

On the other hand, Ventilator Manager (Fagan et al. 1984a), an intensive care monitoring system, used
temporal reasoning to augment traditional causal inferences (Fagan et al. 1984b). Instead of having to use
rules like:

if the patient has been hyperventilating, then ...

added temporal reasoning allowed Fagan to construct rules that more precisely represented domain situations.
For example, he formulated rules such as:

if the patient has been hyperventilating for thirty minutes
then ...

While INTERNIST-1 demonstrated the need for temporal reasoning in at least the medical domain, Al
researchers largely ignored the temporal characteristics of most domains (McDermott 1982). Prior to 1981,
most of the work in temporal reasoning was sparse and varied in formality.

Much of this lack of continuity changed when Drew McDermott (1982) and James Allen (1984) published
their respective temporal logics. Since then, several formal temporal reasoning systems have taken one of
the two logics as their basis. Most of these, however, are what I call research vehicles. These are systems
intended for use in controlled, synthesized, somewhat ideal environments and not for use in an application
setting, such as a manufacturing plant. Naturally, we as researchers can develop and augment the underlying
formalism for applied scenarios, but as these systems stand now, this is not the case.

Not surprisingly, a few researchers have incorporated existing temporal reasoning formalisms into specific-
purpose systems and frame-based shells. The ones I would classify as “expert system shells” appear limited
since they capture and reason about past, continuous events. These are real-time expert systems. Further,
these systems require that events associate with a time of occurrence, and consequently, we can think of
any temporal analysis as simply trend analysis. These conventions limit these expert systems to domains in
which we can associate an event with a time.

At the risk of misinterpreting the capabilities of these systems, they have a minimal concept of temporal
reasoning. While I do not dispute that these programs reason temporally, they concentrate on one of the
safer areas of temporal reasoning. It appears that these systems are essentially intelligent trend analysis
programs that do not provide the ability to say anything about the relationship between events in time.

Contrary to most of the existing expert system shells with temporal reasoning, I chose to incorporate
temporal reasoning into a production system. During the literature survey, I found no production-based

systems that were of the scope of Temporal Production System (TPS). Shamsudin and Dillon (1991) describe
NetManager, a production system with added temporal reasoning, but, again, this system concentrates on
real-time event analysis.

Kabak¢loglu (1992) also defines a temporal production system. His, however, is a production system
whose rule conditions are relative time logic formulae. These are “atomic formulae and the temporal order
in which they are true relative to a start time ...” (p. 697). While his results are preliminary, there appears
to be no way to relate two temporal events, other than sequentially. And many events; depending on the
domain, do not have identifiable start times.

TPS differs from these systems because it provides designers with a temporal blackboard. We can place
events on the blackboard, relate them, and anchor them to a time line. Production rules analyze and update
temporal events on the blackboard and behave according to those events and their relationships to other
events.

The preceding introduction tacitly outlines the organization of this thesis. In Chapter 2, we survey
the formal foundations of temporal reasoning and the areas of computer science and Al that use temporal
logics and reasoning. Chapter 3 presents some of the most influential, foundational formalisms and systems
developed for temporal reasoning that have appeared in Al literature over the past twenty-five years. Chapter
4 surveys those temporal reasoning systems most closely related to TPS. In Chapter 5, we discuss production
systems and OPS5, which is our host system for TPS, which I present in Chapter 6.

Chapter 2

Temporal Logics and Reasoning

This chapter surveys applications of temporal logics in computer science and Artificial Intelligence. We begin
with some foundational material, to which we will refer frequently. The remaining sections of this chapter
deal with some of the areas where these logics have been applied, such as logic programming and deductive
databases. Galton (1987) and Bolour et al. (1982) also present excellent summaries.

2.1 Formal Preliminaries

Almost all sophisticated temporal reasoning systems developed over the last decade have been based on
either predicate logic or temporal logic. Since temporal logics appear less frequently than predicate logics, 1
present a temporal logic traditionally used as a logic for program semantics, and conclude with some features
of a temporal ontology.

2.1.1 A Simple Temporal Logic

The following temporal logic is a point-based logic, as opposed to an interval-based logic, because the time
primitive is a point. Other researchers (Reichgelt 1987; Shoham and Goyal 1988) refer to this type of logic
as a modal temporal logic because of its relation to modal logic (see Chellas 1980). Others (Resher and
Urquhart 1971) refer to these logics as tense logics because of the notion of past and future tense. While we
only consider a propositional temporal logic (PTL), several others present first-order temporal logics (see

Reichgelt 1987; Shoham and Goyal 1988).

Syntax

To formulate PTL syntax, we begin with an alphabet A such that p; € A, for i > 1; logical connectives A
and —; temporal operators O (next time), & (sometime), O (always), and U (until); and parentheses (and
). For formulae, if p; € A, then p; is a formula. Finally, if p; and p; are formulae, then so are —p;, p; A pj,

Opia Opla Dpi: Di U Dy, and (pl)

Semantics

A point structure S is a 4-tuple defined as:
S=(T,=%,0,m

where

T is an enumerable set of time points, or times,

=< is a total ordering on 7 that is isomorphic to the integers,

o is a successor function defined as o : T'— T such that t;41 = o(¢;), and
@ is a function defined as m: (A x T') — {T, L} that assigns truth

values to propositions at a given time; T denotes true and
1 denotes false.

Given a point structure S and a time ¢, such that t € T', we define satisfiability (denoted |=) in PTL as
follows:

k= p; if and only if (iff) @(p;,t) =T

E —p; iff not (S,t) E p;

F pi Ap; iff (S,t) | pi and (S,t) F p;

= Op; iff (S, 0(1) = pi

= Op; iff (V¢/)(t < ' and (S,) E p;)

E Op; iff (S,t) E -O-p;

Fpi U p; U (St) |= Op; or (S,1) = p;
or (3t")(t <" and (S, c(t")) = p;
and (Vt')(t <t <" — (S,) |= p;))

A formula ¢ is satisfiable if and only if there exists (S, ¢) such that (S,t) = ¢. Sis a model for ¢ if and only
if for all ¢, (S,t) = ¢. Finally, ¢ is valid if and only if for all S, S is a model for ¢.

Axiomatization

Following Wolper (1983), the axioms and inference rules for PTL are as follows:

Axiom Schemata:

= <>¢ = —|l:|—|¢ (Al)
FO(¢ D ¥) D (0¢ D OY) (A2)
F O-¢ = 06 (A3)
FO(¢ D ¥) D (04 D OY) (A4)
FO¢ D gAOpAOCOP (A5)
F0O(¢ D Os) D (¢ D 0g) (A6)
FOe Dol (A7)
FoU Y=y V(eNO(oUY)) (A8)

Inference Rules:

If wis a propositional tautology, then F w (11)
If F w; D wy and F wy, then F wo (12)
If F w, then F Ow (13)

Decision Procedure

A decision procedure exists for PTL based on the semantic tableau method. This procedure is an adaptation
or a reduction of Wolper’s (1983) decision method for Extended Temporal Logic.

The decision method involves starting with a temporal formula ¢ and repeatedly applying a set of reduc-
tion rules until we decompose the formula into sets of elementary formulae. After eliminating unsatisfiable
sets of elementary formulae, we are able to determine if ¢ is satisfiable. If this is the case, then we can search
for a model.

A formula is elementary if and only if it is of the form ¢ or O¢, where ¢ is either p; or —p;. If a formula
is not elementary, it is non-elementary. During the decision procedure, we need to distinguish between
formulae as processed or not, thus a formula ¢ can be marked (i.e., processed), denoted ¢*, or unmarked
(i.e., unprocessed). The decomposition procedure forms a directed graph. A state is a node in the graph
containing only elementary or marked formulae. A pre-state is the initial node and any child node of a state.
Finally, the set of formulae for node n, denoted R,,, is in disjunctive normal form. Hence, the formula

(11 A d12) V (¢21 A d22)

translates to the node representation

Ry = {{¢11, b12}{d21, d22}}.
Following Wolper (1983), the reduction rules are as follows:

PAY = {{o,v}}

(evy) = -, Y}
—(¢2Yy) = {{o, ¥}

¢ = {{¢}}

—~O¢ = {{o-¢}}

O¢ = {{¢,OD¢}}

(U) = {{, o, O(oU)}}
~Od = {{-o}{O0~Cs}}
PV Y = {{oHv}}

(eny) = {{-oH-v}H)

$DY = {{-oHv}}

o = {{¢H{O0s}}
(eUy) = {{vHe,OoU ¥)}}
-0¢ = {{-¢}{O-Ds}}

To prove a formula ¢ is satisfiable, we construct a directed graph with the following procedure:

e Rule Cl: For some PTL formula ¢, we name ¢ the initial formula and label it as the initial node,
denoted {¢}. Next, we repeatedly apply construction rules C2 and C3. Note that we create a child
node only if an identical node is not present in the graph; otherwise, we construct a link to the identical
node.

e Rule C2: If a node n contains the formula set R, , and some formula ¢ € R,, is unmarked and non-
elementary, and there exists a reduction rule for ¢ such that ¢ = {S;},7 > 1, then for each S;, create
a child node n + ¢ of node n, such that the child node contains the formula set:

(Bn —{o})U{Si}U{s"},
where ¢* is ¢ marked.

e Rule C3: If a node n contains the formula set R,,, consisting of only elementary and marked formulae,
then create a child of node n consisting of all ¢ such that O¢ € R,,.

This procedure expands the initial formula over time until it reaches the formula’s atomic terms. Given
the rules of decomposition, the nodes in the graph, which are decompositions of the initial formula, contain
either subformulae, negated subformulae, or such formulae preceded by O operator. Also, for any given
node in the graph, the non-elementary, unmarked formulae contained in that node are equivalent to the
disjunction of the formulae labeling its children.

To determine satisfiability, we begin eliminating contradictory nodes. If this elimination procedure elim-
inates the initial node {¢}, then ¢ is unsatisfiable. We eliminate graph nodes by repeatedly applying the
following rules:

e Rule E1: If a node contains p and —p, then eliminate the node.
e Rule E2: If all children of a node have been eliminated, then eliminate the node.

e Rule E3: If a pre-state node contains an eventuality formula of the form —0O¢ or =(¢ U) that is not
fulfillable, then eliminate the node.

A pre-state node n is fulfilled if and only if the following criteria hold:

1. the left child of the node n is a state; that is, the formulae in the left child node are elementary or
marked. Then, the formula is immediately fulfilled.

2. the formulae in some child of node n are fulfilled; that is, the formulae in node n are eventually
immediately fulfilled.

We can recursively compute the fulfillment of all eventualities in the graph as follows:
1. Mark all nodes that are immediately fulfilled.

2. Recursively mark all nodes that can be immediately fulfilled, given the current set of marked nodes,
until no additional nodes can be marked.

The node elimination procedure halts when it eliminates all unsatisfiable nodes. If the initial node
remains after the procedure terminates, the formula ¢ is satisfiable and we can efficiently construct a model,
otherwise formula ¢ is unsatisfiable. Theorem 2.1 states that this decision procedure is sound and complete
for PTL. The proof that follows is an adaptation of the one given by Wolper (1983).

Theorem 2.1 A PTL formula ¢ is satisfiable if and only if the initial node of the graph generated by the
tableau decision procedure for formula ¢ is not eliminated.

Proof.
(=) If a PTL formula ¢ is satisfiable, then the initial node is not eliminated. We prove by induction on the
depth of the graph generated by the semantic tableau decision procedure that if this procedure eliminates a

node in the graph labeled by {¢1,..., ¢r}, then {&1,..., ¢r} is unsatisfiable.

Case 1. (Base Case) Rule E1 eliminated the node, thus it contained p and —p and is unsatisfiable.

Case 2. Rule E2 eliminated a non-state node n. A reduction rule ¢ = {S;} created the children of
node n. We can verify that for each reduction rule, ¢ is satisfiable if and only if some S; is satisfiable.
By the induction hypothesis, if the decision procedure eliminates the children of node n, meaning all
children are unsatisfiable, then node n is also unsatisfiable.

Case 3. Rule E2 eliminated a state node n. Since a state contains only elementary and marked
formulae, the only condition under which children exist is one in which node n contains O-formulae.
By the inductive hypothesis, for the formulae O¢;, if ¢; is unsatisfiable, then O¢; is also unsatisfiable.
Hence, so are the formulae in node n.

Case 4. Rule E3 eliminated node n. For the eventualities in node n, there is no path that leads
to a child node that fulfills these eventualities, implying that node n’s eventualities are unsatisfiable.
Therefore, by the inductive hypothesis, the formulae in node n are unsatisfiable.

(«=) If the initial node is not eliminated, then the PTL formula ¢ is satisfiable. To prove this, we must
show that if the initial node is not eliminated, there is a model for ¢. Excluding eventualities, a traversal
through the graph generated by the decision procedure defines a model for the initial formula. We must
show, however, that the eventualities form a finite state model for the formula ¢.

Only pre-states in the graph contain unfulfilled eventualities, thus for every pre-state in the graph, unwind
a path from that pre-state to a state node such that all of these eventualities are fulfilled on the path. We
unwind a path by constructing a loopless chain that begins with the pre-state node, ends with the state
node, and consists of the nodes along the path between the pre-state node and the state node. Because
every reduction rule for eventualities splits nodes into two children, there are at most 2¢ eventualities in the
graph, where £ is the number of disjuncts in the initial formula; therefore, the length of the longest of these
paths is also 2¢. Once all paths have been determined, we link them together to construct a chain not longer
than 2¢ x 2¢ or 2%, nodes. Since this chain is finite, it forms a model for the eventualities in the graph.
Therefore, a model exists if the initial node is not eliminated.

We have proven by induction on the depth of the graph generated by the semantic tableau decision
procedure that for all PTL formulae ¢, ¢ is satisfiable if and only if the decision procedure does not eliminate
the initial node containing ¢. |

Completeness

We now prove completeness for PTL. This completeness proof follows directly from the inductive proof of
Theorem 2.1 and is an adaptation of Wolper’s (1983) completeness proof.

Theorem 2.2 PTL, the aziomatic system consisting of axioms (A1)-(A8) and inference rules (11)-(13), is
complete.

Proof. For a formula ¢, if the decision procedure eliminates an initial node {{—¢}} then ¢ is provable. We
must show that for a node labeled by the formula set R, = {—¢1,..., ¢}, that - ¢1 V...V ¢r. We prove
this by induction on the depth of the graph.

There are four cases to prove:

Case 1 (Base Case). Rule E1 eliminated the node.
For node n, labeled with the formula set
Rn ={p,~p,~¢1,..., ¢}
we have
F-pVpVeLV...Vop
by inference rule (I1) (-p Vp V ---is a tautology).

Case 2. Rule E2 eliminated a non-state node.

For node n, labeled by
Rn = {_'¢17 R _'¢k}
the reduction rule

—¢ = {{—¢ij}}

for some =¢ € R, created the children of node n. We can prove within the axiomatic system that, in
general, for each of these rules

F-o= \/(/\ —¢ij)

j

which we can write as
FAN 6i) D¢
i j
by DeMorgan’s Laws and (I1). As we eliminate the children of node n, by the inductive hypothesis,
AV (2.1)
J
for all ¢ children. Then, by a derived transformation rule,

+ /\(\/ ij). (2.2)

Thus, by equations 2.1, 2.2, and (12)

Fo
for some ¢ € R,,. Then, for all ¢ € R,,, by inference rule (I1),
Fé1V- -V

Case 3. E2 eliminated a state node.

The only state nodes that have successors are those states with O-formulae ¢),...,¢!, in R, =

{=¢1,...,~¢r}. We thus have
Fgive- Ve,

Then,
R

by (I1) and (I2), and
FO[-¢1 D+ D ¢y

by (I3). Then by (A5), (I12), and simplification to the second conjunct, we have
FO[=¢1 D+ D ¢

Finally, we use (A4), (A3), and (I1) to write
FOgiV---VOg,

By the inductive hypotheses and (I1), we conclude that
Fg1 V-V

Case 4.1. E3 eliminated the node and
Ry, = {=0¢1,7¢s,..., 2o}

labels node n.

For —=O¢;, we have the reduction rule,

—0¢ = {{-¢}{O-D¢}}

whose left child is eventually fulfilled and therefore inductively consists of elementary formulae. Thus,
by the inductive hypothesis, F ¢. Then, trivially by inference rule (I3), - O¢. Hence, by (I1) and (I2)

Fd¢; V.-V dg.
Case 4.2. E3 eliminated the node and

Rn = {_'(¢1u¢2): ¢37 ey _'¢k‘}

labels node n.

For =(¢1U ¢3), we have the reduction rule,

~(@U) = {{-¢, 2o H{, O=(6 U ¥)}}

whose left child is eventually fulfilled and therefore inductively consists of elementary formulae. Thus,

by the inductive hypothesis, F ¢1 V ¢2. Then, by proof,! b ¢1 U ¢5. Thus, by (11) and (12),

o1l ¢2Vd3---V @p.

We have shown by induction on the depth of the graph constructed by the semantic tableau decision procedure
that for all PTL formulae, if the procedure eliminates the initial node {{—¢}} then ¢ is provable. Hence,
PTL is complete. a

1See Appendix A.

Additional Operators

Depending on the application, we might need temporal operators for the past, such as “always in the
past,” denoted 0. Future tense operators require similar syntactic sugaring (see Orlowska 1982). Alternate
operators for & and O are F' (will be the case that), and G (will always be the case that), respectively. Their
past tense counterparts are P (has been the case that) and H (has always been the case that). See Resher
and Urquhart (1971) for further details.

2.1.2 Ontological Notions

An ontology is a theory about the nature of existents. In the context of a computational system, an ontology
not only includes those things that exist, but it also includes how the researcher views or models time
or space. Crucially, this view can later affect what notions the system can capture and therefore directly
impacts the system’s viability.

In the following sections, we survey the most salient aspects of an ontology. We begin considering valid
temporal primitives and their operators. Structures of time are also important, as is the organization of
primitives within this structure.

Individuals

The first ontological question to answer is what individuals exist. The traditional primitive is the point. Just
as a point in Euclidean space has no spatial dimension, our primitive, the point, has no temporal dimension.

Consequently, there is much criticism of points based on the counterintuitive notion of an instantaneous
time moment. Although we would be hard put to find an example of a truly instantaneous event in the
physical world, there are occasions, specifically in abstract temporal reasoning, when points are handy (see
Galton 1990).

On the other hand, we could choose intervals which are contiguous spans of time. These primitives appear
ideal for capturing temporal phenomena in the physical world. Even an event as seemingly instantaneous
as a lightning flash has duration. Furthermore, most researchers in natural language semantics and high-
level reasoning stress that some type of interval representation as a modeling primitive is necessary (Fleck
1989:251).

As an alternative to using only intervals, we can always begin with points and define intervals in terms of
left and right end points. Presumably, we get the advantage of both representations. Several researchers in
Artificial Intelligence take this approach (Dean 1986; Kowalski and Sergot 1986; McDermott 1982; Shoham
1988b).

Formally, we can choose either primitive. Van Benthem (1990) demonstrates that we can either start
with points and construct intervals, or begin with intervals and derive points. Ultimately, when designing a
temporal reasoning system, the domain usually determines the appropriate primitive.

Operators

After selecting temporal primitives, we must define operators. If using points as individuals, the three
fundamental operators are before, same-time, and after. Naturally, we can use these basic operators to
define more intuitive interval operators as well as additional point operators, like between, or sometime.

If we choose intervals as our primitive, then the fundamental set of operators is much richer than that
for points. We can arrange two intervals into thirteen unique configurations, displayed in Figure 2.1.

Time Structures

If time consists of points, then we can organize time in numerous ways. Recall that a point structure Sis a
4-tuple such that S = (T, <, 0, 7) and that < is a complete order relation defined on the set of time points
T, hence, we have linear time. Furthermore, we can define now as some time t,, € T'. The past is therefore
all times before ¢,, and the future is all times after ¢,,.

(A | B | A before B
! ! ! ' B after A

(A B A meets B
! ! ' B met-by A

— A during B

| B contains A

— A starts B
IB | B started-by A

F—— A finishes B
| B finished-by A

|
|
IA—| A overlaps B

IB—| B overlapped-by A
I]I; | A equal B
I | B equal A

Figure 2.1: Thirteen interval relations.

There is no restriction, however, on the definition of <; we can also define it as a partial order on 7. Now
we can structure time in a tree-like manner called branching time. Typically, future time branches while the
past is presumably determined.

Branching time gives rise to the notion of copresence. Since time branches, there might be one future
in which a proposition is true and another future in which the same proposition is false. Further, each of
these propositions has a unique time. If the times associated with these propositions are the same temporal
distance from a time of reference, say now, then the times are copresent or the relationship between the two
times is copresence (Thomason and Gupta 1980).

Formally, no restrictions exist on how we can organize time. Chronos (Bruce 1972), discussed in Sec-
tion 3.4, organizes time into branching future and past. Shoham (1988¢) also adopts this structure, but
allows re-entrance; that is, a time path branches at a time and then meets again at some future time. We
might even need circular time to model a finite-state process, like a traffic light or an elevator system.

Density and Discreteness

The final ontological notion considered involves properties of time points in a time structure. The first
property, called discreteness, organizes time in such a way that for every time, there is a next time. In other
words, discrete time is isomorphic to the integers.

An alternative to discrete time is dense time, which maps to the rational numbers. Formally,

(VE, Y3t <t At £ £)

Notice that we cannot define the “next time” operator for dense time.

2.2 Logics of Programs

Researchers in computer science use temporal logics for hardware and software specification and validation. 1
concentrate mainly on software specification and validation, but these discussions are analogous to hardware.

10

We can think of programs as temporally ordered sequences of instructions. The ontological conventions
adopted for logics of programsinclude discrete time with either linear or branching time structures, depending
on if program execution is sequential or concurrent. Operators usually include future tense operators plus
the “next time” and “until” operators.

Using temporal logics, researchers can formally specify program properties, such as eventuality properties
(Manna 1980). These properties are those that if some occurrence arises during execution, then some other
occurrence will follow during the same execution. For instance, if the printer begins printing, we expect that
it will stop. We can express this notion in temporal logic as follows:

pDO-p

That is, if the printer is printing, then we expect there to be a time in the future when the printer is not
printing.

The problem with specifying and validating hardware and software systems with temporal logics, and
with any formal means for that matter, is the intractability of completing such a task with large (more than
10,000 lines of code) software projects. Pragmatically it is impossible, and consequently has been relegated
to theoretical domains.

2.3 Temporal Logic Theorem Proving

The next area of research we consider involving temporal logics is automated theorem proving. We can use
temporal logic theorem provers to prove satisfiability for a temporal logic formula or to verify a software
specification expressed in temporal logic. One method of satisfying a temporal logic formula is the semantic
tableau method, discussed in Section 2.1.1.

An alternative is temporal resolution, which is similar to resolution for predicate calculus (see Genesereth
and Nilson 1988). While most resolution methods require formulae to be in clausal form, or expressed
as conjunctions of disjuncts, Abadi and Manna’s nonclausal approach is free from this requirement. This
enhances legibility of the original formula as well as the resulting proof (Abadi and Manna 1988:2). Proving
satisfiability involves applying temporal resolution rules to the original formula until we derive the empty
set or reach some stop condition. If this refutation process reaches the empty set, then the original formula
is provable or satisfiable.

2.4 Temporal Logic Programming

The next progression is to use temporal logic as a programming language. Just as a subset of predicate logic
serves as a basis for Prolog, several researchers have constructed compilers and interpreters for programming
languages based on subsets of first-order temporal logic (see Abadi and Manna 1989).

In computer science, we have been discussing software validation problems. Even in theoretical situations,
proving the correctness of a program is arduous. Part of this difficulty lies in how we express the program.
For example, if we are programming in Pascal and we want to formally verify a program’s correctness, we
must rely on mathematical notions that represent the Pascal programming constructs.

Alternatively, we have already seen that temporal logics can express programs. If we are using a temporal
logic programming language, our program is a temporal logic formula. Thus, program correctness follows
directly from the program itself since proving the program’s correctness involves proving the formula’s
satisfiability (see Hale 1987).

2.5 Deductive Databases

The advent of logic programming prompted researchers to construct deductive databases, which augment a
traditional database with domain axioms. Hence, queries can deduce information by applying the axioms to
the information in the database.

When building a deductive database, we inevitably discover a situation in which we have temporally
ordered events and our axioms must deduce information about them. Consider an administrative database,

11

for example, that stores information about employees’ salaries, promotions, and so forth. Temporal axioms
allow deduction of rank or salary during periods of a person’s employment. Event Calculus (Kowalski and
Sergot 1986), which we discuss in Section 3.7, and the system described by Lee et al. (1985) are systems for
temporal deductive databases.

2.6 Natural Language

Temporal reasoning is important in natural language because semantic analyzers must understand and
generate a representation for temporal meanings and references in sentences and discourse. Furthermore, as
natural language systems process discourse and new, clarifying temporal information becomes known, these
systems should automatically and reliably maintain the temporal relationships and knowledge expressed in
the discourse.

In Section 4.3, we discuss Arino’s (1989) automatic knowledge acquisition system for a temporal domain.
His system stands as a prime example of how temporal reasoning applies to natural language.

12

Chapter 3

Temporal Reasoning Systems

Temporal reasoning, as a research discipline, divides into four major areas: prediction, ezplanation, planning,
and learning (Shoham and Goyal 1988). Prediction involves starting with an initial state of the world and
the rules that govern change, and predicting what the future state of the world will be.

Explanation is the opposite of prediction. Rather than finding a future state, we want to find a possible
initial state of the world given the current state, or states, of the world and the rules governing change.

Planning is important in several disciplines, such as manufacturing and robotics. In this area, we want
to produce a plan for an agent—for instance, a robot. We want to give our planner the initial state of the
world, the rules governing change, and a desired target state of the world. The planner should then develop
the steps required of our agent to reach the target state.

Learning, the final area, involves determining the rules governing change from world descriptions. This
constitutes one of the most challenging disciplines in Al

Shoham and Goyal (1988) partition temporal reasoning approaches into two classifications: change-based
and time-based. Change-based approaches concentrate on those individuals in a domain that change irre-
spective of time. Situation Calculus (McCarthy and Hayes 1969) is the prototypic change-based formalism.

Time-based approaches, however, grant time a greater role and acknowledge that in some situations, time
is the only changing variable. Even though domain objects may remain static with respect to time, we need
a formal method to allow reasoning in these situations.

3.1 Representation

Most time-based temporal reasoning systems depend on either predicate or temporal logic as a formal
foundation. While temporal logics have syntax and semantics to handle temporal notions, predicate logics
do not.

To incorporate time into predicate logic, following Shoham and Goyal (1988), we can reify a first-order
sentence using either a true or a holds predicate. For example, in the Blocks World, to express that block
A was on block B over the interval defined by the time points T1 and T2, we would write:

holds(T1, T2, on(A, B)).

Regardless of how we choose to represent temporal knowledge, there are several considerations necessary
for a complete temporal model (Allen 1981). First, the model must make no explicit mention of time. Often
events, while occurring in time, do not relate fo time.

Second, the model needs to allow uncertainty. When modeling two events, we might not be able to
determine the precise relationship between the events, so our formalism must allow fuzzy temporal notions.
This contributes to the framework’s expressivity as well as its robustness.

Third, the concept of persistence is important. The model must represent events like:

e The car is pink

13

and understand that the car is pink until told otherwise.

Finally, a temporal model must have a “strong sense” (Allen 1981) of now. For a temporal reasoning
system, the concept of now or the present tends to require definition in the context of that system. Now
appears to be a “computational time of reference” defined in terms of individual temporal reasoning systems
rather than a concept that transcends all systems.

Furthermore, the manner in which now changes with respect to other events must be efficient and
transparent. Transparency here, relates to the modeler’s viewpoint; that is, the concept of now should
not hinder or impede how a modeler captures a domain. On the other hand, if the temporal database
requires massive changes every time now changes or progresses, this would not be efficient (and from the
user’s viewpoint, it would no longer be transparent).

3.2 Problems in Temporal Reasoning

Shoham and Goyal (1988) identify three formalism-independent problems. These problems originally oc-
curred within the framework of Situation Calculus, but have since transcended all other approaches to
temporal reasoning.

The most famous of these problems is the frame problem. This involves a problem solver’s ability or
inability, as the case may be, to update its knowledge about domain objects that have not changed. For
instance, if a person drives her car to Atlanta, the car’s location changed, but its color, make, model, and
so on, has not.

One method of addressing this problem is to formulate frame azioms which specifically state what at-
tributes of a domain object remain static with respect to change in the object. So, if an object having three
attributes changes location, we have one axiom for the object’s location change and three frame axioms that
deduce the obvious—that the object’s color, size, and weight have not changed, for example.

The added computation required to process frame axioms significantly hinders the ability of Al researchers
to tackle more complex applications. And as I present the other two problems, notice how each requires its
own version of frame axioms.

The ramification problem involves a problem solver’s ability to update knowledge about domain objects
as a result of some action. For example, if a person drives her car to Atlanta, the car’s engine, wheels, and
so on, also go to Atlanta. The similarities between this problem and the frame problem, and the consequent
solution and resulting pitfalls should be apparent.

Finally, the qualification problem involves a reasoner’s ability to implicitly infer that nothing is wrong.
When something is wrong, however, we need the reasoner to understand what caused the problem. Let us
look at our car example again. Assume our car will not start. The qualification problem arises when the
reasoner attempts to determine why the car will not start. This requires vast amounts of information and
reasoning. Yet, the reasoner needs this information only when the car will not crank, which is an infrequent
occurrence. lIdeally, we want the reasoner to determine when to apply the fault knowledge and inference
procedures to avoid long, unnecessary chains of reasoning. This idea has prompted many researchers to
investigate nonmonotonic logics, and we return to these logics in Section 3.10. Two special cases of the
qualification problem are the extended prediction problem and the persistence problem, which we discuss in
Section 3.5.

3.3 Situation Calculus

Situation Calculus (McCarthy and Hayes 1969) is a first-order logic for describing situations in the world. In
fact, the world is a set of states, or situations, and certain things are true in a given state or situation. Since
Situation Calculus is a change-based approach, we progress into another state whenever a change occurs in
the current state. There are, however, several problems that arise in Situation Calculus that are common to
change-based approaches.

Since all changes occur within a state, these changes and other states must occur before, during, or after
another change or state. To represent

e While John was doing his laundry, Mary started doing hers.

14

Bruce Traditional Operators
overlaps (overlaps & meets)
during (during & starts & finishes)

Table 3.1: Temporal operator comparison.

we have two options. First, we can put John and Mary’s laundering activities in the same state which results
in an inability to say anything about the period when only John laundered.

Alternatively, we can use Mary’s change from not laundering to move us into a new state in which both
John and Mary are washing clothes. But Situation Calculus has no recollection of past events, so the fact
that John was laundering without Mary in the previous state is lost. After we make the transition to the
new state in which both John and Mary are laundering, we can make no distinction between this scenario
and the previous one. In Situation Calculus, the two scenarios would in fact be the same, which is clearly
not the case.

Coping with continuous change also presents a problem in Situation Calculus. To express the action of
adding heat to water, we must either condense the entire heating process into one situation or use an infinite
quantity of situations to represent the continuous heating of the water. The former solution is meaningless
and the latter is programmatically impossible.

3.4 Chronos

Chronos (Bruce 1972) is a question and answer program based on a model for temporal references in natural
language. Chronos was the first temporal reasoning system developed using a temporal logic.

Bruce’s ontology includes discrete time that branches into the past and future. Individuals in Chronos
are events which are contiguous, linear paths through time. Finally, Chronos allows intuitive interval and
point operators like before, during, same-time, overlaps, between, and their inverses, as appropriate.
Table 3.1 details how Bruce’s operators relate to the traditional interval relations, presented in Figure 2.1.

Chronos is interesting because it was the first system to use a temporal logic as a knowledge representation,
but temporal reasoning in Chronos consists only of information retrieval and simple relationship comparisons.
Furthermore, there are no temporal knowledge maintenance routines (to infer implicit temporal relationships
from explicit ones) and no way to express uncertain temporal relations (cf. Allen 1983).

3.5 Histories

Naive Physics is the area of common sense reasoning concerned with formalizing how human individuals
know and reason about phenomena governed by the laws of physics without knowing anything about those
governing laws. In a series of papers, Hayes (1979, 1984a, 1984b) lays a formal foundation for naive physics.

In his first paper! (Hayes 1984a), Hayes develops a highly creative and abstract ontology for liquids based
on predicate logic. He identifies fifteen possible states of fluids, some of which move in space, but all of which
have temporal extent. To capture these states of liquids, Hayes posits histories, which are contiguous flows
of space-time in which events occur. Histories have temporal extent, but more importantly, have spatial
extent and actually mimic the forms of the physical objects they represent. Examples of histories include a
car in a driveway and the flow of water from a faucet.

Hayes acknowledges that his theory is preliminary and does not discuss implementing his ideas. While
I found no system based on histories, Shoham and McDermott (1988) criticize histories by presenting a
prediction task in a histories context.

The extended prediction problem is a special case of the quantification problem in which we want a
reasoner to make extended predictions about how things will change. Assume we have two billiard balls

1Hayes actually wrote this paper in 1978.

15

rolling toward each other on a table. From this initial state, we want our reasoner to tell us when and where
the balls impact and when and where the balls come to rest.

If we use histories, each ball is a history with some temporal extent. As for the nature of this extent, we
have three choices:

1. extend the histories indeterminately into the future,
2. extend the histories to the point of impact, or
3. extend short histories and check if they meet.

The first solution is unacceptable because it does not reflect what will happen, assuming the balls collide.
The second case is also inadequate since if we could extend the histories to the point of impact, then we
could predict where the impact occurs, which is what we are trying to determine.

The third solution is also erroneous since we do not know how long the ball will continue to roll. What
if we extend a history and the ball stops rolling before reaching the end of the history? We could extend
smaller histories, but this is also subject to the same persistence problem. As the length of the histories
converges to zero, the quantity of histories required soars toward infinity. And on this basis, Shoham and
McDermott conclude that histories are inadequate for solving the extended prediction problem.

As a result they define yet another problem called the persistence problem, which is a special case of the
extended prediction problem. This problem involves a reasoner’s ability to predict how long a phenomenon
will persist. If histories had the ability to determine how long a ball’s rolling would persist in a particular
direction, then the second and third solutions for the billiard balls prediction task would have worked.

3.6 Time Specialist

Of the systems I consider in this thesis, all except Time Specialist (Kahn and Gorry 1977) rely on some type
of logic. Time Specialist is much like Chronos (Bruce 1972) in that it answers questions about the temporal
characteristics of events. While Chronos relied on a temporal logic for its representation language, Time
Specialist uses three separate temporal organizations: date lines, before/after chains, and special reference
events.

The concept of a date line is simple. Each event maps to some time or date on a chronological line.
Depending on the granularity of the date line and its associated events, a time specification consists of
either a single time (or date) or two times (or dates) that specify an interval. A problem with date line
representations is that many events, while occurring in time, have no explicit reference to time. Thus, we
cannot represent statements like:

e [went to the grocery store.

in a date line organization.
Another method of organizing temporal events is as a linear sequence. These before/afler chains easily
capture situations like:

e You’'re born, you live, you die.

Not all temporal organizations are this simplistic, however. There are occasions when two events occur
simultaneously and with a before/after representation, we would have to make an unacceptable decision on
how to coerce the two events into a before/after ordering.

Furthermore, without additional information from the date line, we cannot determine the exact relation
between two events. Referring to our example, does one stop living upon one’s death or is there a period of
decline between life and death? We again have to rely on the date line, but these relationships should be
expressible without explicit date and time labelings.

Finally, the Specialist’s third temporal representation is special reference events, which is a special case
of before/after chains. Instead of organizing arbitrary sequences of events, the user identifies special events,
such as one’s birth or today, and relates them to other pertinent events. Presumably, since these events
are salient, the system will need to reference them often, thereby helping the reasoner avoid searching long
before/after chains.

16

3.7 Event Calculus

Event Calculus (Kowalski and Sergot 1986) is a point-based temporal reasoning approach implemented
within a logic programming framework for deductive database assertions and queries in a temporal domain.
Kowalski and Sergot implement Event Calculus in Prolog and employ default reasoning schemes to handle
indeterminacy and incompleteness of knowledge.

Programmatically, a problem with Event Calculus is that points, or events, represent the ending of an
interval and the beginning of another. For example, if we know that a college fired Pat, an event, then the
event ends the interval when Pat was working and begins the interval when Pat is not working. Thus, to
establish the truth value of a proposition at an interval, we must look at one of the interval’s bounding points
and infer that the proposition holds for that interval.

For incomplete information, however, if we ask about the truth of a proposition of an interval preceding
(or following) some event and that event does not explicitly state what proposition ended (or began), we
must look back (or forward) in time to the event that established (or terminated) the proposition. Now if
we cannot find the fact, we either have to fail or look further back (or forward) in time. Regardless, we
potentially have to look in two or even more places and infer the truth of a proposition at an interval.?

This “jumping back and forth between events” gives rise to endless looping, which Kowalski and Sergot
(1986:77) acknowledge. We can solve the problem by employing more sophisticated reasoning techniques,
but this is only treating a symptom. The problem is the representation. If we use a more explicit interval
representation, we have at least eliminated the problem of determining what is true at an interval. Summarily,
we end up talking about intervals in the first place, why define them in terms of points?

3.8 McDermott’s Temporal Logic

McDermott’s logic for process and plans (1982) has become one of the most influential theories in temporal
reasoning. His formalism serves as the basis for Dean’s (1986) work in planning and problem solving, and
Shoham’s (1988b) work in nonmonotonic temporal reasoning. In this section we briefly discuss the salient
aspects of his logic.

To begin, McDermott constructs a point-based interval logic. Time is dense and branches into the
future while the past is linear. Every time has a date, which is a number on the real number line. Finally,
McDermott posits facts and events as object types.

Facts are true either at a point or over an interval defined by two points. Instead of a fact being a
predicate, McDermott stresses that his facts are functions which return the set of states (or times) at which
the fact is true. For example, the fact

on(blockA, blockB)?

denotes the set of times when blockA was on blockB. Thus, we can say that a fact is true at time t1 by
writing

T(t1, on(blockA, blockB)),
and true over an interval defined by time points t1 and t2 by writing
TT(t1, t2, on(blockA, blockB)).

Events are things that are happening. For instance, “the building is falling” is an event. One of the
major distinctions of events is that they take time. A restriction on events is that they occupy the least
amount of time. So given an interval over which an event occurs, there are no subintervals when the event
is not occurring. We represent events or occurrences as

occ(tl, t2, event),

2See the SOURCE and DESTINATION axioms in Kowalski and Sergot (1986).

21 will use traditional logic syntax rather than McDermott’s Lisp-style notation.

17

that is, event occurred over the interval defined by the time points t1 and t2.

Much of why we need event-type constructs is because of the problems discovered in change-based for-
malisms. In such systems, we cannot represent the duration of events since we concentrate only on things
that change. Assume we move a block from one location to another. In a change-based system we can only
express that the block is at one location, the block is moving, and the block is at another location. With facts
and events, we can represent the same information, but with the added expressivity of time information.

Another important aspect of McDermott’s logic is his allowance of persistence; that is, some fact is true
until it is not true. Yet, he allows a fact to persist for a specified lifetime. This notion seems counterintuitive
to the concept of persistence as defined by others, notably Allen (1981) and Shoham and Goyal (1988). It
seems that the point of allowing persistence is to capture those situations in which we do not know how long
something lasts, so how can we affix a lifetime to such a situation?

McDermott also presents axioms for reasoning about causality, continuous change, actions, and problem
solving. Furthermore, McDermott allows prevention inferences in which we can formulate rules to prevent
another event’s occurrence. For example, we can construct rules that express the fact that motorcycle
helmets prevent head injuries. Another prevention example would be rules to prevent a water tank from
overflowing.

3.9 Allen’s Interval Logic

Allen (1984) takes a different approach to capturing notions of time than McDermott. These differences
probably relate to their respective backgrounds. Allen is primarily a natural language researcher. Conse-
quently, his theory is more intuitive and provides more natural tools with which to model temporal events.
McDermott, on the other hand, states explicitly that his logic has no relation to natural language.

The other difference is in their primitives. While both allow intervals, McDermott constructs intervals
from points, whereas Allen abandons points for a strict interval logic.* As a result, the normal ontological
questions for a point-based logic become irrelevant or take on a different flavor. For example, time for Allen
is linear, but it is linear in such a way that intervals flow forward in time or they have the property of
directedness (van Benthem 1990).

Relating intervals, there are thirteen interval operators, presented in Figure 2.1. Additionally, Allen
defines temporal transitivity axioms, such as:

before(il, i2) A before(i2, i3) D before(il, i3)

to compute temporal relationships not explicitly expressed.
Allen’s main predicate is

holds(p, 1)

which is true if and only if property p holds during interval i. Properties are homogeneous; that is, if a
property holds over an interval, then it holds over all subintervals.

Like McDermott, Allen posts several object types. Specifically he defines two classes called processes and
events. Processes are happenings without an identifiable culmination, like “I am fishing.” Events, on the
other hand, have an identifiable goal. An example is “I am driving to Atlanta.” Allen suggests that events
are countable, whereas processes are not. For instance, we can enumerate how many times we have driven
to Atlanta, but we cannot count the process “I am fishing.” We can, however, count how many times “we
went fishing.” This is an event, however, not a process, because the happening culminates.

The characteristics we attribute to event intervals are somewhat different from those for property inter-
vals. Recall that property intervals are homogeneous. Obviously, this is an oversimplification and does not
encompass all temporal happenings. Therefore, event intervals by definition have no subintervals and occupy
the smallest possible span of time. (This is similar to McDermott’s definition of events.) For instance, if
walking to school, then we cannot express any part of the event of walking to school without expressing the
entire event.

£ Galton (1990) critiques Allen’s logic on this basis.

18

Processes are like properties in that a process may occur over subintervals, but different from them since
a subinterval may exist when that process is not occurring. For example, if I am writing over an interval of
time, there might be subintervals when I am resting or thinking.

We account for event causation by the ecause predicate, defined as

ecause(eventl, intervall, event2, interval2),

which is true only if event1, occurring over intervall, causes event2 which occurs over interval2. Allen
restricts events from causing past events, intuitively.

An action, for Allen, is an agent performing or involved in some occurrence, characterized by the acause
function, defined as

acause(agent, occurrence).

Actions that cause an event are performances whereas actions causing processes are activities. In this regard,
an agent threatening to kill me, thus causing me to run would be an activity. If I ran to the police station,
then the agent’s threats would be a performance.

We return to Allen’s logic in Chapter 6 when we discuss the implementation of TPS.

3.10 Non-Monotonic Temporal Logics

In Section 3.2, we discussed the formalism-independent problems in temporal reasoning. To solve the qual-
ification problem, if the reasoner could decide that there is a problem or “jump to the conclusion” that
there is a fault, then it could enter a diagnosis routine to determine what the problem is. This “jumping
to conclusions,” called nonmonotonic reasoning, has become a rich area of research, especially in temporal
domains.

A problem known as the Yale shooting problem, which is a specific instance of an extended prediction
problem, has become the litmus test of nonmonotonic temporal reasoning formalisms. The scenario involves
Joe and a person with a gun. The reasoner knows the gun is loaded. After an indeterminate period of time,
the person fires the gun at Joe. Obviously, Joe should die, but according to Hanks and McDermott (1985),
of the nonmonotonic reasoning strategies they surveyed (McCarthy’s (1980) Circumscription, Reiter’s (1980)
Default Logic, and McDermott and Doyle’s (1980) Nonmonotonic Logic), none was able to conclude that
Joe is dead.

Chronological Ignorance (Shoham 1988b) is a nonmonotonic temporal logic developed to solve some
of the formalism-independent problems of temporal reasoning. Specifically, Shoham presents solutions to
the qualification problem and the extended prediction problem. His solution to the qualification problem
comes directly from his formulation of Chronological Ignorance. The extended prediction problem, however,
required additional theoretic constructs, namely potential histories, which are strikingly similar to histories
in the Hayesian sense. Shoham’s potential histories, however, have a defeasible flavor, since they are only
potential. Thus, several potential histories can describe a situation and any one could be true, depending
on the sequence of events. The parts of potential histories that become reality are then manifested (Shoham
1988a). Other than Shoham’s publications on Chronological Ignorance, I found no other discussions of his
work.

19

Chapter 4

Related Systems

In the previous chapter, we surveyed several temporal reasoning systems. While I would place these systems
in the same classification as TPS from the standpoint of temporal reasoning systems, I do not consider them
as “related systems.” They are foundational systems.

The distinction lies in the purpose of the systems. I classify these systems as research vehicles and do
not consider them appropriate for placement in a working environment. TPS is an ezpert system shell with
extensions to allow temporal domain modeling. Few expert system shells exist that fit this definition. Most
that do are real-time expert systems shells. These are expert systems shells designed to model continuously
changing temporal events, like the water flow rate through a pipe. Because of their ontological conventions
for capturing continuous change, these systems are limited to those domains.

An expert system shell is an Al tool that allows domain modeling and problem solving at “expert” levels
of performance. Further, a real-time expert system is a traditional expert system in terms of performance
expectations, but targets domains in which information comes to the system continually as time progresses.
Monitoring the temperature of a nuclear reactor core is an ideal domain a for real-time expert system.
The term expert, however, is extremely subjective; nevertheless, an expert system should at least contain
expertise and knowledge greater than that of its intended user.

In the following sections, we discuss the expert system shells with temporal reasoning that most closely
relate to TPS.

4.1 Lockheed Expert System Shell

Perkins and Austin (1990) added temporal reasoning to the Lockheed Expert System Shell (LES), a frame-
based expert system shell. Their characterization of time and consequent implementation directs their system
toward trend analysis of past continuous events. They describe an example in which they develop a program
to diagnose problems with the Hubble telescope’s “reaction wheels” from telemetry data. The system allows
four temporal operators (before, during, after, and at), relational qualifiers (e.g., anytime, alltimes),
and data manipulation functions for incomplete information (e.g., interpolation functions). Unfortunately,
the system requires us to give every event a time label, thereby limiting what we can model since we cannot
always associate events with a time or date.

4.2 G2

The G2 Real-Time Expert System (Moore et al. 1989) is strikingly similar to LES from an ontological point
of view. Both concentrate on analyzing and reasoning about past, continuous events.

The main temporal constructs in G2 are history expressions, which are temporally sequenced attribute
values. An example is a sequence of water flow rate measurements sampled at one minute intervals for ten
minutes. Queries on histories consist of three elements: a function, a variable, and a time period. Intuitively,
a variable is the symbol for the history expression we are investigating, such as the water flow rate.

20

G2 provides nine temporal functions whose domain is history expressions. These functions perform
various interpolation, integration, and analysis functions on histories. Rather than present all nine functions
and their explanations, I will present some illustrative examples following a discussion on G2’s time periods.

A time peritod in G2 is a subset of a history expression whose length is a time interval. Three temporal
operators, during, between, and as-of, designate what time interval to select from a history expression.
We can express these intervals in any combination of weeks, days, hours, minutes, and seconds. Finally,
arithmetic expressions allow the calculation of time intervals.

Using our water flow rate history expression, we can construct several queries to determine information
about this ongoing process. Recall that we sampled the flow rate every minute, and consider the query:

the interpolated value of the water flow rate
as of 3 minutes and 30 seconds ago

Because of our sampling frequency, no value exists at this time. Thus G2 performs a straight line interpolation
to determine the value. Finally,

the rate of change per minute of the
water flow rate between 7 minutes
and 3 minutes ago

returns how quickly the water flow rate changed for the period indicated.

4.3 Arino’s System

Arino (1989) presents a knowledge-acquisition system that automatically extracts knowledge from newspaper
articles and incorporates it into a knowledge-base and a temporal system. Specifically, the domain is the
information in natural language texts from the Economics section of the Spanish newspaper ’El Pais’. Arifio’s
paper focuses on the relation between time and language and the temporal system required to represent these
relations.

To model the temporal characteristics of the domain, the system uses three temporal constructs: points,
intervals, and chains. Points relate to days, the smallest granule of time (e.g., 18 January 1987). A series
of points constitutes an interval (e.g., 15 May to 20 May), and a non-consecutive, ordered series of intervals
compose a chain (e.g., to represent a history of economic events).

To associate time and language, Arifio uses Hornstein’s (1977) theory of linguistic expression of time.
According to Arino, Hornstein associates three identifiable temporal elements with a sentence: the speech
moment (denoted S), which relates to the publication date of the newspaper article; the reference moment
(or R), or the period during which an event happens; and the event moment (E), which is the point at
which some event occurs. In Arino’s framework, temporal events can be either points or intervals. For
example, a newspaper article published on 5 May 1991 could have stated that an economic conference might
be scheduled after 1 June 1991. In this example, the speech moment (S), a point, is 5 May 1991; the reference
moment (R), an interval, begins on 1 June 1991; and the event moment (E), also a point, occurs sometime
during the reference interval. Figure 4.1 represents this situation.

Arino adds a further distinction between temporal occurrences. Closed temporal events have a direct
reference to a date. Since the event moment (E) lacks a direct reference to a date, it is open. Conversely,
events (S) and (R) are closed; they have associated dates.

After identifying the temporal events, the system derives relations from these happenings. The system
determines temporal relationships by examining linguistic elements of the text, such as verb tense (past,
present, or future), temporal adverbs (yesterday, today, tomorrow), and explicit dates (5 May 1991). Refer-
ring to our example, the system would generate the following relations:

S before R
S before E
E during R

21

time

[[
5 May 91 1 June 91

Figure 4.1: Temporal events over time

Thirteen total temporal operators relate events (see Figure 2.1). Now the system can enter the acquired and
processed information into the knowledge-base and temporal constructs.

Arino uses three knowledge representation structures to capture factual and temporal information: a
frame-based knowledge representation, a temporal network, and a calendar. Frames store factual information
derived from the newspaper articles. In our example, a frame encodes all pertinent atemporal information
about an economics conference.

The temporal network stores the relations between events derived by the system from the article. The
nodes of the network represent events (i.e., S, E, or R), and the links denote the relations between events
(see Figure 4.2).

The third knowledge representation structure in this system is the calendar, realized as a tree of dates.
Links exist between the closed instances in the temporal network and the date nodes of the calendar. For
example, nodes S and R in Figure 4.2 would be linked to the calendar nodes 5 May 1991 and 1 June 1991,
respectively.

Whenever the system receives new information, besides the usual incorporation of factual knowledge,
special inference procedures maintain and update the temporal network. Regarding our example, assume
another article later appeared in the newspaper about the same economic summit that makes a specific
reference to the date of event. Now the inference procedure must update the open reference for the original
story dated 5 May 1991. In other words, the special inference procedure propagates temporal relations
through the network in an attempt to close any open events. Closing an event involves deducing and
constructing a direct reference from an open event to a calendar node. Such updating of the temporal
network guarantees knowledge-base closure during queries. Now if a user makes a query about the 5 May
1991 article, because of updating, the system would infer the actual date of the event even though at
acquisition time that fact did not exist.

22

before

S Q during

before E

time

Figure 4.2: A temporal network.

23

Chapter 5

Production Systems

Production systems have received immense popularity in Artificial Intelligence as a knowledge representation
and a computational tool. These systems relate directly to automata theory and also have applications
in mathematics, natural language, and cognitive psychology. This chapter begins with a brief historical
account of the development of production systems, and concludes with a detailed discussion of OPS5 and
the Rete Match Algorithm, influential contributions to production system computation as well as Artificial
Intelligence.

5.1 Formal Beginnings

Production systems date back to 1943 when Post (1943) formulated canonical systems. Chomsky (1959)
adopted a similar formalism called type 0 grammars to represent and generate natural language. Since type
0 grammars are equivalent to Turing Machines, they have become a cornerstone in automata theory. Hopcroft
and Ullman (1979) define a type 0 grammar, or an unrestricted grammar, G as the 4-tuple G = (V, T, S, P)
where

Vis a finite set of variables,

T is a finite set of terminals,

S is the start symbol S € V, and

P is a finite set of productions of the form o — 3,

where a, 8 € (VUT)*.

We can define a step as yaéd = 746 such that 7,8 € (VUT)*U{e}, where € is the empty string, if and only if
o — B € P. A derivation is therefore the reflexive and transitive closure of =, denoted =. If S = v for some
v € T*, then we can say that y is in the language of the grammar G. Moreover, Newell and Simon (1973)
adopted production systems as models of human cognition, and in Al, Feigenbaum first used production
rules to encode domain-specific knowledge in DENDRAL (Buchanan and Shortliffe 1984).

5.2 Production System Architecture

Production systems consist of three components: long-term memory, short-term memory, and an ezecu-
tive, or rule interpreter. Long-term memory is the space or area where rarely-changing knowledge resides.
Productions or if-then rules consist of a left-hand, conditional side (LHS) and a right-hand, action side
(RHS),and represent long-term knowledge. Short-term memory or working memory is the area or space
where the executive stores intermediate results. Finally, the executive manages the computational process.
In terms of grammars, it carries out the derivation.

Production system computation consists of three steps: maich, resolve, and act. In the match step, the
executive algorithm matches patterns in working memory with the LHS patterns of the rules in long-term
memory. Whenever all LHS patterns of a rule match patterns in working memory, the executive adds the

24

rule to a conflict set. Invariably, more than one rule in long-term memory matches, resulting in several
possible rule firings. Thus some scheme has to determine which rule actually fires. In this sense, production
system computation is nondeterministic.

The scheme, called conflict resolution, selects one rule from the conflict set based on some predetermined
strategy. Examples of conflict resolution strategies are:

e fire the first rule selected,
e fire the rule that has the oldest short-term memory patterns,
o fire the rule that fired last.

Once the conflict resolution scheme selects a rule, the executive acts upon the rule’s RHS. Typically,
these actions include adding, deleting, or modifying working memory patterns. Alternatively, a rule could
ask the human user for input or notify the user of some result.

Production system computation described thus far has been completely forward chaining, or data-driven;
that is, given some initial patterns in working memory, the executive applies the rules until no productions are
true. Then, the result is whatever patterns are present in working memory. Conversely, a production system
can also use goal-driven, or backward chaining, inference; that is, given a potential answer, the executive
applies the match algorithm to the RHS of rules until the system reaches a valid starting configuration.
MYCIN (Buchanan and Shortliffe 1984), for example, uses backward chaining inference.

5.3 General-Purpose Shells

As specific-purpose production systems evolved and proliferated, more generic shells appeared, such as
EMYCIN (van Melle et al. 1984) and the Official Production System (OPS) series (Forgy and McDer-
mott 1977). These shells provided system designers with the inference mechanisms and conflict resolution
strategies required for intelligent system construction in a software package that optimized development
time. EMYCIN stands for “Essential MYCIN” or “Empty MYCIN,” which is MYCIN minus its domain
knowledge. Furthermore, instead of simple RHS actions, shell designers added more sophisticated ones, like
displaying a graphic or reading a data acquisition device.

A drawback of production systems became evident early. As applications grew in complexity, the size
of the rule-base increased and the number of working memory elements increased, resulting in unacceptable
inefficiency in the match-resolve-act cycle. This prompted Charles Forgy to investigate more efficient methods
of pattern matching.

5.4 The Rete Match Algorithm

Forgy (1982) noticed and subsequently exploited two properties of production system computation that led
to a more efficient pattern matching algorithm. First he recognized that in most applications the rule-base
rarely changes and there is great structural similarity between rules. In other words, as we consider each
condition element of every rule, we can partition the rules based on the similarity between condition elements.

The second property Forgy exploited was temporal redundancy. Typically, working memory changes
slowly with respect to time. Time here has a different definition than in the temporal reasoning sense. If we
assume one match-resolve-act cycle is a time unit, then few working memory patterns change from cycle to
cycle, or over time.

Existing production systems re-computed the conflict set every cycle from scratch. Not only was this
practice inefficient, but it also disregarded the fact that many rules in the conflict set, depending on working
memory updates, would have the same status within the conflict set from one cycle to the next. Forgy
thought that we should compute how the conflict set changes as computation updates working memory.

Forgy’s implementation of this idea is the Rete Match Algorithm. The Rete Algorithm “compiles” a
rule-base into a tree structure, or network, whose interior nodes are simple comparisons. The leaves of this
tree are the rules. All paths between the root and a given leaf node represent the comparisons that require

25

satisfaction for a rule to fire. Because of the structural similarity of the rules and the tree structure of the
network, we can reuse comparison nodes and construct a minimal representation of the rule-base.

Additionally, notice that deletion and addition are the only operations necessary for maintaining working
memory—modification is simply a deletion followed by an addition. As computation asserts and retracts
patterns to and from working memory, Rete propagates these patterns through the comparison nodes of the
network. If this activity leads to a leaf node (i.e., a rule node), then the algorithm inserts the rule into the
conflict set according to how many working memory patterns the rule matched.

5.5 OPS5

OPS5 (Forgy 1981) is available on a wide range of computing platforms which demonstrates its viability
as a expert system shell. While OPS5 was the first Al tool with the Rete Match Algorithm, several other
production systems also use it. Examples include OPS83 (Sherman and Martin 1990:162); Automated Rea-
soning Tool (Firebaugh 1988:406), or ART; and, most recently, NASA’s C Language Integrated Production
System (Lopez et al. 1987), or CLIPS.

The following treatise on OPS5 language syntax, while not exhaustive, should provide enough of a basis to
understand the remaining discussions. Sources that present the OPS5 language in detail include Brownston
et al. (1985), Cooper and Wogrin (1988) and Sherman and Martin (1990).

For efficiency, OPS5 establishes a canonical ordering for working memory patterns using the literalize
command. For example, persons in our application domain might correspond to the literalization:

(literalize person name age)

where person is the object class and name and age are attributes of the class.
To enter a pattern into working memory, we use the make command. Assuming our person’s name is Pat
and Pat is twenty-five years of age, we have the following command:

(make person [name pat fage 25).

The T, or tab, character identifies an attribute symbol. Because of the canonical ordering imposed on working
memory patterns, we are free to omit unspecified attributes. We therefore could have just as easily written:

(make person [name pat)
or
(make person Tage 25).

Unspecified attribute values are nil.
OPS5 production rules are of the form:

(p <symbol>
<condition-list>
N

<action-list>)

where <symbol>> is the name of the rule, <condition-list> is a list of patterns, and <action-list> is
a list of valid OPS5 actions.

We can understand how to construct rules best with an example. Assume working memory looks as
follows:

(person Tname pat lage 25)
Then, a trivial rule is:

(p trivial-rule
(person Tname <who> Tage <howold>)

—

(write (crlf) <who> | is | <howold> | years old (crlf)))

26

An OPS5 variable is any symbol bracketed with < and >. So, <who> is a variable. The LHS of this
rule matches the pattern in working memory since both the working memory pattern and the condition
element have the symbol person in the first position. Consequently, pat binds to the variable <who> and
25 binds to <howold>. Since the pattern in working memory satisfies the rule’s condition, the executive
places trivial-rule into the conflict set. To fire the rule, the executive acts upon the RHS action of
trivial-rule, which writes

pat is 25 years old

on the current output device.
Because of how the Rete Algorithm works, we must organize OPS5 programs as follows:

literalizations
rules

make commands

5.6 Rete: The Details

We have already discussed the general characteristics of the Rete Algorithm and since we understand the
basics of OPSH language syntax, we will concentrate on Rete’s internal workings. Again, this is not intended
to be a detailed presentation of Rete. Sherman and Martin (1990) and Cooper and Wogrin (1988) present
excellent in-depth descriptions of how Rete works. Recall our trivial example:

(literalize person name age)

(p trivial-rule
(person Tname <who> Tage <howold>)
—

(write (crlf) <who> | is | <howold> | years old (crlf)))

(make person |name pat fage 25)

Looking at the literalization, we define a person class. The canonical ordering begins with the class type,
thus person is in position one with name and age following in positions two and three.

Rete “compiles” a rule-base into a network of simple comparisons and propagates added and deleted
working memory patterns through the network. The leaf nodes of the network are rules, so if the propagation
of patterns reaches a rule node, we can add the rule to the conflict set.

Referring to the first condition of trivial-rule, there is one test that requires satisfaction for the rule
to fire: the class name of the pattern must be equal to person. If a working memory pattern meets this
criteria, then we bind its attribute values for name and age to the variables <who> and <howold>.

We denote tests using the following mnemonic:

t <test-type> <argument-type>

where <{test-type> is eq for equals, gt for greater than, 1t for less than, and so on; <argumeni-type> is n
for numeric, a for atomic, and so on. Thus, we can express the required test as

teqa 1 person

which succeeds if a working memory pattern’s class is equal to person. More precisely, this test succeeds if
a working memory pattern’s first atomic element is equal to person.

The network representation of trivial-rule appears in Figure 5.1. The &bus node serves as the root
node of the network. A &mem node retrieves a value from an internal register and binds it to a variable. For
example, the node

27

&bus

!
teqa 1 person
!
&mem 2 *cl*
!
&mem 3 *c2*
|

&p trivial-rule

Figure 5.1: Network representation for trivial-rule.

&mem 3 *Cc2%

takes the value from the *c2* register and binds it to the variable indexed by location 3 of the current
condition element. &p nodes are the rule nodes.
Now that we have a compiled rule-base, we issue the make command:

(make person |name pat fage 25).

Rete loads person into the first register, pat into the second, and 25 into the third, and then traverses the
rule network attempting to satisfy the simple conditions at each node. When the procedure reaches the &p
node, as in this case, it adds trivial-rule to the conflict set.

To execute an OPS5 program, we simply take the first rule from the conflict set and evaluate its RHS
actions. Any additions or deletions to working memory during execution will change the conflict set, but
the first rule in the set is always the next rule to fire.

28

Chapter 6

Temporal Production System

The preceding chapters began by giving us a broad perspective on how and in what areas of computer science
and Al temporal logics and reasoning apply. These chapters have gradually prepared us for this chapter.
I begin by presenting an illustrative example that justifies the approach taken to implement TPS. From
there, we investigate how TPS represents and maintains temporal knowledge, followed by discussions on
the syntactic interface to the temporal reasoner and the modifications to the Rete Match Algorithm. The
chapter concludes with applications of TPS.

6.1 Raison d’étre

On the surface, it appears that much of what TPS does could be done within a conventional rule-base system.
For some problems, this approach would work. As the complexities of these problems increase, however, so
do the required solutions. To illustrate this point, we will step through what would be required to duplicate

the function of TPS with OPS5.

6.1.1 The Specific Case

The first approach we consider is the case in which we explicitly specify all temporal aspects of a domain. For
simple applications, this approach would work. The flaws of this approach become apparent when we need
to update temporal relations based on new clarifying information. For variety, consider a football example.
Assume our production system knows that the first half of a football game precedes the second half. It does
not know, however, whether some interval occurs between these halves. So, both potential situations must
be represented, as follows:

firsthalf — (before meets) — secondhalf

In OPSH, we represent this situation with the following literalization:
(literalize relation operator eventl event2)

Next, we make the following working memory patterns:

(relation [operator before feventl firsthalf [event2 secondhalf)
(relation [operator meets Teventl firsthalf [event2 secondhalf)

Now we are free to formulate our production rules as required. Yet, consider what happens if some rule later
asserts the following working memory patterns:

(relation Toperator meets Teventl firsthalf levent2 halftime)
(relation [operator meets Teventl halftime Jevent2 secondhalf)

29

That is, halftime occurs between firsthalf and secondhalf. Now we know the relationship between first
and second halves is before. We therefore need some mechanism to update temporal relationships. Again,
we can explicitly develop rules to update only this situation. Not only is this poor development practice,
but it also confounds our goal of developing a general system to model temporal events.

The obvious solution is to use the production system’s rules to develop this general strategy. We analyze
this solution in the next section.

6.1.2 The General Case

To automatically maintain and update temporal relationships, we must first have mechanisms that com-
pute the temporal transitivity. For example, if the firsthalf meets halftime and halftime meets the
secondhalf, then the firsthalf is before the secondhalf. Given the literalization,

(literalize relation operator eventl event2)
assume we have three events related as follows:

(relation loperator meets Teventl firsthalf levent2 halftime)
(relation [operator meets Teventl halftime Jevent2 secondhalf)

To compute the relationship between firsthalf and secondhalf, we need the general rule:

(p meets-transitivity
(relation Toperator meets Teventl <el> Tevent2 <e2>)
(relation Toperator meets Teventl <e2> Tevent2 <e3>)
- (relation Toperator before Teventl <el> fevent2 <e3>)

—

(make relation Toperator before Jeventl <el> Jevent2 <e3>))

Furthermore, we would also need rules to compute the inverse temporal relations, as well as the inverse
transitivities:

(p meets-met-by
(relation Toperator meets eventl <el> Tevent2 <e2>)
- (relation Toperator met-by Teventl <el> Tevent2 <e2>)

—

(make relation Toperator met-by Teventl <el> fevent2 <e2>))

(p met-by-meets
(relation Toperator met-by Teventl <el> Tevent2 <e2>)
- (relation Toperator meets Teventl <el> Tevent2 <e2>)

—

(make relation Toperator meets feventl <el> Tevent2 <e2>))

(p met-by-transitivity
(relation Toperator met-by feventl <el> Tevent2 <e2>)
(relation Toperator met-by Teventl <e2> Tevent2 <e3>)
- (relation Toperator met-by Teventl <el> Tevent2 <e3>)

—

(make relation foperator met-by Teventl <el> Tevent2 <e3>))

Since there are thirteen temporal relations, we need thirteen rules to calculate the inverse relations and
another 169 rules to calculate all possible temporal transitivities.

The next problem arises when we attempt to capture uncertain temporal relationships. Often we need
to express a relationship between two events as a vector of two (or more) relations. We saw this with our
football example before we knew that halftime occurred between first and second halves. We can use OPS5’s
vector-attribute data type to represent these relationships. Expressing that the firsthalf either is before
or meets the secondhalf requires the following definitions:

30

(vector-attribute operator)
(literalize relation operator eventl event2)

(make relation Toperator before meets
Teventl firsthalf Tevent2 secondhalf)

Naturally, the transitivity rules require modification to take into account the vector-attribute. This alteration
does not affect the quantity of temporal transitivity and inverse rules; however, OPS5 does not provide
functions to retrieve vector-attribute values, other than the first. So, we would have to develop additional
rules to search and inspect these fields, all at the added cost of computation.

In fact, the computational overhead associated with this approach is tremendously high. Burdening the
production system with an application will only magnify the inefficiencies. The better approach is to develop
these temporal knowledge maintenance routines outside of OPS5 in Lisp and develop an interface, accessible
from OPS5, to the temporal knowledge system. This is exactly the approach taken in developing TPS, which
provides an efficient, general, transparent method of maintaining and updating temporal knowledge.

6.2 Ontological Considerations

While I do not attempt to give the full ontology for TPS, I do present its salient features, especially those
relevant to implementation. After discussing what primitive TPS allows, we turn toward the relations that
exist between primitives, and conclude with a brief analysis of the nature of time.

6.2.1 Temporal Primitives

Without delving too deeply into historical literature, several issues require consideration before we develop
an ontology for a temporal reasoning system. First we should identify the target domains. I intend TPS for
use in observable domains; that is, domains in which objects and events have temporal extent.

Next we must ask what temporal primitives these domains require. For any serious temporal reasoning
system in an observable domain, we must use some type of interval representation. In fact, we do not need
points whatsoever. Furthermore, point-based representations have computational detractions. We explored
some of these with Event Calculus in Section 3.7, but the main argument against points comes from deriving
intuitive temporal operators.

Since we intend system designers to use TPS, we need to provide a rich set of intuitive operators. These
operators should be intuitive in the sense that a designer would use an operator naturally when describing
a situation. We want to avoid requiring knowledge engineers to learn a cryptic language.

To establish intuitive temporal relations (e.g., before, during, and after) in a point-based interval logic,
we must make end-point computations. Each interval ¢ has a lower point (denoted i—) and an upper point
(denoted i+). For two intervals i and j, defining ¢ before j is straightforward: i+ < j—. We can define
after similarly. Defining ¢ during j requires:

((i— > =) A (i+ < j+)).

Making these repeated computations inevitably degrades system performance. Allen’s (1983, 1984) formalism
provides us with a pleasant alternative. We can avoid end-point computations altogether by directly dealing
with intervals. The resulting representation is programmatically cleaner than point-based representations
since no computation is necessary to derive operators.

Although we have abandoned points, there are occasions when an assumed granularity of time exists.
Language provides an illustrative example. For instance, when discussing the evolution of the universe, an
assumed granularity would be on the order of millions of years, not of seconds. In TPS, one can define an
appropriate granularity of time for a given domain. This allows an atomic notion of time without committing
to counterintuitive instantaneous time moments.

It is important for a temporal reasoning system to have some concept of persistence (Allen 1981); that
is, some assertion holds from now on. To capture this notion, we can attach attributes, such as start,
end, and extent, to intervals. We can therefore assign an infinitely large time value to the end attribute

31

to specify persistence. The system must then observe constraints requiring that no temporal interval bound
the persistent interval in the future.

Likewise, a type of persistence from the past should also exist; that is, some proposition has been true
forever until now. To accomplish this, we assign an infinitely small time value to the start attribute. Again,
the reasoner must observe certain relationship constraints to preserve persistence.

These attributes also anchor intervals to a time/date line. Although the system does not explicitly use
these attribute values for reasoning, they are available for arithmetic comparisons and computation. Recall
that the system described by Perkins and Austin (1990) requires that all events relate to a time line. Since
we cannot always anchor events to a time line, a temporal reasoning system should perform without explicit
mention of time (Allen 1981). We must model the relationship between events in time, not the time itself.

6.2.2 Temporal Relations

What we have so far is a collection of intervals to which we can ascribe certain attributes. Now we need
to describe the relations that can exist between intervals. While the traditional complement of interval
relations is thirteen (Allen 1983; van Benthem 1990), other researchers have reduced or increased the number
of relations to meet computational or ontological requirements (Vilain 1982; Zhu et al. 1987). TPS, however,
uses the original set of interval relations, presented in Figure 2.1.

6.2.3 The Nature of Time

The most common time structures used in temporal reasoning systems are linear time and variations of
branching time. With the former case, there exists a complete ordering of time. On the other hand,
with branching time structures, this ordering is partial. Typically, we consider the past as determined and
therefore linear.

So, what is the nature of time for TPS? To begin, Allen (1984:131) adopts a linear time structure for his
formalism, which underlies TPS. Yet, the computing mechanism of the production system must affect the
nature of time.

The rules of the production system form a decision tree. During execution, the program follows a branch
of this tree to a solution depending on starting conditions and what facts become available during execution.
We can view the branching structure of the decision tree as a kind of possible-worlds model (Chellas 1980).
Each decision point is a world in which certain things are true. From any world, there are several possible
worlds into which we could move, depending on what production rules fire.

In order to posit branching time, we would have to identify different times with each possible world. Since
the production system computation forms a branching structure that is atemporal, the temporal model must
be responsible for associating a different time to each possible-world. The model possesses no ability to do
this. In TPS, there is a strong separation of the temporal reasoning system and the production system.
Since I attribute the branching structure to the production system, which is loosely coupled to the temporal
system, I find difficulty in positing a branching time structure and therefore adopt a linear time model.

Given this view of linear time coupled with the possible-worlds model, we get a time structure called
pseudo-branching time (Nute 1991). In this model of time, every possible world, or decision point, that is
temporally equidistant from a time of reference associates to one time from the totally ordered set of all
times.

Finally, we need to define the concept of now for TPS. A time map (McDermott 1982) is to a temporal
database of past or developing events. The TPS time map focuses on the temporal organization of events
through the past, present, and future rather than on their relationship to the present. So, defining now
involves finding some temporal point of reference that divides the time map into past and future. I assert
that the current rule-set does this. Depending on how one models a domain, that is by looking at past
events, future events, or a combination of both, we could situate now at almost any time relative to the time
map.

32

I | I | L before T

| | | L meets T

Figure 6.1: What is the proper relation?

6.3 Time Map Representation

Following Allen (1983), T used a directed graph whose vertices are intervals and whose arcs are vectors of
temporal relations. Atemporal components of assertions reside in working memory with links to the time
map. For example, to represent that Bill worked during the period that Mary worked, working memory
contents would be:

(person |name bill fTactivity worked Tat intervall)
(person |name mary lactivity worked Tat interval2)

and the time map would be:

intervall — (during) — interval2
interval2 — (contains) — intervall.

Note that as the system asserts new relations into the time map, it also adds the corresponding inverse
relations. Association lists represent the time map. For example, the relation

intervall — (during) — interval2,
has a Lisp representation as follows:

(setf (get ’intervall ’relations)
’(interval2 (during)))

6.4 Temporal Knowledge Maintenance

As TPS asserts new temporal relations into the time map, there is the potential for other, already present,
relations to change in light of the newly added information. Recall that Allen (1981) recommends that a
model of time handle uncertain temporal relations since we are not always sure of the true relationship
that exists. For instance, suppose that, during a storm, thunder always follows lightning. We will say that
we have an interval when thunder occurs and an interval when lightning occurs. Yet, what relation exists
between these two intervals? (See Figure 6.1.) If we say that the intervals meet, then can we be sure that
some amount of time does not separate the periods. And if we use a before/after relation, what if there is
no time intervening? The solution is to use both relations, so the time map representation is as follows:

lightning — (before meets) — thunder
thunder — (after met-by) — lightning.

As computation proceeds, assume additional information clarifies the relation between these periods and
we can infer that the periods do indeed meet each other. In this situation, we must have some mechanism
to update the time map as the system presents additional information.

We maintain these relations using a general technique called constraint propagation (see Kumar 1992).
Consider our thunder and lightning scenario again; except now, we add the information that these events
occur during a storm. For the sake of illustration, assume that thunder immediately follows lightning. If we
symbolically represent this situation, we have:

33

S «— (during) — L — (meets) — T.

Now what can we say about the relation between the storm and thunder? To determine this relationship, we
must consider all the relationships that could exist between the storm and thunder given the constraints that
lightning occurs during the storm, and thunder immediately follows lightning. We have three situations:

1. the lightning and thunder both occur during the storm,

2. the thunder finishes' the storm, and

3. the storm overlaps the thunder.

Thus, the vector between S and T is:

S — (contains finished-by overlaps) — T
and its inverse is:

S — (during finishes overlapped-by) — T

The precise algorithm for propagating these temporal constraints is as follows. First, we must be able
to calculate the transitivity between any two relations, denoted 7'(rl,r2), where rl and r2 are temporal
relations. Using Allen’s (1983) transitivity table, I constructed a simple look-up function using association
lists to implement T'(r1, r2).2

Next, we must calculate the overall temporal constraint vector using the Constraints algorithm, presented
in Figure 6.2. Finally, using the Add algorithm, presented in Figure 6.3, we add the intervals and their
relations to the time map by propagating the temporal constraints between all 3-connected neighbors in
the time map. The Add algorithm attempts to keep all time map relations consistent. Hence, determining
whether a relationship holds between two intervals involves retrieving the relation vector that exists between
the intervals and checking if the relationship is present in the vector.

As Vilain and Kautz (1986) demonstrate this constraint propagation algorithm is sound, but it is not
complete. Furthermore, it operates in O(n®) time and O(n?) space, where n is the number of temporal
intervals in the time map. Unfortunately, an algorithm that is complete is NP-hard. Therefore, one can
either accept the incompleteness of the polynomial time algorithm, as I do, or make some ontological adjust-
ments, as Vilain and Kautz do. Valdés-Pérez (1987), however, presents a sound and complete propagation
algorithm that still grows exponentially, but uses backtracking and search tree pruning to gain efficiency.

1 This is finishes in the temporal relation sense.
2T also investigated implementing T'(r1,72) with hash tables, but for ten thousand worst-case retrievals, found a one and
one-half seconds difference in favor of hashing, but decided to remain with association lists.

34

Constraints (R1, R2)
C—0
for each rl € R1 do
for each r2 € R2 do
C—CUT(rl,r2);
return C,
end; { Constraints }

where

R1 and R2 are vectors of temporal relations,
(0 is the empty set, and
U is the set union operation.

Figure 6.2: Constraints Algorithm (Allen 1983).

Add (R,)
queue — R(i,7);
while not empty(queue) do
R(i,j) — queue;
N(i,j) — R(i,);
Intervals — Intervals U{i, j};
for each k € Intervals do
if N(k,j) = 0 then
N(k,j) — all-relations,
R(k,j) — N(k,j) N0 constraints(N (k,), N(,7));
if R(k,j) C N(k,j) and R(k,j) # 0 then
quene — R(k, j);
if N(i,k) = 0 then
N(i, k) — all-relations;
R(i, k) — N(i, k) N constraints(N(i,5), N(j, k));
if R(i,k) C N(i,k) and R(i, k) # 0 then
quene — R(i, k)
end do
end while

end; { Add }
where

R(, j) is the temporal relation vector between intervals ¢ and j,

N (i, j) is the temporal relation vector between intervals ¢ and j
in the time map,

all-relations is the complete set of temporal relations
(before, after, ..., equal),

Intervals is the set of all interval labels in the time map,

C is the proper subset function,

N is the set intersection operation,

U is the set union operation, and

(0 is the empty set.

Figure 6.3: Add Algorithm

35

6.5 Syntactic Interface

TPS required few syntactic modifications to OPS5. Most were assertion and retrieval functions for the
temporal reasoner.

Although temporal reasoners should function without explicit mention of time, it is true that they need
some concept of time. The first command that allows us to attach time and date characteristics to intervals
is the granularity command, which sets a lower bound on the length of intervals. It should appear in the
literalizations section of a TPS program?® and has the following syntax:

(granularity [year] [month] [day] [hours] [minutes] [seconds])
For example,
(granularity minutes seconds)

specifies that the smallest interval duration is one second. Additionally, the granularity command establishes
a format for the specification of interval values, like start and end. In this case, we express all interval
attribute values in a minutes/seconds format.

The literalize command required modification to recognize pattern literalizations with links to the
time map. If the keyword at appears in a literalization, then the working memory pattern will have a link
to the time map. Therefore, the value of the at attribute is an interval label. For instance,

(literalize person name at)

establishes that the person class, while having a name, will also have an association to the time map.

Turning our attention to rule conditions, we need mechanisms to match patterns in the time map. TPS
features two such functions. The first, which we will call a temporal query, consists of a temporal relation
followed by two interval labels. It succeeds if the relation exists between the intervals in the time map. For
example,

(during intervall interval2)

succeeds if, according to the time map, intervalil is during interval2.

The second query function, called a temporal vector query, succeeds if any temporal relationship in a
specified vector exists between two intervals. Although this construct is easy to simulate with multiple rules
and temporal queries, it is less concise and inefficient. An example of a temporal vector query is:

([before during after] intervall interval2)

which succeeds if, according to the time map, intervall is before, during, or after interval2.
The make command also required modification to properly handle intervals and attributes. We specify
intervals the same as any other attribute value. For example,

(make person [name pat fat lifetime)

establishes that pat is a person over the interval lifetime.

Interval atiributes allow us to anchor intervals to a time/date line and give them duration. An interval
attribute specification is a vector containing one or more attributes and their values. The extent, start,
and end attributes specify an interval’s duration and when it started and ended, respectively. We express
the values in units of the granularity declaration. For example,

(start 10 5)

specifies that some interval started at ten minutes and five seconds, if we use the granularity declaration
presented earlier. Intervals can also have open pasts and open futures. Assume that our friend Pat was born
at ten minutes and five seconds. Additionally, we do not know how long Pat will live, so this requires an
interval with an open future. The complete make command for this situation is:

(make person [name pat at lifetime ((start 10 5) (end open)))

36

open interval

closed interval

Figure 6.4: Open and closed intervals

TPS observes constraints when rules establish new relations with open intervals. For open past intervals,
for example, no intervals can occur before them, since this would imply that we can determine the beginning
of the open interval. TPS observes similar constraints for open future intervals. For example, for the
situation pictured in Figure 6.4, the only valid relationship between the open interval and the closed interval
is contains.

The start-of, end-of, and extent-of functions retrieve interval attributes. We can use these functions
to bind values to variables. Examples are:

(bind <variable> (start-of interval))
(bind <var1l> (start-of <interval-variable>))

Like the OPS5 bind command, these functions can appear only in the RHS of rules.
Finally, we need an action command to establish temporal relationships between intervals in the time
map, which is the relation command’s purpose. For example,

(relation during intervall interval2)

establishes that intervall is during interval2. The relation command can appear in a rule’s RHS or
with the make commands in a TPS program.

6.5.1 Other TPS Commands

The following are additional commands that display the contents of various memories, reset TPS, execute
programs, and remove patterns from working memory.

e (tm [<intervall> [<interval2>1])

Prints the current time map. With no arguments, tm prints the entire map. With <intervall> as
its argument, tm prints all relationships between <intervali> and all other intervals in the time map.
With both arguments, tm prints only the relationships between <intervali> and <interval2>.

o (pm * | <rule-name>*t)

Prints production memory. With # as its argument, pm prints all productions; otherwise, it prints each
<rule-name>.

e (wm)
Displays working memory contents.
e (remove <n>)
Removes the working memory pattern referenced by <n>.
e (reset)
Erases working memory, production memory, and the time map.
e (run)

Executes the TPS program in memory.

3TPS programs follow the same organization as OPS5 programs.

37

&bus

!

teqa 1 during

!

teqa 2 eventl

!

teqa 3 event2

!

tqtm during eventl event2

!

&p temporal-rulel

Figure 6.5: Network representation for temporal-rulel.

6.6 Modifications to Rete

Rete compiles the LHS of rules, so modifications were necessary to incorporate the two time map query
functions into the rule network. Since each node in the network is a test, each time map query required a
node.

For the temporal query, I defined the node:

tqtm <relation> <intervall> <interval2>

which succeeds if <relation> exists between <intervall> and <interval2>. (tqtm stands for “test: query
time map”.) Given the rule temporal-rulel with a temporal query:

(p temporal-rulel

(during eventl event2)

)

we have the network representation, presented in Figure 6.5.

The second required node was “test: query temporal vector,”

or tqtv:

tqtv <wvector> <intervall> <interval?>

which succeeds if any temporal relation present in <wector> exists in the time map between <intervall>
and <interval?2>. Therefore for the following rule with a temporal vector query:

(p temporal-rulel

([before during after] eventl event2)

)

we have the network representation, presented in Figure 6.6, where &any succeeds if the value in the indicated
register, in our case register 1, is a member of the vector.

The Rete Match Algorithm required several modifications to account for the continual updating of knowl-
edge in the time map. Recall that the only working memory operations are addition and deletion. Whichever

38

&bus

!

&any 1 (before during after)

!

teqa 2 eventl

!

teqa 3 event2

!

tqtv (before during after) eventl event2

!

&p temporal-rule2
Figure 6.6: Network representation for temporal-rule2.

operation occurs, the match procedure takes the pattern, propagates it through the network, and if this ac-
tivity reaches a rule node, updates the conflict set.

In the context of the time map patterns, the same must occur. When we add a temporal relation to the
time map, a flurry of activity results. Because of the way in which the temporal knowledge maintenance
routines work, one added temporal relationship can spawn several additions and deletions as the new rela-
tionship propagates throughout the time map. We must in turn propagate each relationship change through
the rule network to ensure a consistent conflict set.

Since the constraint propagation routine runs in O(n?) space, the number of potential temporal pat-
terns that require matching is high. Furthermore, the number of these patterns will be highest for domains
that require large quantities of uncertain temporal relations. Indeed, representing and maintaining tem-
poral knowledge is costly whatever the form or purpose. We should be thankful for the polynomial space
requirement.

6.6.1 Consistency Maintenance

Consistency maintenance or truth maintenance (Doyle 1979) is the module of a reasoner that ensures knowl-
edge integrity and prevents contradictory information from making its way into the knowledge-base. Ideally,
when a reasoner’s beliefs become invalid because of new knowledge, then the reasoner must be capable of
revising any supporting evidence for those beliefs. Thus, we need some accounting method to keep track of
what evidence supported which belief.

For TPS, consistency maintenance involves validating time map relations. Because of the way in which
the constraint propagation algorithm computes temporal relationships, after it adds a new relation, if any arc
between two intervals is empty, then an inconsistent relationship exists in the time map. If TPS’s consistency
maintenance procedure discovers such a situation, it issues an error message and indicates what relationship
caused the inconsistency.

6.7 Examples

In this section, we consider two examples. For the first, which is primarily illustrative, we further develop the
thunder and lightning example. The second example, which relates to an application domain, demonstrates
how TPS handles a more complex problem. Before choosing a domain problem, I investigated elevator
scheduling, manufacturing, and a temporal variation of the “monkey and banana.” After much deliberation,
I chose the domain of international terrorism.

39

6.7.1 Thunder and Lightning

The following example demonstrates how TPS refines and maintains temporal knowledge as new information
becomes available. To demonstrate this, we return to our familiar thunder and lightning example. Assume
we have the following time map:

S «— (during) —L — (meets) — T
S — (contains finished-by overlaps) — T

At some point during computation, suppose we discover that a period of calm, denoted C, always ends a
storm and no thunder or lightning occurs during this period of calm. Given this new information, TPS
refines the relationships in the time map, specifically the relationships between the storm and the thunder.
After we assert that some period of calm finishes the storm and this period follows thunder, the only valid
relations that could exist between the storm and thunder is the contains relation, pictured below:

Therefore, the time map representation is:

S «— (during) —L — (meets) — T
S — (contains) — T

The TPS program and sample runs for this example appear in Appendix C.

6.7.2 Terrorism

International terrorism is a phenomenon few individuals experience, yet it is often on the minds of travelers,
government officials, and corporate executives. Although traditional domains of expert systems include
manufacturing, medicine, and finance, there have been attempts to apply Al techniques to the ill-defined
domain of terrorism (Waterman and Jenkins 1986).

In capturing this domain, Waterman and Jenkins (1986:98) make three assumptions. The first is that we
can formally analyze the terrorism domain and that it follows logical rules discernable by experts. Secondly,
we can focus on small, tractable portions of the domain and still have a useful system. Thirdly, a rule-based
system is adequate for capturing this domain.

To build an expert system for terrorism, Waterman and Jenkins (1986:106) concentrate on three infor-
mational focal points: events (what happened and when), groups (what terrorist group is responsible), and
context (what political, social, or economic events led to the incident). Although events are a main focal
point of the system, as described, no temporal reasoning exists. The system can associate dates and times to
events and make simple before/after analyses (e.g., did this event occur before six o’clock?), but it appears
that no mechanisms are available to reason about the temporal organization of events.

Without such abilities, it is difficult to establish modes of operation for a group or to identify which
group is potentially responsible for a given pattern of events. Evidently, these abilities are important. In
one example, Waterman and Jenkins (1986:114) formulate the following rule:

IF:

the frequency OF the campaign IS ‘‘escalating’’
OR the time-between-attacks OF the campaign IS ¢ ‘short’’

THEN:

40

Presumably, the system queries the user who supplies terms like escalating and short. Yet, these terms
have no semantic meaning relevant to the knowledge-base. They could in fact contradict the knowledge in
the knowledge-base. Therefore, we need some mechanism to attach meaning to these terms. Furthermore,
we need to be able to relate events in an efficient manner that prevents us from specifying every possible
temporal relationship. TPS solves both problems.

Consider the following scenario: we require our expert terrorism system to identify potential terrorist
groups, based not only on events, but also on the temporal organization of these events. Also, following the
lead of Waterman and Jenkins, we develop rules to determine the amount of time between terrorist attacks.
To demonstrate how we can use TPS to accomplish these functions, I devised a simple example presented
in Appendix D.

The terrorism example identifies which group is responsible for a pattern of events (the mode-of-operation
task) and determines if the time between terrorist events is short, moderate, or long (the time-spans task).

For the mode-of-operation task, TPS analyzes six hypothetical terrorist events and using specified interval
attributes, determines how the average time between these incidents compares to elicited expert knowledge.
The system responds that the time period between these events is short.

With temporal reasoning, we are able to analyze the knowledge in working memory and the time map to
determine that the average time between terrorist attacks is short. Conversely, without temporal reasoning,
the system must ask the user how long the period between events is. The user’s response has no relevance
to the knowledge in the knowledge-base and could be contradictory.

The mode-of-operation task uses TPS’s temporal knowledge maintenance routines to analyze temporal
patterns, or the temporal organization of events, to make a determination about which terrorist group might
be responsible for an attack, given certain related events and political contexts.

41

Chapter 7

Conclusions

Diagnosing problems in a temporal domain can depend on the existence of one relationship between two
events. Without temporal knowledge maintenance routines, a user attempting to diagnose a problem has
to explicitly state pertinent temporal relations in order for the system to provide a diagnosis. Identification
systems behave in much the same manner. Production rules fire based on temporal patterns that the user
expresses during a consultation. We, as researchers and developers, cannot expect system users to enumerate
all domain temporal relations for a problem. Nor should we expect them to specify only the key relationships,
especially if such relationships are obscure.

Intuitively, we need mechanisms to infer temporal relations between events from explicitly stated ones.
Furthermore, these mechanisms should function transparently within whatever host system we choose. TPS
is a tool that satisfies these requirements and provides temporal reasoning functions which are not available
in any existing expert system shell. Other shells provide temporal reasoning abilities, but they concentrate
on reasoning temporally about past, continuous events.

TPS focuses on another aspect of temporal reasoning which is analyzing how events relate in time.
Temporal sequences are important, but not all temporal phenomena reduce to chains of data points. So, the
organization of events in time is equally pertinent and this aspect of temporal reasoning has been largely
ignored by expert system shell designers.

As much as I want to claim TPS’s superiority as a temporal reasoning expert system shell, I cannot.
Researchers in atemporal reasoning admit that more than one knowledge representation is necessary to
capture most complex domains, and temporal reasoning is no different. Kahn and Gorry (1979) had the
right idea in providing several types of different temporal knowledge representations in Time Specialist.
As demonstrated, TPS maintains and reasons about events in time with ease and efficiency. Nevertheless,
temporal sequences are difficult to model because of the interval representation since there is no immediate
method of determining the “next interval.” Again, we have come to the give and take of representation
versus computation. Certainly in a rule-based system, we can determine the next interval by constructing
more complex rules. We can avoid complex rules by adding a different representation. This representation
can be either separate from or integrated with the time map. If it is separate, then before/after chains
would work well. On the other hand, we could use links within the time map to connect strictly successive
intervals. While this addition would immediately improve TPS, there are numerous global problems in
temporal reasoning that require solutions.

The tractability of computing transitive closure with the interval algebra requires further investigation.
As it stands, this problem is A"P-hard, which means any complete algorithm runs in time that exponentially
increases with the number of intervals in the time map. We can avoid facing this intractability by doing one
of the following;:

1. limiting ourselves to domains requiring small amounts of temporal knowledge,
2. using an incomplete, polynomial time algorithm,

3. making representational adjustments, or

42

4. compromising operator expressivity.

While none of these options is palatable, at present we have no alternatives. Looking at other possible
methods for temporal knowledge maintenance would be a fruitful endeavor.

43

Bibliography

Abadi, M., and Manna, Z. (1985) Nonclausal temporal deduction. In Parikh, R., ed., Logic of programs
(Lecture Notes in Computer Science, 193), 1-15. New York, NY: Springer.

Abadi, M., and Manna, Z. (1989) Temporal logic programming. Journal of Symbolic Computation 8:277-295.
Allen, J. F. (1981) An interval-based representation of temporal knowledge. IJCAI-81, 221-226.

Allen, J. F. (1983) Maintaining knowledge about temporal intervals. Communications of the ACM 26.11
(November) 832-843.

Allen, J. F. (1984) Towards a general theory of action and time. Artificial Intelligence 23:123-154.

Arino, N. C. (1989) Integrating temporal reasoning in a frame-based formalism. In Campbell, J., and Cuena,
J., eds., Perspectives in artificial intelligence, volume II: machine translation, NLP, databases, and
computer-aided instruction, 86-96. New York, NY: John Wiley & Sons.

Bolour, A.; Anderson, T. L.; Dekeyser, L. J.; and Wong, H. K. T. (1982) The role of time in information
processing: a survey. ACM SIGART Newsletter 80 (April) 28-48.

Brownston, L.; Farrell, R.; Kant, E.; and Martin, N. (1985) Programming expert systems in OPS5: an
introduction to rule-based programming. Reading, MA: Addision-Wesley.

Bruce, B. C. (1972) A model for temporal references and its application in a question answering program.
Artificial Intelligence 3:1-25.

Buchanan, B. G., and Shortliffe, E. H., eds. (1984) Rule-based ezpert systems: the MYCIN experiments of
the Stanford Heuristic Programming Project. Reading, MA: Addison-Wesley.

Chellas, B. (1980) Modal logic: an introduction. New York, NY: Cambridge University Press.
Chomsky, N. (1959) On certain formal properties of grammars. Information and Control 2:137-167.
Cooper, T. A., and Wogrin, N. (1988) Rule-based programming with OPS5. San Mateo, CA: Morgan Kauf-

manim.

Dean, T. (1986) Temporal imagery: an approach to reasoning about time for planning and problem solving.
Ph.D. dissertation, Yale University, New Haven.

Doyle, J. (1979) A truth maintenance system. Artificial Intelligence 12:231-272.

Fagan, L. M.; Kunz, J. C.; Feigenbaum, E. A.; and Osborn, J. J. (1984a) Extensions to the rule-based
formalism for a monitoring task. In Buchanan, B. G., and Shortliffe, E. H., eds., Rule-based ezpert
systems: the MYCIN experiments of the Stanford Heuristic Programming Project, 302-313. Reading,
MA: Addison-Wesley.

Fagan, L.; Shortliffe, E.; and Buchanan, B. (1984b) Computer-based medical decision making: from MYCIN
to VM. In Clancey, W., and Shortliffe, E., eds., Readings in medical artificial intelligence: the first
decade, 241-255. Reading, MA: Addison-Wesley.

Firebaugh, M. W. (1988) Artificial intelligence: a knowledge-based approach. Boston, MA: PWS-Kent
Publishing.

Fleck, M. M. (1989) Boundaries and topological algorithms (MIT AI Lab Technical Report 1065). Ph.D.
dissertation, Massachusetts Institute of Technology, Cambridge.

44

Forgy, C. L. (1981) VPS2 — interpreter for OPS5. Pittsburg, PA.

Forgy, C. L. (1982) Rete: a fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19:17-37.

Forgy, C. L., and McDermott, J. (1977) OPS, a domain-independant production system language. IJCAI-77,
933-939.

Galton, A. (1987) Temporal logic and computer science: an overview. In Galton, A., ed., Temporal logics
and their applications, 1-52. San Diego, CA: Academic Press.

Galton, A. (1990) A critical examination of Allen’s theory of action and time. Artificial Intelligence 42:159-
188.

Genesereth, M. and Nilson, N. (1988) Logical foundations of artificial intelligence. Palo Alto, CA: Morgan
Kaufmann.

Hale, R. (1987) Temporal logic programming. In Galton, A., ed., Temporal logics and their applications,
91-119. San Diego, CA: Academic Press.

Hanks, S.,; and McDermott, D. (1985) Temporal reasoning and default logics (Technical Report 430). De-
partment of Computer Science, Yale University.

Hayes, P. J. (1979) The naive physics manifesto. In Michie, D., ed., Ezpert systems in the micro-electronic
age, 242-270. Edinburg: Edinburg University Press. Also in Boden, M. A. ed., The philosophy of
artificial intelligence, 171-205. Oxford: Oxford University Press, 1990.

Hayes, P. J. (1984a) Naive physics I: ontology for liquids. In Hobbs, J. R., and Moore, R. C.; eds., Formal
theories of the commonsense world, 71-107. Norwood, NJ: Ablex Publishing.

Hayes, P. J. (1984b) The second naive physics manifesto. In Hobbs, J. R., and Moore, R. C., eds., Formal
theories of the commonsense world, 1-36. Norwood, NJ: Ablex Publishing.

Hopcroft, J. E., and Ullman, J. D. (1979) Introduction to automata theory, languages, and computation.
Reading, MA: Addison-Wesley.

Hornstein, N. (1977) Towards a theory of tense. Linguistic Inquiry 8.3:521-557.

Kabak¢loglu, A. M. (1992) Temporal production systems. IEEE Southeastcon 92, 697-698.

Kahn, K., and Gorry, G. A. (1977) Mechanizing temporal knowledge. Artificial Intelligence 9:87-108.
Kowalski, R., and Sergot, M. (1986) A logic-based calculus of events. New Generation Computing 4:67-95.
Kumar, V. (1992) Algorithms for constraint satisfaction problems: a survey. AT Magazine 13.1:32-44.

Lee, R. M.; Coelho, H.; and Cotta, J. C. (1985) Temporal inferencing on administrative databases. Infor-
mation Systems 10.2:197-206.

Lopez, F.; Savely, R. T.; Culbert, C.; and Riley, G. (1987) CLIPS: a NASA developed expert system tool.
NASA Tech Briefs 11.10 (November/December) 12-14.

Manna, Z. (1980) Logics of programs. In Lavington, S., ed., Information Processing 80, 41-51. New York,
NY: North-Holland.

McCarthy, J. (1980) Circumscription — a form of non-monotonic reasoning. Artificial Intelligence 13:27-39.

McCarthy, J., and Hayes, P. J. (1969) Some philosophical problems from the standpoint of artificial intelli-
gence. In Meltzer, B.; Michie, D.; and Swann, M., eds., Machine intelligence 4, 463-502. New York,
NY: American Elsevier. Also in Readings in artificial intelligence. 466-472. Palo Alto, CA: Tioga,
1981.

McDermott, D. (1982) A temporal logic for reasoning about processes and plans. Cognitive Science 6:101-
155.

McDermott, D., and Doyle, J. (1980) Non-monotonic logic I. Artificial Intelligence 13:41-72.

Miller, R.; Pople, H.; and Myers, J. (1984) INTERNIST-1, an experimental computer-based diagnostic
consultant for general internal medicine. In Clancey, W., and Shortliffe, E. eds., Readings in medical
artificial intelligence: the first decade, 190-209. Reading, MA: Addison-Wesley.

45

Moore, R. L.; Rosenhof, H.; and Stanley, G. (1989) Process control using the G2 real-time expert system.
Conference record of the IEEE Industry Application Society Annual Meeting. 1452-1456.

Newell, A., and Simon, H. (1972) Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.
Nute, D. (1991) Historical necessity and conditionals. Nods 25:161-175.

Orlowska, E. (1982) Representation of temporal information. International Journal of Computer and Infor-
mation Sciences 11.6:397-408.

Perkins, W. A., and Austin A. (1990) Adding temporal reasoning to expert-system-building environments.
IEEE Ezpert 5.1 (February) 23-30.

Pople, H. E. (1977) The formation of composite hypotheses in diganostic problem solving: an excercise in

synthetic reasoning. IJCAI-77, 1030-1037.

Post, E. L. (1943) Formal reductions of the general combinatorial decision problem. American Journal of

Mathematics 65:197-268.

Reichgelt, H. (1987) Semantics for reified temporal logic. In Hallam, J., and Mellish C., eds., Advances in
artificial intelligence, 49—61. New York, NY: John Wiley & Sons.

Reiter, R. (1980) A logic for default reasoning. Artificial Intelligence 13:81-132.
Rescher, N., and Urquhart, A. (1971) Temporal logic. New York, NY: Springer.

Shamsudin, A. Z., and Dillon, T. S. (1991) NetManager: a real-time expert system for network traffic
management (Technical Report 15/91). Department of Computer Science and Computer Engineering,
La Trobe University, Melbourne, Australia.

Sherman, P., and Martin, J. (1990) An OPS5 primer: introduction to rule-based expert systems. Englewood
Cliffs, NJ: Prentice-Hall.

Shoham, Y. (1988a) Chronological ignorance: experiments in nonmonotonic temporal reasoning. Artificial

Intelligence 36:279-331.
Shoham, Y. (1988b) Reasoning about change. Cambridge, MA: The MIT Press.

Shoham, Y. (1988c) Time for action: on the relation between time, knowledge, and action (Report No.
STAN-(CS-88-1236). Department of Computer Science, Stanford University.

Shoham, Y., and Goyal, N. (1988) Temporal reasoning in artificial intelligence. In Shrobe, H., ed., Ezploring
artificial intelligence: survey talks from the national conferences on artificial intelligence, 419-438.
San Mateo, CA: Morgan Kaufmann Publishers.

Shoham, Y., and McDermott, D. (1988) Problems in formal temporal reasoning. Artificial Intelligence
36:49-61.

Thomason, R. H., and Gupta, A. (1980) A theory of conditionals in the context of branching time. In
Harper, W. L.; Stalnaker, R.; and Pearce, G., eds., Ifs: conditionals, belief, decision, chance, and
time, 299-322. Boston, MA: D. Reidel.

Valdéz-Pérez, R. E. (1987) The satisfiability of temporal constraint networks. AAAI-87, 256-260.

van Benthem, J. F. A. K. (1990) The logic of time: a model-theoretic investigation into the varieties of
temporal ontology and temporal discourse (Synthese Library, 156). 2nd ed. Boston, MA: D. Reidel.

van Melle, W.; Shortliffe, E. H.; and Buchanan, B. G. (1984) EMYCIN: a knowledge-engineer’s tool for
constructing rule-based expert systems. In Buchanan, B. G., and Shortliffe, E. H., eds., Rule-based
expert systems: the MYCIN experiments of the Stanford Heuristic Programming Project, 397-423.
Reading, MA: Addison-Wesley.

Vilain, M. (1982) A system for reasoning about time. AAAI-82, 197-201.

Vilain, M., and Kautz, H. (1986) Constraint propagation algorithms for temporal reasoning. AAAI-86,
377-382.

Waterman, D.; and Jenkins, B. M. (1986) Developing expert systems to combat international terrorism.
In Klahr, P., and Waterman, D., eds., Ezpert systems: techniques, tools, and applications, 95-134.
Reading, MA: Addison-Wesley.

46

Wolper, P. (1983) Temporal logic can be more expressive. Information and Control 56:72-99. Also in 22nd
Annual IEEE Symposium on Foundations of Computer Science, 340-348, 1981.

Zhu, M.; Loh, N. K.; and Siy, P. (1987) Towards the minimum set of primitive relations in temporal logic.
Information Processing Letters 26:121-126.

47

Appendix A

Additional Details for Completeness

Case 4.2 of the completeness proof for PTL, presented in Section 2.1.1, requires that if - ¢ Vi then - ¢ U .
The proof presented in Figure A.1 demonstrates this supposition is correct.

(1) FoVv P

(2) +0O(6 V) 113

(3) FO(=¢ D) 2N

(4) FO(=¢ D ¢) D (O-¢ D OY) A2

(5) +O=¢ >0y 3,412

(6) FO(O-¢ D> OY) 513

(7) F0O(B=¢ D> 0OY) D [(O-¢ D OY)

AO(O=¢ D Oy) A OO(O=g D Oy)] A5

(8) F (O-¢ D> Oy)AO(O-¢ D OyY)AOCO(O-¢ D OY) 6,7 12

(9) FO(O-¢ D 0O9) 8 11,12
(10) +F O(O-¢ D> Oy) D (OO=¢ D OOY) A4
(11) + OO-¢ D> OOy 9,10 12
(12) +OO¢ v OOy 1111
(13) k(¢ V¥)A(OO¢ v ODY) 11211t
(14) F[(¢vODg) A(¢VOOY)A[(¥ VOTS) A (Y v ODOY)] 1311
(15) k¢ vOO¢ 14 11,12
(16) Fo Ve 111
(17) FO¢DoUY AT
(18) FDO(@¢ Do U YD) 1713
(19) FO@éDéUY)D[(O¢ DU Y)

AO(O¢ D¢ U) AOT(Qé D ¢ U)] A5

(20) F(ODpDUP)AO(DP DU Y)AOD(Op DU ¢) 18,19 12
(21) FO(O¢ Do U Y) 20 I1
(22) FO@FDPUY)DOOHDO(p U Y) A4
(23) FOO0¢ > O(¢ U ¥) 21,22 12
(24) + -9 D OO 15 11t
(25) F =y D O(¢ U P) 24,23 11,12
(26) F oV O(SUY) 25 11
(27) F (V) A (VVO(P U) 16,26 11f
(28) oV (6AO(¢U V) 27 I1
(29) FOV(6AO(SU) DUV AT
(30) FoUY 28,29 12

tFor the sake of brevity, I am using a derived transformation rule.

Figure A.1: Proof required for completeness.

48

Appendix B

Running TPS

During the development of TPS, I freely moved between three Lisp environments. The following instructions
should be enough to allow anyone to execute a simple TPS program. I strongly recommend the use of the
OPS5 code found in Appendix F. During development, I discovered two different versions of OPS5 code.
The two versions may have been equivalent in function, but they were not equivalent in form. The OPSH
code presented in this thesis does have some modernizations. For instance, I replaced several hand-written
routines with native Lisp functions, intersection was one of them. My version is definitely different in form,
and I dare not comment on its function.

B.0.3 Macintosh Common Lisp

The main development environment for TPS was Macintosh Common Lisp, version 2.0bl. To run a TPS
program, follow these instructions:

1. Double-click on the MCL 2.0b1 icon.
Open the files ops5.cl and tps.cl.
Evaluate the buffer containing ops5.cl.
Evaluate the buffer containing tps.cl.

From the Eval menu, select the Load command and select the desired TPS source file.

SO A

From the Lisp Listener window, type (run).

B.0.4 Austin Kyoto Common Lisp

These instructions are for Austin Kyoto Common Lisp version 1.492.
1. Make the directory containing all source files the present working directory.
2. At the Unix prompt, type kcl.
3. Once in KCL, type (load "tps.cl"). This loads both OPS5 and TPS.

4. After both files load, type (setf *package* (find-package "TPS")). The Lisp prompt should
change to: TPS>.

5. Now type (load "<filename>"), where <filename> is the desired TPS source file.

6. Type (run).

49

B.0.5 Allegro Common Lisp

These instructions are for Allegro Common Lisp version 4.0.1.

1.
2.

S

Ot

Make the directory containing all source files the present working directory.

At the Unix prompt, type c1.

Once in Allegro CL, type (load "tps.cl"). This loads both OPS5 and TPS.
After both files load, type (setf *package* (find-package "TPS")).

Now type (load "<filename>"), where <filename> is the desired TPS source file.

Type (run).

50

Appendix C
Thunder and Lightning Example

C.1 TPS Program

;333 Thunder and Lightning
;333 A simple TPS program to demonstrate how TPS
;333 updates temporal relationships as new ones

;333 become known.

HE
(literalize event at)

(p during-relationship
(during thunder storm)
-->

(write (crlf) |the thunder is during the storm| (crlf)))

(p finishes-relationship
(finishes thunder storm)
-->

(write (crlf) |[the thunder finishes the storm| (crlf)))

(p overlaps-relationship
(overlaps storm thunder)
-->

(write (crlf) [the storm overlaps the thunder| (crlf)))

(make event "at storm)
(make event “at lightning)
(make event ~at thunder)

(make event ~“at calm)

(relation meets lightning thunder)

(relation during lightning storm)

C.2 Sample Run

HEE

;33 Evaluate the buffer
HEE

7 kkk

nil

? (wm) ;3 look at working memory

1: (event "at storm)

2: (event "at lightning)
3: (event "at thunder)
4

(event ~at calm)

nil

? (tm) ;3 look at time map

5 : lightning -- (meets) --> thunder

6 : lightning -- (during) --> storm

5 : thunder -- (met-by) --> lightning

6 : thunder -- (finishes overlapped-by during) --> storm
6 : storm -— (contains) --> lightning

6 : storm —— (finished-by overlaps contains) --> thunder
nil

;3; Look at conflict set; Notice

;33 which rules match.

? (cs)

during-relationship

overlaps-relationship

52

finishes-relationship

(finishes-relationship dominates)

H

H

H

]

H

H

H

Assert that the calm finishes the storm.

? (relation finishes calm storm)

nil

’

’

’

;33 Assert that the calm always follows thunder.

H

H

H

? (relation after calm thunder)

nil

’

Now when we look at the time map, notice how
the relations have been constrained based on
the new information, especially the

relationship between the storm and thunder.

7 (tm)

8 : lightning -- (before) --> calm

6 : lightning -- (during) --> storm

5 : lightning -- (meets) --> thunder

8 : calm -- (after) --> lightning

7 : calm -- (finishes) —-> storm

8 : calm -- (after) --> thunder

6 : storm -— (contains) --> lightning

7 : storm —— (finished-by) --> calm

8 : storm —— (contains) --> thunder

5 : thunder -- (met-by) --> lightning

8 : thunder -- (before) —--> calm

8 : thunder -- (during) --> storm

nil

;53 The conflict set has now been updated to
;33 reflect the changes in the time map.
;33 Compare with the conflict set from
;33 above.

7 (cs)

93

during-relationship
(during-relationship dominates)
HE

;33 Execute the production

HE

? (run)

1. during-relationship 8

the thunder is during the storm

end -- no production true

3 productions (15 // 15 nodes)

—_

firings (8 rhs actions)

mean working memory size (4 maximum)

Lo

mean time map size (4 maximum)
1 mean conflict set size (1 maximum)
0 mean token memory size (0 maximum)

nil

94

Appendix D

Terrorism Example

D.1 TPS Program

HE
;533 Terrorism Example

R

;3 Initializations

(granularity days)

(literalize event type target flag at)
(literalize context type what by at)
(literalize time-between-attacks time-span)
(literalize distance value)

(literalize count value)

(literalize average value)

HE
;33 Determining time span productions

R

(p start-time-spans
{ (start) <s> }

(task time-spans)

(21
Ot

-->
(remove <s>)
(make distance 0)

(make count 0))

(p compute-distances
(task time-spans)
{ (event "flag n “at <int1>) <n> }
(event “at <int2>)
([before meets] <int1> <int2>)
{ (distance "value <dist>) <d> }
{ (count “value <cnt>) <c> }
-—=>
(modify <n> “flag t)
(bind <first> (end-of <int1>))

(bind <second> (start-of <int2>))

(bind <distance> (compute <second> - <first>))

(bind <newdist> (compute <distance> + <dist>))

(bind <newcnt> (compute <cnt> + 1))
(modify <c> “value <newcnt>)

(modify <d> “value <newdist>))

(p start-average-computation
(task time-spans)
- (event “flag nil)
-->

(make compute-average))

(p calculate-average
(task time-spans)
{ (compute-average) <ca> }
{ (distance “value <dist>) <d> }
{ (count “value <cnt>) <c> }
-—=>
(remove <ca>)
(bind <avg> (compute <dist> // <cnt>))

(make average “value <avg>))

(p determine-time-spani

56

(task time-spans)

(average “value < 5)

-—=>

(make time-between-attacks “time-span short)

(write (crlf) |The time between attacks is short| (crlf)))

(p determine-time-span?2
(task time-spans)
(average “value > 5)
(average “value < 10)
-=>
(make time-between-attacks “time-span moderate)

(write (crlf) |The time between attacks is of moderate length| (crlf)))

(p determine-time-span3
(task time-spans)
(average “value > 15)
-=>
(make time-between-attacks “time-span long)

(write (crlf) |The time between attacks is long| (crlf)))

HE
;33 Mode of operation productions

]

(p start-mode
{ (start) <s> }
(task mode-of-operation)
-—=>
(remove <s>)
(make event “type hijack-claim “flag t “at hijack-claim)
(relation starts hijack-claim hijacking)

(relation contains all-times hijack-claim))

HEE
;33 Mode of operation domain rules
HEE

(p abunidal

a7

(task mode-of-operation)

(context “by israel “at <intervalil>)

(context “type political “what support-isreal)

(event “type <event> "at <interval2>)

(contains <intervall> <interval2>)

-->

(write (crlf) [Abu Nidal could be responsible for| <event> (crlf)))

(p

ira

(task mode-of-operation)

(context "what retaliation "by britain "at <intervall>)

(event “type bombing “at <interval2>)

([after overlaps finishes met-by] <intervall> <interval2>)

-->

(write (crlf) |IRA could be responsible for bombing| (crlf)))

]

]

99

(make

(make

(make

(make

(make

(make

(make

(make

Make and Relation commands

bombing “target train-station

bombing ((start 5) (end 5)))

kidnapping “target ambassador

kidnapping ((start 7) (end 10)))

hijacking “target airliner

hijacking ((start 12) (end 15)))

warning “flag n “at warning ((start 16) (end 16)))

bomb-claim “flag n

~“at bomb-claim ((start 16) (end 16)))

event “type
“flag n "at
event “type
“flag n "at
event “type
“flag n "at
event “type
event “type
event “type

“flag n "at

shooting “target executive

shooting ((start 20) (end 20)))

context “type political “what no-prisoner-relase

“by israel ~

at all-times ((start open) (end open)))

context “type political “what retaliation

“by britain "at retaliation)

(relation before bombing kidnapping)

(relation meets kidnapping hijacking)

58

(relation before hijacking warning)
(relation before warning bomb-claim)
(relation meets bomb-claim shooting)

(relation overlaps retaliation bombing)

(make start)

D.2 Sample Runs

HE
;33 Evaluate buffer
HE

ETTTTE T T

nil

7 (make task time-spans) ;3 set up the correct task
nil

? (run) ;3 execute the example

1. start-time-spans 15 16
. compute-distances 16 5 6 13 18 19
. compute-distances 16 3 21 13 25 23

. compute-distances 16 2 27 10 31 29

2
3
4
5. compute-distances 16 1 33 9 37 35
6. compute-distances 16 4 21 12 43 41
7. start-average-computation 16

8. calculate-average 16 50 49 47

9

. determine-time-spanl 16 52
HET

;33 Computation results

HEE

the time between attacks is short

end -- no production true
10 productions (93 // 133 nodes)
9 firings (53 rhs actions)
11 mean working memory size (13 maximum)
6 mean time map size (6 maximum)
7 mean conflict set size (17 maximum)

100 mean token memory size (141 maximum)

59

nil

7 (wm) ;3 check working memory contents

6: (event “type shooting “target executive “flag n “at shooting)

21: (event “type bomb-claim “flag t “at bomb-claim)

27: (event “type hijacking “target airliner “flag t ~“at hijacking)

33: (event “type kidnapping “target ambassador “flag t "at kidnapping)
39: (event “type bombing “target train-station "“flag t "at bombing)

45: (event “type warning “flag t "at warning)

7: (context “type political “what no-prisoner-relase
"by israel “at all-times)

8: (context “type political “what retaliation
"by britain "at retaliation)

16: (task time-spans)

49: (distance “value 9)

47: (count “value 5)

52: (average “value 1)

53: (time-between-attacks “time-span short)

nil

;53 Set up for next task

? (remove 16)

nil

7 (make task mode-of-operation)

nil

? (make start)

nil

? (run) ;; execute next task

10. start-mode 56 55

11. ira 55 8 39 14

;33 Computation results

ira could be responsible for bombing

end -- no production true

10 productions (93 // 133 nodes)

60

11 firings (60 rhs actions)

12 mean working memory size (14 maximum)

6 mean time map size (8 maximum)

6 mean conflict set size (17 maximum)

96 mean token memory size (141 maximum)
nil
7 (wm) ;3 check working memory contents
6: (event “type shooting “target executive “flag n “at shooting)
21: (event “type bomb-claim “flag t “at bomb-claim)
27: (event “type hijacking “target airliner “flag t “at hijacking)
33: (event “type kidnapping “target ambassador “flag t "at kidnapping)
39: (event “type bombing “target train-station "“flag t "at bombing)
45: (event “type warning “flag t "at warning)
58: (event “type hijack-claim “flag t "at hijack-claim)
7: (context “type political “what no-prisoner-relase

"by israel “at all-times)
8: (context “type political “what retaliation
“by britain "at retaliation)

55: (task mode-of-operation)
49: (distance “value 9)
47: (count “value 5)
52: (average “value 1)
53: (time-between-attacks “time-span short)
nil
;33 Check time map contents. Notice
;3; how no interval bounds the
;33 all-times interval in the future
;53 or past, which is a result of
;55 the consistency and truth
;33 maintenance routines.
? (tm)
13 : bomb-claim -- (meets) --> shooting
14 : bomb-claim -- (after) --> retaliation
12 : bomb-claim -- (after) --> bombing
59 : bomb-claim -- (after) --> hijack-claim
12 : bomb-claim -- (after) --> warning

61

13

60 :
12
13 :

14
13

59 :
13 :
13 :
60 :
13 :
14 :
14 :
14 :
59 :
14 :
14 :
60 :
59 :
12
13 :
14 :

59
11

10 :
60 :

59 :
59 :

59
59

59 :
59 :
60 :

59

12
13 :
14 :

11

: bomb-claim -- (after overlapped-by met-by) --> hijacking

bomb-claim -- (during) --> all-times

bomb-claim -- (after) --> kidnapping

shooting --

: shooting --

: shooting --

shooting --
shooting --
shooting --
shooting --
shooting --
retaliation
retaliation
retaliation
retaliation
retaliation
retaliation
retaliation
retaliation
bombing --

bombing --

bombing --

: bombing --

: bombing --

bombing --

bombing --

hijack-claim --
hijack-claim --
: hijack-claim

: hijack-claim

hijack-claim
hijack-claim

hijack-claim

: hijack-claim --

(met-by) --> bomb-claim

(after) --> retaliation
(after) --> bombing
(after) --> hijack-clain
(after) --> warning
(after) --> hijacking

(during) --> all-times

(after) --> kidnapping

-- (before) --> bomb-claim
-- (before) --> shooting

-- (overlaps) --> bombing

-- (before) --> hijack-claim
-- (before) --> warning

-- (before) --> hijacking

-- (during) --> all-times

(before) -->

(before) -->

(overlapped-by) --> retaliation

(before overlaps meets) —--> kidnapping

bomb-claim

shooting

(before) --> hijack-claim
(before) --> warning
(before) --> hijacking

(during) -->

all-times

: bombing -- (before) —--> kidnapping

(before) --> bomb-claim

(before) —--> shooting
(after) --> retaliation
(after) --> bombing
(contains) --> warning
(starts) --> hijacking
(during) --> all-times

(after overlapped-by met-by) --> kidnapping

warning -- (before) --> bomb-claim

warning -- (before) --> shooting

warning -- (after) --> retaliation
: warning -- (after) --> bombing

62

59 : warning -- (during) --> hijack-claim

11 : warning -- (after) --> hijacking

60 : warning -- (during) --> all-times

11 : warning -- (after) --> kidnapping

13 : hijacking -- (before overlaps meets) —--> bomb-claim
13 : hijacking -- (before) --> shooting

14 : hijacking -- (after) --> retaliation

10 : hijacking -- (after) --> bombing

59 : hijacking -- (started-by) --> hijack-claim
11 : hijacking -- (before) --> warning

60 : hijacking -- (during) --> all-times

10 : hijacking -- (met-by) --> kidnapping

60 : all-times -- (contains) --> bomb-claim
60 : all-times -- (contains) --> shooting

60 : all-times -- (contains) --> retaliation
60 : all-times -- (contains) --> bombing

60 : all-times -- (contains) --> hijack-claim
60 : all-times -- (contains) --> warning

60 : all-times -- (contains) --> hijacking

60 : all-times -- (contains) --> kidnapping

12 : kidnapping -- (before) --> bomb-claim

13 : kidnapping -- (before) --> shooting

59 : kidnapping -- (after overlapped-by met-by) --> retaliation
9 : kidnapping -- (after) --> bombing

59 : kidnapping -- (before overlaps meets) --> hijack-claim

11 : kidnapping -- (before) --> warning

10 : kidnapping -- (meets) --> hijacking

60 : kidnapping -- (during) --> all-times

nil

63

Appendix E

TPS Code

3953
3953
3953
3953
3953
3953
3953
3953
3953
3953
3953
3953
3953
3953
3953
3953
3953
3953
3953

EEER)

Temporal Production System (TPS)

Marcus A. Maloof

Artificial Intelligence Programs
University of Georgia

Athens, Georgia 30602

Spring 1992

TPS completed as partial requirements

for Master of Science degree.

TPS is built on OPS5 and provides an
interval-based temporal semantics
within a production system

environment.

Definitions TPS functions and
Redefinitions of OPS5 functions

64

Appendix F

OPS5 Code

333

3555 VPS2 — Interpreter for OPS5

3933

5555 Copyright (C) 1979, 1980, 1981

;;;; Charles L. Forgy, Pittsburgh, Pennsylvania

3533

3533

;3;; Users of this interpreter are requested to contact

3533

;335 Charles Forgy

;3;; Computer Science Department

;;;; Carnegie-Mellon University

;3;; Pittsburgh, PA 15213

3335 Forgy@CMUA

3933

;3;; so that they can be added to the mailing list for OPS5. The mailing list
;3;; 18 needed when new versions of the interpreter or manual are released.
3933
;;;; REPORT BUGS IN THIS VERSION TO:
i3y, George Wood

;;;; Computer Science Department

i3;; Carnegie-Mellon University

i Pittsburgh, PA 15213

JSo arpanet: George. Wood@CMU-CS-A

3933

5335 Major cleanup and modification made by:
3355 Marcus A. Maloof

i Artificial Intelligence Programs
555, 111 Graduate Studies Research Center

;;;; The University of Georgia

;55 Athens, GA 30602

53, mmaloof@aisun2.ai.uga.edu

i3;; Fall 91 - Spring 92

3533

;53 This version intended for use with Temporal Production System (TPS).

EEER)

65

