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An Initial Study

Abstract

This paper describes a method &mplying AQ15c to learningshapedescriptionsof 2D blob-
like objectsin x-ray images. The methodologyandinitial experimentaresultsarediscussed,
along with comparisongo k-nearestneighborand to feed-forwardneural networks. The
AQ15c learning method is shown to have distinct advantagesover the aforementioned
techniquesn termsof higher or comprableclassificationaccuracy,learning and recognition
time, and understandabilityf learnedconcepts. This approachs well-suitedfor recognizing
objects that can bisolatedin the imageusing histogramand thresholdingtechniquesand that
have little internal structure.
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1 Introduction

In this paper, AQ15c (Wnek 1994) symbolic learning is used to Eapedescriptionsof 2D
blob-like objects in x-ray images. The class of objects is a set of x-rayed blastirfigpoaps
image database. The methodology and experimentalresults are presented,along with
comparisonsto k-nearestneighbor (Weiss and Kulikowski 1992), a statistical pattern
recognition technique,and to a feed-forward neural network (Zurada 1992), which a
nonsymbolic learning method. Symbolic learning methods have some distuacitagesver
the aforementionednethods,and in this case, provided higher or comprableclassification
accuracy. This approach is well-suited for recognizing objects that can be igoldtednage
using histogram and thresholding techniques and that have little internal structure.

Briefly, the paper’s organization is &slows. Section2 providesbackgroundanda relevant
review of applications of machine learning technigtoegroblemsin machinevision. Section
3 discusses our methodology. Section 4 details our results, while in Sectie@discussthe
contribution and significance of these results and plans for future research.

2 Background

A new and emergingresearcharea, called Machine Learning and Vision (MLV) applies
machinelearningtechniquego problemsin machinevision (Michalski etal. 1994). From a
vision standpoint,this researchstandsto quicken vision systemdevelopmentand in the
deploymentphases,will add flexibility and adaptability. For learning, this researchwill

inevitably produce powerful techniques and methodologies for dealing witothglexitiesof
vision data. Although various machine learning techniquepactamtially be usedin a variety
of contexts within a vision system, here we concentrate on how |leaairige usedto induce
concept descriptions of shape for simple 2D objects.

2.1 Representation Language and AQ Learning

In the approach presented, a concept description is induced Betofgpre-classifiedraining
examples withirthe contextof backgroundknowledge. The inducedconceptdescriptioncan
then be usedto classify or recognizeunknown objects. By using this approach,a few
epistemologicabssumptionsre made. First, that eachtraining exampleis descriptiveof the
concept to be learned. Second, that given training examples for a concept are suffezent to
a conceptdescription. Sufficiencyis eitherassumedr guaranteedy an expert. Third and
finally, future unknowns will be from the same classes from wtiieltraining exampleswere
drawn.

Examples,backgroundknowledge, and concept descriptionsmust be expressedusing a
representationpreferablya symbolic representation. Symbolic representationare stressed
becauseof the importanceof humanunderstandabilityof learnedconcepts. Each potential
representatiomarriesalongwith it a representationadias, which is a bias introducedby the
representatiochosento expressknowledgethat ultimately affectshow and what knowledge

are and can be represented. The AQ15c conceptlearning system (Wnek 1994) usesan
attributional representatioianguagebased on Variable-Valued Logic, or VL, (Michalski
1973), to learndecisionrulesfrom training examples. We begin by defining a finite set of
relevantattributesandfinite attributedomainsfor a given problem. Eachtraining exampleis
expressed as a vector of attribute values. Hypotheses are induced by AQ and have the form:



D1<:C1

where
C1 is a concept description or cover consisting of a disjunction of complexes,
D1 is the decision class assignediy and
<:: denotes a class assignment operator.

Complexes or rules are conjunctions of selectors or conditions, each having the form:
[<referee> <relation> <referent>]

where
<referee> is a member of the finite set of relevant domain attributes,
<relation> is a relational operator (=, <>, >, <, >=, <=), and
<referent> is a subset of the finite domain fareferee>.

Under strict matching conventions, a decision class is assigned if one of the rules in iis cover
true. Arule is true if all of its selectors are true.

The objectiveis to induce a set of decisionrules that describeshe training examplesin a
maximally general way. The difficulty arises with the teanaximally general. When phrased

in this manner, the problem of finding a maximajgneraldescriptionbecomesan instanceof

the setcoveringproblem. Thatis, find a minimal setof attribute-valuepairs that covers(or
explains)all the positive conceptexampleswhile not coveringany of the negative concept
examples. Negativeconceptexampleseither are explicitly labeledas such, or in a multiple
concept learning context, are formed by the remaining training examples for all other concepts.

The set covering problem is known to be NP-complete, but the AQ algdiMiuhalski 1969)

solvesthe set covering problemin a quasi-optimalmanner. Briefly, the AQ algorithm

randomlyselectsone of the positive training exampleqreferredto asthe seed) and usesthis

exampleasthe basisto computea maximally generaldescriptionwith respecto the negative
exampleqreferredto asthe bounded star). A preferencecriterion is usedto selectthe most
preferable description from the bounded star. If this description results in all pesdivples
being coveredthenthe final conceptdescriptionis the disjunctionof all descriptionsselected
from bounded stars. If positive events remain uncovered by the description, thkgothlem

is repeateduntil all positive examplesare covered. AQ15c (Wnek 1994) is the most recent
implementation of the AQ algorithm.

2.2 Reated MLV Work

Shepherd (1983) used a decision tree learning algorithm to classify siiaesolatedor an
industrial vision system. Using featurevectorsto represenexamples Shepherccompareda
decision tree algorithnk-nn, anda minimum distanceclassifierusing classificationaccuracy.
Classificationaccuraciesfor these classifierswere comprablewith the minimum distance
classifier producing the best accuracy at 82%.

Cromwell and Kak (1991) also characterizeobject shapesusing featurevectorsfor images
containingelectricalcomponentsuchasresistors,capacitorsand transistors. Conceptsare
learned by applying generalizationrules and selectingthe conceptthat explains the most
exampledrom the training set. Their inductionmethodologyis basedon Michalski (1980).
The average classification accuracy for their systemA28&s. No comparisonsvere madeto
other classifiers.



The foundationsof applying AQ learning to recognition problemsin vision were laid by
Michalski (1972, 1973). In thoseseminalpapers,AQ was usedto learn and discriminate
among classes of textures. These ideas were further developathl{$993). In this work,
eight Laws’ masks were used to filter structural (e.g., vertical edges) and surface
characteristic§e.g., averagepixel value in a neighborhood)from a variety of different
textures. The eight extractedluesfrom the Laws’ maskstakenfrom a region of the texture
served as a training example for the AQ algorithfachowicz(1989) comparedAQ andk-nn
on similar data using average classification accuray.averagedB0% accuracywhile k-nn
averaged 70%.

3 M ethodology

The problem to be solved is classifying or recognizing blasting caps inimzeaes. A vision
systemperformingthis task could be usedas a focus-of-attentiorsystemfor airport security
personnel who are tasked with searching luggage for potentially dangerous objects.
The symbolic learning methodologysedhereclosely parallelsMichalski’s (1973)and Bala’s
(1993) and proceedshrougha five stepprocess(1) DataReduction,(2) Blob Isolation, (3)

Discretization, (4) Learning, and (5) Recognition. (S&girel.) The following subsections
describe the methodology in greater detail.
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Figure 1: Five step learning and recognition methodology.
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3.1 Data Reduction

The firststepin pre-processingision datafor machinelearningalgorithmsis datareduction,

which is designed to decreathe volume of the vision datawithout significantly or adversely
affecting the image content (i.e., the objects todm®gnized). The explicit stepsinvolved are
dependent on the images being used and the types of features to be extracted. Examples of d
reductionoperationsnclude reducingthe size of the imagesor quantizinga 255 gray level

images to 4 gray level imageBor this application,we scaledthe imageand quantizedmage

gray level values. The details of this reduction are discussed in section 3.4.

3.2 Blob Isolation

After reducingthe imagedata,our objectivewas to isolate pertinentblobs presentin the cap
imagesand computea suite of statisticsthat characterizéhe blobs. A similar approachwas
taken by Sydow and Cooper (1992).

Using a threshold operation, we were ablesttate 1-3 blobsin eachimage(seeFigure 2b).
The blobs correspondedo the plug area(seeFigure 2c, areal), the primary high explosive
(Figure 2c, area 2), which contains heawgtals,andthe baseof the cap (Figure 2c, area3).
Depending on the quality of the x-ray and the tgpeap, the blobs correspondingo the base
andthe primary high explosivewere either not presentor integratedwith the plug area. The
threshold level was set based on the image histogram.

(@) (b)

Figure 2: Sample images; (a) Original image; (b) Original
image after thresholding; (c) Detected blobs.
After isolatingthe blobs usingthe thresholdoperation,fourteen statisticswere computedon
blobs consisting of more than 25 pixels (see TableThe statisticswere basedon the blob’s
gray level values above the thresholdlevel. Table 2 shows an exampleof the statistics
computed for the images in Figure 2.




3.3 Discretization

AQ15c (Wnek 1994)is an attributionallearningsystemthat requiresdiscreteattributevalues.
Many of the statisticscomputed,suchas area and nmean (see Table 2), were real-valued
attributes and therefore required discretization.

Several techniques exifsir discretizingreal-valuedattributes(Kerber1992), including equal-
width-intervalsand equal-frequency-intervals With equal-width-intervalsthe real range is

divided into n equal-sizedntervals and real valuesare mappedinto the first n integers. A

problem with this approach is thattife classificationalgorithmneedsto discriminatebetween
two real values and these valuae mappednto the samerange,any basisfor discrimination
is destroyed. In other words, the scaling procedure excessively abstracts the data.

Statistic Description

area Area of blob

mean Average gray level intensity

sd Standard deviation of gray level intensity

X x-coordinate of ellipse fitted to blob

y y-coordinate of ellipse fitted to blob

node Gray level value occurring most frequent

peri net er Perimeter of blob

maj or Length of major axis of fitted ellipse

m nor Length of minor axis of fitted ellipse

angl e Angle between major elliptic axis and the
axis of the image plane.

back Sum of gray level values minus the
background

i ntden Modal density of smoothed histogram

mn Minimum Pixel Value

max Maximum Pixel Value

Table 1: Blob statistics and their description.

Table 2: Example of computed statistics.

Attribute Value
area 0.0127
nean 219.5070
sd 1.3403
X 0.4403
y 3.3263
node 219
perineter [0.5554
naj or 0.1980
m nor 0.0818
angl e 95.0737
i nt den 0.0065
back 219
mn 219
nax 223




Equal-frequency-intervals involves discretizing basetherfrequencydistribution of attribute
valuesover the real-valuedrange. A problem associatedvith this techniqueis that a small
group of important outliers could be grouped with a larger cluster of attribute values.
Conversely,an important grouping of attribute values could be divided and mappedinto
different intervals because of outliers.

The ChiMerge algorithm is a discretization algorithm, but unlike the naive technipeessed
previously, uses thg statistic to merge real attribute values istatisticallyrelevantintervals.
In otherwords, the algorithm groupsand separateseal-valuedattributesinto intervals based
on a statistical measure of uniformity.

AQ15c, using the ChiMergalgorithm, discretizedall attributevaluesinto at least10 intervals
using a 99% significancelevel. ChiMerge has the freedomto constructany number of

necessaryntervals; however,one of the parameterso the algorithmis a lower bound on

number ofintervals. The significancelevel determinehow parsimoniousChiMergebehaves
whengroupingreal-valuedattributes. For higher significancelevels (e.g., 99%), ChiMerge
tends to construct a small number of large intervals (Kerber 1992).

For theseexperimentsa variety of lower boundsand significancelevels were tried, but the

best result were achieved with a lower bound obdewer intervalswith a 99% significance
level. Most attributes were scaleml10 discreteintervals,howevermean,standarddeviation,
andanglerequiredl5, 12, and 11 intervals,respectively. Table 3 illustratesthe real ranges
ChiMerge chosefor discretizationof the nean attribute. Notice that ChiMerge partitioned
attribute rangesinto differing widths for the attribute (e.g., scaledintervals 5 and 6).

ChiMerge constructeddiscretizationranges,similar to thosein Table 3, for eachof the 14

attributes. Table 4 shows the statistics from Table 2 after discretization.

Unscaled Attribute Rand Scaled Interval
0.04...214.36
214.37...219.41
219.42...222.09
222.10...225.35
225.36...231.65
231.66...232.04
232.05...242.98
242.99...250.77
250.78...251.92
251.93...254.20

OCOO~NOUTRWNEO

Table 3: Discretized attribute intervals for thean attribute.
3.4 Optimization of the Representation Space

As stated in previous sections, initial data preparattepsfor AQ15c involve reducingimage
volume, computing statisticand quantizingthe real-valuedstatisticsinto discreteintervalsto
form linear attributeswhich are then usedto induce an object description. The parameters
involved in reducing image volume are scaling valuesin the x and y dimensionsand
thresholdingimage gray levels. To guide our selection of image reduction parameters,
information theoreticmeasuresvere usedto investigatehow image contentis affected by
various settingsof theseparameters. |t is crucial to reduceas much of the image data as
possible while removing only a minimum of image content.



Attribute | Scaled Value
area
nean
sd
X
y
node
peri net er
naj or
m nor
angl e
i ntden
back
mn
nax

NPPORPNFRPORLPFRPONRELNO

Table 4: Example of discretized statistics.

Obviously, the space of all possi@ndy scalings and image quantizations for each oRthe
imagesis enormous. Exhaustivelyconductingexperimentover this spaceis prohibitive, so
we chosea setof 5 representativéimagesand extractedfeaturesfor variousgray level values
(256, 64, 16, and 4 levels) and scaling values(100, 80, 60, 40, and 20% of the original
dimension), while maintaining a pre-determined aspect ratio betwermtitly dimensiongx
—y <= 40%).

For each set of parameters (i.e., x-seakie, y-scalevalue,and gray level), we extractedl4
statisticsor attributesfor eachof the five images. Both the entropy measureof information
content (Quinlan 1983) and the Promss®re(Baim 1984) were computedfor eachof the 14
attributes for each data file. To measure the “goodnesstiafadile, and hencethe goodness
of theimagereductionparametersthe sum of the respectiveinformationtheoreticmetricsfor
each attribute was used.

Imagesreducedby 40% in both x andy dimensionsyieldedthe highestinformation content.
Quantization level did not affect information content for the levels considered here.
Consequently, subsequent event extractiotlearningwas conductedon imagesreducedby
40% in thex andy dimensions for 256 gray levels.

3.5 Learning

Each sequenceof 14 measurementservesas an example of a particular blob. Thus,
measurementsan be groupedinto three distinct classesblobl, blob2, and blob3. These
classifications correspond to the image labelings in Figure 2c. After extrdataigom 25 x-

ray images, the blobl class contained 25 examples, the blob2 class contained 21 exadhples,
the blob3 class contained20 examples. Each exampleconsistedof 14 linear attributes,
corresponding to the 14 computed statistics, wéalehattributehad betweenl0 and 15 value
levels, a result of the ChiMerge discretization.

Learning was conducted for 100 trials using a 2-fold cvasidation methodology(Weissand
Kulikowski 1992). For eachtrial, the completeset of pre-classifiedexampleswas divided
evenly into training and testing sets. Thesesetswere scaledand given to AQ15c, which
learneda set of decisionrules for the training examples. Following the learning step, the
decisionrules were usedto classify the examplesin the testing set, which produceda
classification rate for the trial. The overall recognition rate was\tkeagerecognitionrate for



the 100 trails. This testing and validation methodology was also used for experiments
involving other classification method#&Q15c learningparametersvere held constantfor the

100 trials. The bestperformanceresultedwhen AQ15c was setto generategeneralrules;

maxstarwas set to 10; coverswere allowed to intersect;and ambiguousexampleswere

considered positive examples. Figure 3 presents one of the rules learned by AQ15c.

blobl ~ [y=2..5] [mnor=0..3] [angle=1.. 6]
(t:17, u:17)

bl ob2 ~ [sd=2..10] [y=l..3]
(t:12, u:12)

bl ob3 ~ [y=0]
(t:10, u:10)

Figure 3: Example of rules induced by AQ15c.

For thefirst rule presentedn Figure 3, the decisionclassblobl is assignedto an unknown
example if the exampleisvalue is betwee@ and5 inclusively, its mi nor valueis between0
and 3 inclusively, and its angl e value is betweenl and 6 inclusively. The t-weight (total
weight) and u-weight (uniqueweight) valuesindicatethe strengthof rules. In this case,the
rule covered a totadf 17 exampleswhile uniquely coveringalso 17 examples. The fact that
the rule’s t-weight and u-weight are equalicatesthat all the training examplesor the blob1
classwere coveredby this singlerule. Most of the rules AQ generateccoveredall training
examples for given class. This particularrulesetwas takenfrom a learningand recognition
trial having an overall classification accuracy of 100%.

3.6 Recognition

After learningVL ; descriptiondor the examplesof the threeclassesthesedescriptionsvere
usedto classifyblobs in the testing sets. Recognitionis accomplishedoy a flexible match
algorithm (Reinke 1984). Each rule or Méxpression isippliedto a testingexampleyielding
a real number called thiegree of consonance. The degre®f consonancewhich rangesfrom
0.0 (no match) to 1.0 (complete match), is a measure of clodegigs=enthe testingexample
and a concept description.

Although thereare severalparametershat affect how the degreeof consonances evaluated
when assigning a decision class (see Reinke 1984 for more details), we set the pasaoieters
that the decisionclasschosenwas the one with the maximumdegreeof consonance. Ties
involving the correct decision class were ruled in favor of AQ15c.

4 Results

For learningandrecognition,the AQ15c inductive learningsystemwas used. Resultswere
comparedwith a k-nearestneighbor classifier (Weiss and Kulikowski 1992), a classical
statisticalpatternrecognitiontechnique and a feed-forwardneuralnetwork (Zurada1992), a
non-symbolic empirical induction system.

The k-nearesneighborclassifier(k-nn) works by taking a testing exampleand finding its k
closestneighborsin the samplespaceusing somedistancemeasure. Typically k is odd to
prevent ties, so thelasswith the mostclosestneighborsis assignedasthe decisionclassfor
the testing example. Several runs were made using 10@tf@d cross-validationwith k =
1, 3,5, 7,9, and15 using a Euclideandistancemeasure.k = 3 producedthe bestaverage



classification accuracy of 65%, white= 5 produced the single best classifier vathaccuracy
of 86%.

The secondexperimentwas with the Quickprop implementationof a feed-forwardneural

network (Fahlman1988). An artificial neural network (ANN) is a non-symboliclearning

model inspired by the neuronaichitectureof the humanbrain. The classof multilayer feed-

forward networksis capableof learning non-linear statisticalregularitiesfrom pre-classified
examples. Thesemodelsare considerechon-symbolicsincelearnedconceptsare represented
as real-valued weights distributed throughout the network’s connections.

The network architecture chosen was a 1 hidden lagwvorkwith 14 input, 8 hidden,and 3
outputunits. Training andtestingdatawere mappednto a continuousreal rangeof [0, 1].
Output patterns were encoded as a linear representataclodf the three possibleclassesof
blobs. Learning parameters were set at 0.55 for epsilon aridrGr8omentum. Severalruns
were made using 100 trial,fald cross-validatiorafter the network’s learningparametersiad
been determined. The best average classificagiigwas 96%, while the single bestnetwork
achieved a classification accuracy of 100%.

The final experimeninvolved AQ15c which is a symbolicrule inductionlearningsystemthat
generatesnaximally generaldescriptionsby heuristically solving the set covering problem
usingthe AQ algorithm. The learning parametersaisedwere intersectingcoversto generate
rules,a maxstarof 10, the trim parametemwas setto induce generalrules, and ambiguous
examples were regarded as positive. As before, several runs were made usiiad, 2P0old

cross-validation. The best averageclassification rate was 92%, while the single best
classificationrate was 100%. Figure 3 shows an induced ruleset that achieved 100%
classificationaccuracyon testingdata. Table 5 summarizesthe performanceof the three
classificationmethods. Figure 4 containslearningcurvesfor the threemethods. This graph
representdhiow the classificationaccuracyincreaseswith respectto increasingamountsof

training data.

Average Best Average
Classification | Classification Single Learning and
Technique Accuracy Performance Recognition
(%) (%) Time (seconds)
k-nn 65 86 0.8957
ANN 96 100 1.6974
AQ15c 92 100 0.0411

Table 5: Performance summary for classification technique.

5 Discussion

The primary contributiorthis works makesis thatit demonstratesneway in which machine
learning can be applied to a recognition problem in machine vision. One of the main
advantages symbolic methods have over non-symbolic and statistical methods is
comprehensibilityof what was learned. With AQ-type learningwe know precisely which
attributesand value rangeswill lead to what decisions. The learnedsymbolic rules also
suggest which attributes possess the most discriminating p&@uehinformationcanleadto
optimizations of the feature extraction procedure, which is espeirrgiyrtantwhenacquiring
costly or dangerous features.
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Figure 4: Learning curves for the three classification methods.

Certainly, additional data analysis on the data capeloormedto determinewhich featuresor

attributesarerelevant. With AQ, this analysisis a byproductof learning. Unlessadditional
analysisis performed,we cannotbe sure which attributesare relevantfor k-nn since the

relationship betweena testing exampleand a class exampleis representedas a distance
measure. And we cannotbe surewith a neural network, since the learnedrepresentatioris

distributed throughout the network connections as real-valued weights.

Futurework will investigatehow to apply learningto the acquisitionof spatial relationships
between shapes. Experimentation will investigate how orientation affeestthetedfeatures
and how learning copeswith such variation. Finally, additional x-ray imageshave been
acquired of blasting caps in luggage.

6 Conclusions

To a large extent, the work presented in this paper is a natural progregsiewiofisresearch
on applying symbolic machinelearning to texture recognition. Indeed, the application of
machine learning to problems in machine vision eecur at differing levels of representation,
and can be used in conjunction withiaiety of vision processessuchas modelformulation,
poseestimation,and segmentation. This paper has demonstratecne such application of
machinelearning for acquiring symbolic descriptionsof 2D shapesfor object recognition.
Although performancefor the neural network model was slightly better than AQ15c, the
obviousand intuitive comprehensibilityof the learnedsymbolic descriptionsis an important
factor that cannot be considered lightly.
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