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Talk Overview

• Basics of rule learning

• On-line learning

• Concept memory and instance memory

• Partial instance memory and selecting examples

• Widmer and Kubat’s Window Adjustment Heuristic

• Evaluation on the stagger Concepts
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The Basics of Rule Learning

The aq algorithm (Michalski, 1969)

1. Start with positive and negative training examples

2. Pick one positive training example

3. Form a rule by generalizing it as much as possible without
“covering” a negative example

4. Remove the positive examples covered by the rule

5. Until covering all positive examples, goto Step 2

6. Repeat for the negative class, goto Step 2
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Learning the Concept of “Who can vote”

• Attributes:
– gender ∈ { M, F }

– age ∈ { 1, . . . , 120 }

• Training examples:

gender age vote?
M 54 yes
F 42 yes
M 22 yes
F 32 yes
F 11 no
M 14 no
M 8 no
F 16 no
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Learning the Concept of “Who can vote”

• Pick a positive example: 〈 M, 22, yes 〉

• Rule: vote ← [gender = M] & [age = 22]

• Generalize gender: vote ← [gender = M ∨ F] & [age = 22]

• Cover any negative examples? No!

• Generalize age: vote ← [gender = M ∨ F] & [age >= 22]

• Cover any negative examples? No!

• Generalize age: vote ← [gender = M ∨ F] & [age > 16]

• Cover any negative examples? No!

• Final rule: vote ← [age > 16]
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On-line Learning

• Training examples distributed over time

• But system must always be able to perform

• Temporal-Batch Learning
1. Learn rules from examples
2. Store rules, store examples
3. Use rules to predict, navigate, etc.
4. When new examples arrive, add to current examples
5. Goto step 1

• Incremental Learning
1. Learn rules from examples
2. Store rules, discard examples
3. Use rules to predict, navigate, etc.
4. When new examples arrive, learn new rules using old rules

and new instances
5. Goto step 2
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Concept Memory

• Full: Learner stores concept descriptions, changing them only
when new examples arrive (e.g., winnow)

• No: Learner stores no concept descriptions that generalize
training examples (e.g., ib2)

• Partial: Learner stores concept descriptions and modifies them
but not necessarily in response to the arrival of new training
examples, like weight decay (e.g., favorit)
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Instance Memory

• Full: Learner stores all examples from the input stream
(e.g., id5, gem)

• No: Learner stores no examples (e.g., id4, aq11)

• Partial: Learner stores some examples (e.g., lair, hillary,
flora, darling, MetaL(b), MetaL(ib), aq-pm, aq11-pm)
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Classification of Learning Systems

FAVORIT

AQ11

instance
memory

full instance
memory

partial
instance
memory

partial

memory
full instance

AQ-PM

DARLING
AQ-15c

C4.5

memory
no instance

STAGGER
Winnow

CN2

partial
instance
memory

LAIR

FLORA2, 3, 4

HILLARY

MetaL(B), MetaL(IB)

ID4

full instance
memory

GEM
ID5
ITI

memory
no instance

AQ11-PM, GEM-PM

full concept memory

temporal batch incremental

On-line Learning Systems

IB2
IB1

partial concept memoryno concept memory

incremental
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Algorithm for Learning with
Partial Instance Memory

1. Learn rules from training examples

2. Select a portion of the examples

3. Store rules, store examples

4. Use rules to predict, navigate, etc.

5. When new examples arrive

• if incremental learning, then

– learn new rules using old rules, new instances, and
examples held in partial memory

• if temporal-batch learning, then

– learn new rules using new instances and examples held in
partial memory

6. Combine new instances with those in partial memory

7. Goto step 2
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Selecting Examples for Partial Memory

• lair: the first positive example only

• hillary: only the negative examples

• darling: examples near the centers of clusters

• ib2: misclassified examples

• MetaL(b), MetaL(ib): sequence over a fixed window of time

• flora: sequence over a changing window, set adaptively

• aq-pm, aq11-pm, gem-pm, aq11-pm-wah: examples on the
boundaries of rules (i.e., extreme examples), possibly over a
fixed window of time
– for the rule: vote ← [age > 16]

– extreme examples: 〈 F, 16, No 〉 and 〈 M, 22, Yes 〉
– mark the boundary between the concepts ‘Can Vote’ and

‘Cannot Vote’

Slide 12

'

&

$

%

Visualization of Training Examples:
Discrete Version of the Iris Data Set

0

pl

1

sw0 1 2 43 0 1 2 43 0 1 2 43
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
sl

0 1 2 pw

setosa example versicolor example

Copyright c© 2003 Marcus A. Maloof 6



Slide 13

'

&

$

%

Induced Characteristic Rules

setosa ← [pl = 0] & [pw = 0] &

[sl = 0..3] & [sw = 0, 2..4]

versicolor ← [pl = 1] & [pw = 1..2] &

[sl = 1..6] & [sw = 0..4]

Slide 14

'

&

$

%

Visualization of Induced Rules
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Visualization of Extreme Examples
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Evaluation of Learning Systems

• aq11: Incrementally learns disjunctive rules. No instance
memory. A lesioned version of aq11-pm.

• aq11-pm: Incrementally learns disjunctive rules. Selects
examples on the boundaries of these descriptions over a fixed
window of time.

• aq11-pm-wah: aq11-pm with a dynamically sized window of
time using Widmer and Kubat’s Window Adjustment Heuristic
(wah).

• aq-pm: Temporal-batch learner. Disjunctive rules. Selects
examples on the boundaries of these descriptions over a fixed
window of time.
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Widmer and Kubat’s wah

Window-Adjustment-Heuristic ()

lc: threshold for low coverage, user-defined
hc: threshold for high coverage, user-defined
p: threshold for acceptable accuracy, user-defined
N: examples covered by the positive concept description
S: number of conditions in the positive description
Acc: accuracy of current concept descriptions
w: window size

if (N/S < lc ∨ (Acc < p ∧ decreasing(Acc)))
∆w = −0.2w;

else if (N/S > 2.0× hc ∧Acc > p)
∆w = −1.0;

else if (N/S > hc ∧Acc > p)
∆w = 0.0;

else
∆w = 1.0;

w = w + ∆w;
end.
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The STAGGER Concepts

(size = small) (shape = circle) (size = medium, large)

& ∨

(color = red) (color = green)

S M L
T
C
R

C
T

R

C
R

T

Size

Red

Green

Blue

ShapeColor

S M L
T
C
R

C
T

R

C
R

T

Size

Red

Green

Blue

ShapeColor

S M L
T
C
R

C
T

R

C
R

T

Size

Red

Green

Blue

ShapeColor

a. Target concept
for time steps 1–39.

b. Target concept
for time steps 40–79.

c. Target concept
for time steps 80–120.
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The STAGGER Concepts:
Predictive Accuracy
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The STAGGER Concepts:
Memory Requirements
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Observations

• Learners with partial instance memory (e.g., aq11-pm-wah,
flora2) tend to outperform learners with no instance memory
(e.g., stagger, aq11)

• If the partial-memory learner can store the “right” examples,
then when concepts change, it will have more examples for
learning the new concept than will a learner that does not store
examples

• Naturally, the trick is identifying the right examples

• Adding Widmer and Kubat’s wah to aq11-pm slightly
improved accuracy

• But it did improve aq11-pm’s generality since there’s no fixed
period for storing examples

• On the other hand, instead of one parameter for the length of
the fixed window, we now have three parameters for the wah
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Current and Future Work

• Better characterization of performance using synthetic data
sets: cnf, dnf, m-of-n, class noise, concept overlap

• Scale to larger data sets: Just acquired 10 GB of audit data

• Track changing concepts in real data sets

• Evaluate effect of skewed data

• Prove bounds for predictive accuracy and examples maintained

• Reinforcement learning to determine wah parameters

• Ensemble methods for concept drift (Kolter & Maloof, 2003)
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