
Elements of Algorithms

Mark Maloof
Department of Computer Science

Washington, DC 20057

September 23, 2014



Four Critical Elements

I Algorithms have some subset of the following critical
elements:
1. simple statements, including but not limited to:

I input statements
I output statements
I assignment statements

2. sequences of statements, which are also statements
3. branching statements
4. looping statements



Algorithm for Simple Interest

1: input r , b, and m . input statement
2: i ← r · b ·m . assignment statement
3: output i . output statement



Another Algorithm for Simple Interest

1: input r . input statement
2: input b . input statement
3: input m . input statement
4: i ← r . assignment statement
5: i ← i · b . assignment statement
6: i ← i ·m . assignment statement
7: output i . output statement



Branching: If-then Statement

if some condition is true then
statement (or sequence)

end if



Flowchart for an if-then Statement

statement
true

false

condition



Example of an if-then Statement

1: input grade
2: if grade > 64 then
3: output pass
4: end if
5: if grade ≤ 64 then
6: output fail
7: end if



Branching: If-then-else Statement

if some condition is true then
statement (or sequence)

else
statement (or sequence)

end if



Flowchart for an if-then-else Statement

true

false

condition statement

statement



Example of an if-then-else Statement

1: input grade
2: if grade > 64 then
3: output pass
4: else
5: output fail
6: end if



Looping: While Statement, While Loop

while some condition is true do
statement (or sequence)

end while



Flowchart for a While Loop

false

true

condition

statement



Example of a While Loop

1: input grade
2: while there is a grade do
3: if grade > 64 then
4: output pass
5: else
6: output fail
7: end if
8: input grade
9: end while



Repeat-until Loop

repeat
statement (or sequence)

until some condition is true

Equivalent to:

statement (or sequence)
while some condition is false do

statement (or sequence)
end while



For Loop

for i ← b, e do
statement (or sequence)

end for

Equivalent to:

i ← b
while i ≤ e do

statement (or sequence)
i ← i + 1

end while



For-each Loop

for each element of some collection do
statement (or sequence)

end for

Equivalent to:

i ← 1
e ← the number of elements in the collection
while i ≤ e do
element ← ith element of the collection

statement (or sequence)
i ← i + 1

end while



Example of a For-each Loop

1: Let Grades be a sequence or list of grades
2: input Grades
3: for each grade in Grades do
4: if grade > 64 then
5: output pass
6: else
7: output fail
8: end if
9: end for



Algorithm for Binary-to-Decimal Conversion

1: Let D be a decimal number, set to zero
2: Let B be a binary number, set to zero
3: input B
4: Let B ′ be B with its digits reversed
5: i ← 0
6: for each binary digit b ∈ B ′ do
7: D ← D + b · 2i
8: i ← i + 1
9: end for

10: output D



Algorithm for Decimal-to-Binary Conversion

1: Let B be an empty sequence of binary digits
2: Let D be a decimal number, set to zero
3: input D
4: while D 6= 0 do
5: r ← D mod 2
6: Add r as the left-most digit of B
7: D ← D ÷ 2 (integer division)
8: end while
9: output B


	Elements of Algorithms
	Four Critical Elements
	Algorithm for Simple Interest
	Branching Statements
	Looping Statements
	Additional Looping Statements

	Binary-to-Decimal Conversion Revisited
	Decimal-to-Binary Conversion Revisited

