
6 Chapter 3. Solving Problems by Searching

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
frontier← a priority queue ordered by PATH-COST, with node as the only element
explored←an empty set
loop do

if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the lowest-cost node infrontier */
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
addnode .STATE to explored

for each action in problem .ACTIONS(node.STATE) do
child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

frontier← INSERT(child , frontier)
else if child .STATE is in frontier with higher PATH-COST then

replace thatfrontier node withchild

Figure 3.13 Uniform-cost search on a graph. The algorithm is identical to the general graph search
algorithm in Figure??, except for the use of a priority queue and the addition of an extra check in case
a shorter path to a frontier state is discovered. The data structure forfrontier needs to support efficient
membership testing, so it should combine the capabilities of a priority queue and a hash table.

function DEPTH-L IMITED -SEARCH(problem , limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem .INITIAL -STATE),problem , limit)

function RECURSIVE-DLS(node,problem , limit) returns a solution, or failure/cutoff
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
else if limit = 0 then return cutoff

else
cutoff occurred?← false
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
result←RECURSIVE-DLS(child ,problem , limit − 1)
if result = cutoff then cutoff occurred?← true
else if result 6= failure then return result

if cutoff occurred? then return cutoff else return failure

Figure 3.16 A recursive implementation of depth-limited tree search.

