function PRIOR-SAMPLE(*bn*) returns an event sampled from the prior specified by *bn* inputs: *bn*, a Bayesian network specifying joint distribution $P(X_1, ..., X_n)$

```
\mathbf{x} \leftarrow an event with n elements
foreach variable X_i in X_1, \ldots, X_n do
\mathbf{x}[i] \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))
return \mathbf{x}
```

Figure 14.12 A sampling algorithm that generates events from a Bayesian network. Each variable is sampled according to the conditional distribution given the values already sampled for the variable's parents.

```
function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)

inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network

N, the total number of samples to be generated

local variables: N, a vector of counts for each value of X, initially zero

for j = 1 to N do

\mathbf{x} \leftarrow PRIOR-SAMPLE(bn)

if \mathbf{x} is consistent with e then

N[x] \leftarrow N[x]+1 where x is the value of X in \mathbf{x}

return NORMALIZE(N)
```

Figure 14.13 The rejection-sampling algorithm for answering queries given evidence in a Bayesian network.

```
function LIKELIHOOD-WEIGHTING(X, \mathbf{e}, bn, N) returns an estimate of \mathbf{P}(X|\mathbf{e})
  inputs: X, the query variable
            e, observed values for variables E
            bn, a Bayesian network specifying joint distribution \mathbf{P}(X_1, \ldots, X_n)
            N, the total number of samples to be generated
   local variables: W, a vector of weighted counts for each value of X, initially zero
   for j = 1 to N do
       \mathbf{x}, w \leftarrow \text{WEIGHTED-SAMPLE}(bn, \mathbf{e})
       \mathbf{W}[x] \leftarrow \mathbf{W}[x] + w where x is the value of X in x
   return NORMALIZE(W)
function WEIGHTED-SAMPLE(bn, e) returns an event and a weight
   w \leftarrow 1; x \leftarrow an event with n elements initialized from e
   foreach variable X_i in X_1, \ldots, X_n do
       if X_i is an evidence variable with value x_i in e
           then w \leftarrow w \times P(X_i = x_i \mid parents(X_i))
           else \mathbf{x}[i] \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))
   return x, w
```

Figure 14.14 The likelihood-weighting algorithm for inference in Bayesian networks. In WEIGHTED-SAMPLE, each nonevidence variable is sampled according to the conditional distribution given the values already sampled for the variable's parents, while a weight is accumulated based on the likelihood for each evidence variable.

version cycles through the variables, but choosing variables at random also works.