function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of $P(X|e)$

inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network specifying joint distribution $P(X_1, \ldots, X_n)$
N, the total number of samples to be generated

local variables: W, a vector of weighted counts for each value of X, initially zero

for $j = 1$ to N do
 $x, w \leftarrow$ WEIGHTED-SAMPLE(bn, e)
 $W[x] \leftarrow W[x] + w$ where x is the value of X in x
return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

$w \leftarrow 1$; $x \leftarrow$ an event with n elements initialized from e

foreach variable X_i in X_1, \ldots, X_n do
 if X_i is an evidence variable with value x_i in e
 then $w \leftarrow w \times P(X_i = x_i | parents(X_i))$
 else $x[i] \leftarrow$ a random sample from $P(X_i | parents(X_i))$
return x, w

Figure 14.14 The likelihood-weighting algorithm for inference in Bayesian networks. In WEIGHTED-SAMPLE, each nonevidence variable is sampled according to the conditional distribution given the values already sampled for the variable’s parents, while a weight is accumulated based on the likelihood for each evidence variable.

function GIBBS-ASK(X, e, bn, N) returns an estimate of $P(X|e)$

local variables: N, a vector of counts for each value of X, initially zero
Z, the nonevidence variables in bn
x, the current state of the network, initially copied from e

initialize x with random values for the variables in Z
for $j = 1$ to N do
 for each Z_i in Z do
 set the value of Z_i in x by sampling from $P(Z_i | mb(Z_i))$
 $N[x] \leftarrow N[x] + 1$ where x is the value of X in x
return NORMALIZE(N)

Figure 14.15 The Gibbs sampling algorithm for approximate inference in Bayesian networks; this version cycles through the variables, but choosing variables at random also works.