COSC 387 Homework #2 (Optional)

Fall 1998

1. Of 100 patients in a hospital with a certain disease, 10 are chosen to undergo a drug treatment that increases the percentage cured rate from 50% in the untreated case to 75%. If a doctor later encounters a cured patient, what is the probability that the patient received the drug treatment?

2. For the same problem as above, draw a Bayesian inference network that shows the causal interaction(s) between the variables. Use the algorithm for propagating probabilities in trees to compute the posterior probability (i.e., the probability that a patient participated in the drug study given that the patient has been cured).

3. In your local nuclear power station, there is an alarm that senses when a temperature gauge exceeds a given threshold. The gauge measures the core temperature. Consider the Boolean variables \(A \) (alarm sounds), \(F_A \) (alarm is faulty), and \(F_G \) (gauge is faulty), and the multivalued nodes \(G \) (gauge reading) and \(T \) (actual core temperature).

(a) Draw a belief network for this domain, given that the gauge is more likely to fail when the core temperature gets too high.

(b) Suppose we add a second temperature gauge \(H \), connected so that the alarm goes off when either gauge reads High. Where do \(H \) and \(F_H \) (the event of \(H \) failing) go in the network?