A Partial Memory Incremental Learning
Methodology And Its Application To
Computer Intrusion Detection

Marcus A. Maloof and Ryszard S. Michalski

MLI 95-2

March 1995

A Partial Memory Incremental Learning Methodology
and its Application to Computer Intrusion Detection

Marcus A. Maloof and Ryszard S. Michalski
Center for Machine Learning and Inference
George Mason University
Fairfax, VA 22030-4444
{mal oof, m chal ski} @i c. gnu. edu

March 1995

A Partial Memory Incremental Learning Methodology
and its Application to Computer Intrusion Detection

Abstract

This paper discusses work in progress and introduces a partial memory incremental
learning methodology. The incremental learning architecture uses hypotheses induced from
training examples to determine representative examples, which are maintained for future
learning. Criticism and reinforcement from the environment or the user invoke incremental
learning once the system is deployed. Such an architecture and development methodology
is necessary for applications involving intelligent agents, active vision, and dynamic
knowledge-bases. For this study, the methodology is applied to the problem of computer
intrusion detection. Several experimental comparisons are made using batch and
incremental learning between AQ15c, a feed-forward neural networkkamd
Experimental results suggest that AQ15c has several advantages over other methods in
terms of predictive accuracy, incremental learning, learning and recognition times, the types
of concepts induced by the method, and the types of data from which these methods can
learn.

Key words: concept learning, incremental learning, intrusion detection, audit trail
analysis.

Acknowledgments

The authors thank Eric Bloedorn for many discussions on this work, reading drafts of the
paper, and recommending Davis’s work on characterizing time series. Thanks also goes to
Dorothy Denning for providing pointers to SRI's work on intrusion detection.

This research was conducted in the Center for Machine Learning and Inference at George
Mason University. The Center’s research is supported in part by the Advanced Research
Projects Agency under Grant No. NO0014-91-J-1854, administered by the Office of Naval
Research, and the Grant No. F49620-92-J-0549, administered by the Air Force Office of
Scientific Research, in part by the Office of Naval Research under Grant No. NO0014-91-
J-1351, and in part by the National Science Foundation under Grants No. IRI-9020266
and DMI-9496192.

1 Introduction

This paper discusses work in progress and introduces a partial memory incremental
learning methodology. The methodology is based on the AQ inductive learning algorithm
and consequently uses Variable-Valued Logic {)Vas a representation language
(Michalski 1969, 1972, 1973, 1980). The proposed methodology is incremental in that (a)
static concepts are incrementally learned, and (b) incrementally changing concepts are
learned. We conjecture that in both cases, completeness and consistency is maintained.
The proposed methodology maintains and uses a partial memory model (Reinke and
Michalski 1988), in which representative examples are maintained throughout the learning
process that maximally expand and constrain learned concepts. This partial memory
scheme is contrasted by no memory incremental learning (e.g., reinforcement learning),
and full memory incremental learning (Hong et al. 1986; Reinke and Michalski 1988)
Learned concepts aid in determining the set of representative concepts. This methodology
is designed to support applications that require incremental learning of concepts and
learning of concepts that incrementally change.

Traditional application of machine learning to intelligent systems development involves
collecting a set of training examples, expressing those training examples using a
representation language in a representation space that facilitates learning, and using a
learning algorithm to induce a set of concepts from the codified training examples. These
induced concepts are subsequently validated and incorporated into an inferential system and
deployed into an environment. This paradigm dictates that learned concepts, once deployed
in a system, are static and do not change with respect to the domain, the user, or the
environment. If one or more of these factors does change, the entire development process
is repeated to produce a system capable of coping with the new scenatrio.

New applications, such as intelligent agents (e.g., Maes 1994) and active vision (e.g.,
Ballard and Brown 1993), require autonomous or semi-autonomous functioning and
adaptation to changes in the domain, the environment, or the user. Such requirements
suggest that incremental learning, as opposed to batch learning, is needed. As experimental
results presented here demonstrate, when compared to batch learning, partial memory
incremental learning yields faster learning times and reduced memory requirements at the
expense of slightly lower predictive accuracy. Although incremental learning is needed in
application areas such as intelligent agents and active vision, the application considered here
is a dynamic knowledge-based system for computer intrusion detection (Denning 1987).

To apply the proposed partial memory incremental learning methodology to the problem of
detecting intruders in a computer system, training examples were extracted from a Unix
audit file and represented using YLSymbolicuse profiles for the computer system’s
users were learned using the AQ inductive learning algorithm . Experimental comparisons
were made between AQ15c (Wnek 1994), the most recent implementation of the AQ
algorithm, a feed-forward neural network (Zurada 1992), a non-symbolic learning
algorithm, andk-nearest neighbor (Weiss and Kulikowski 1992), a statistical pattern
recognition technique. These results demonstrate that AQ has distinct advantages over
neural networks anklnearest neighbok{nn). Furthermore, the advantages of AQ extend
beyond predictive accuracy and learning and recognition times to issues of coping with
symbolic data and incremental learning, which are discussed in detail.

Global connectivity of computer systems has elevated concerns about computer security

and intrusion detection. Passwords, gateways, and firewalls are all designed to protect

computing and information resources from unauthorized access. Audit trails serves as a

valuable tool to system administrators when detecting probes and attacks. Intruders often

exploit holes in the operating system or crack password files to gain access to the computer
system and masquerade as a legitimate user. At this point, detection of an intruder becomes
increasingly difficult, especially with computer systems that have a large number of users.

Quite a bit of research has been conducted in attempts to statistically model user behavior
(Smaha 1988; Lunt et al. 1989; Vaccaro 1989; Anderson et al. 1994b). Statistical models,
or profiles, once acquired, are subsequently used to verify that a user’s recent behavior is
consistent with past behavior. While a statistical approach to this problem is certainly
valid, there are advantages to the machine learning approach taken here. These advantages
include using both statistical and logical information when learning use profiles, learning
symbolic concepts which can be inspected and understood by humans, and finally, because
learned concepts are directly accessible, learning incrementally is possible, which allows
the system to adapt to changes in a user’s behavior over time.

The organization of this paper is as follows. Section 2 provides details of the VL
representation language, the AQ algorithm, and recognition through flexible matching. It
also presents a taxonomy for incremental learning and briefly reviews related work in
intrusion detection. Section 3 introduces the incremental learning architecture and
methodology based on Vland the AQ algorithm. Section 4 describes comparative
experimental results between AQ1lkan, and a feed-forward neural network. The paper
concludes with a discussion of the results and directions for future work.

2 Background

This section provides background material on the kpresentation language, the AQ
algorithm, recognition through flexible matching, presents a taxonomy for incremental
learning, and briefly reviews related work in intrusion detection.

2.1 Representation Language and AQ-Based Learning Method

In our approach, a concept description is induced from a set of pre-classified training
examples within the context of background knowledge. The induced concept description
can then be used to classify or recognize unknown observations. In this approach, a few
epistemological assumptions are made. First, each training example is descriptive of the
concept to be learned. Second, given training examples for a concept are sufficient to learn
a concept description. Sufficiency is either assumed or guaranteed by an expert. Third and
finally, future unknowns will be from the same classes from which the training examples
were drawn.

Examples, background knowledge, and concept descriptions must be expressed using a
representation language, preferably a symbolic representation language. Symbolic
representation languages are stressed because of the importance of human understandability
of learned concepts. Human understandability of learned concepts is important because if a
system could act in a way that is harmful to humans, then the concepts responsible for this
behavior require modification. Symbolic concepts allow for this inspection and
modification. To accomplish this, we must able to determine the boundaries of decision
regions so we know under which conditions the system might change its decision and

consequently its behavior. Mapping the boundaries of decision regions formed by neural
network learning is made more difficult, since learned concepts are non-symbolic.

Each potential representation language for expressing examples and learned concepts
carries a representational bias. This bias ultimately affects what knowledge can be
represented and learned. The AQ15c concept learning system (Wnek 1994) uses an
attributional representation language based on Variable-Valued Logic,, dMuthalski

1973), to learn decision rules from training examples. We begin by defining a
representation space for the problem which is formed from a finite set of relevant attributes
and finite attribute domains. Each training example is expressed as a vector of attribute
values, which is a particular instantiation of the relevant attributes using values from the
attribute domains. Hence, the assumption is made that all examples and concepts can be
represented as a set of attribute-value pairs expressed in disjunctive normal form.
Hypotheses induced by AQ have the form:

D1<:C1

where
C1 is a concept description or cover consisting of a disjunction of complexes,
D1 is the decision class assignediy and
<:: denotes a class assignment operator.

Complexes or rules are conjunctions of selectors or conditions, each having the form:
T < referee> <relation> <referent> |’

where
<referee> is a member of the finite set of relevant domain attributes,
<relation> is a relational operator (=, <>, >, <, >=, <=), and
<referent> is a subset of the finite domain fareferee>.

Under strict matching conventions, a decision class is assigned if one of the rules in the
associated cover is true. Arule is true if all of its selectors are true. Figure 5.1 shows two
rules induced using AQ15c (Wnek 1994).

The objective is to induce a set of hypotheses that describes the training examples in a
maximally general way. The difficulty arises with the temaximally general. When
phrased in this manner, the problem of finding a maximally general description is an
instance of the set covering problem. That is, find a minimal set of attribute-value pairs that
covers (or explains) all the positive concept examples while not covering any of the
negative concept examples. Negative concept examples either are explicitly labeled as
such, or in a multiple concept learning context, are formed by the remaining training
examples for all other concepts.

The set covering problem is known to be NP-complete, but the AQ algorithm (Michalski
1969) solves the set covering problem in a quasi-optimal manner. Briefly, the AQ
algorithm randomly selects one of the positive training examples (referred tosasdhe

and uses this example as the basis to compute a maximally general description with respect
to the negative examples (referred to adbthaded star). A preference criterion is used to

select the most preferable description from the bounded star. If this description results in
the coverage all positive examples, then the final concept description is the disjunction of all
descriptions selected from bounded stars. If positive events remain uncovered by the
description, then the algorithm is repeated until all positive examples are covered. The AQ
algorithm guarantees completeness and consistency of learned concepts. Completeness

means that a learned concept covers all positive examples. Consistency means that a
learned concept does not cover any negative examples. AQ15c (Wnek 1994) is the most
recent implementation of the AQ algorithm.

2.2 Recognition Through Flexible Matching

After learning and validation, induced concepts can be incorporated into a system and
deployed. As new observations come to the system, it must classify these events. Under
strict matching conventions, if the example’s attribute values satisfy all conditions of a rule,
then the decision class to which the rule belongs is assigned.

Conceptually, rules carve out decision regions in an event space. An event or
representation space is defined by the finite set of domain attributes and the values these
attributes take. Referring to Figure 2.1, the concept descriptiassOciated with decision

class D and the concept description &ssociated with decision class libth carve out
decision regions in the event space E. Concepb@sists of three covers (illustrated by
overlapping rectangles), while concept €nsists of two. Regardless of whether
matching is strict or flexible, if an unknown example, such as exampialle within a
decision region, it is assigned the decision class associated with that region. Example e
would be assigned to decision class D

E

« 71 8
o
Cl o 2

- Y

&

Figure 2.1: Examples and concepts in an event space.

On the other hand, if an example does not fall within a decision region, as is the case with
example g then a strict matching algorithm would not be able to classify the event and it
would be left as unclassified or unknown. Conversely, a flexible matching algorithm will
compute the distance from the example to all the concepts in the example space and assign
the decision class with the greatest degree of match. Thus, a flexible matching system will
always provide the best possible decision. Flexible matching alleviates the brittleness
usually associated with rule-based reasoning systems.

Two aspects of rule induction necessitate flexible matching. First, AQ is a heuristic

algorithm, so although AQ is capable of generating optimal descriptions, this cannot be
guaranteed in all cases. Second, for sufficiently complex representation spaces, it is
practically impossible to gather all training examples associated with a concept.

Consequently, even if we had an admissible rule induction algorithm, our inability to gather

all training examples pertaining to a concept makes it impossible to learn the optimal

concept.

Several flexible matching schemes exist to calculate the degree of match between examples
and concepts (see Wnek 1994). The method used for experiments presented in this paper

is computed as follows. The degree of matchetween the example and the concept
description Cconsisting oh complexes is given by:

a

%% 1
““25 g ?
where

a; is the number of selectors in rilef concept Csatisfied by example,eand
B is the total number of selectors in rutef concept €

Formula 1 yields a real number in the range [0, 1] where O represents no match and 1
represents complete match.

2.3 Taxonomy for Incremental Learning
Incremental learning is the direct or indirect iterative modification or refinement of concepts
from sets of training examples distributed over time (Reinke and Michalski 1988).

Referring to Figure 2.2, incremental learning can be accomplished using one of three
memory models: no memory, partial memory, and full memory.

Incremental Learning

TN

No Memory Partial Memory Full Memory

Figure 2.2: Taxonomy for incremental learning.

With a no memory model, concepts are refined based solely on the current set of new
training examples, which are discarded after the incremental learning step is complete.
Reinforcement learning is an example of no memory incremental learning. A partial
memory model involves storing a portion of training examples, usually in some
representative or generalized form, for future learning steps. Partial memory learning uses
previously learned concepts to aid in judging which training examples are representative.
The work presented in this paper falls into this category and is discussed further in section
3. Finally, under a full memory model, all training examples are maintained and concepts
are refined in response to new training examples, but are modified within the context of all
training examples seen. Examples of full memory systems include AQ15 (Hong et al.
1986) and the system described by Bhandaru and Murty (1991). Note that these systems
are not intended to learn incrementally changing concepts.

The primary disadvantage to full memory incremental learning is the storage requirements.
All training examples collected must be retained. While many may argue that storage is
inexpensive, few users are willing to devote large amounts of storage space to an intelligent
agent, for example, that performs relatively simple tasks. Furthermore, memory
requirements are great concerns for builders of autonomous vehicles.

2.4 Related Work on Intrusion Detection

Approaches to intrusion detection fall primarily into two categories: statistical approaches
and machine learning approaches. While both statistics and machine learning seek simple
descriptions for collections of data, the approaches differ primarily in the nature of these
simple descriptions. Statistical approaches typically use analog models and produce

numeric results. Machine learning, on the other hand, uses symbolic or logic-based

models to produce symbolic results, which may be complemented by numerics. Based on
these definitions, neural network models, for example, are sometimes classified as either a
statistical approach or a machine learning method. Unfortunately, the boundaries between
machine learning and statistics are sometimes faint, and overlap and intermingle, but we
will attempt to place surveyed approaches into one of these categories with justifications

and caveats.

Statistical Approaches

Denning’s (1987) seminal paper laid the foundations for the Intrusion Detection Expert
System (IDES) which uses a statistical component for anomaly detection and a rule-based
component for detecting known intruder behaviors (Lunt et al. 1989). The IDES system
later evolved into the Next Generation Intrusion Detection Expert System (NIDES), both of
which were developed at SRI International (Anderson et al. 1994a). Figure 2.3 shows the
NIDES architecture.

Audit-Data
Generation

'

Audit-Data >

User —| Collection Archiver
Interface + \
Statistical Rulebased
Component Component
Resolver

Figure 2.3: NIDES Architecture (Anderson et al. 1994a).

The NIDES statistical component (Javitz and Valdes 1994) detects anomalous behaviors in
user’s, groups of users, and in the global computing system by developing profiles, which
are histories of long-term computing activity. Each audit record generated is expressed as a
vector of measures, which NIDES analyzes and returns a numeric representing the degree
of abnormality. If the number of abnormal records exceeds some pre-set threshold over a
determined period of time, then an alert is sent to system administrators.

The abnormality metric is computed from four classes of measures: intensity, audit record
distribution, categorical, and counting measures. These measures are aged using an
exponential aging function so that recent activity is weighted more heavily. Intensity
measures capture absolute levels of activity on varying time scales. Examples of intensity
measures would be the number of audit records generated over a one minute period and
over a one hour period.

Audit record distribution measures divide, or distribute, short periods of audit records into
categories of activity. These categories of activity are compared with historical data to see
if current use is similar to past use. For example, for a given period, 60% of a user’s audit

records pertain to CPU usage, while 30% pertain to disk access. This short term behavior
would be compared with the user’s historical data to see if this recent activity is suspicious.

Categorical measures profile non-numeric aspects of a user’s behavior, such as the user’s
terminal, filenames accessed, and the like. Each individual categorical measure consists of
a finite domain. As a user’s profile is developed, frequency counts are made and a discrete
probability density function is computed for this finite domain. For example, a user is
most likely to login from the terminal in her office. Occasionally, she logs in from the
conference room. If she were to login from her boss’s terminal, then she would not match
her historical profile, which would be a factor when NIDES computes the user’s
abnormality metric.

Finally, counting measures are simply counts of various system measures, such as number
of CPU seconds and number of characters read or written. Again, these measures are
compared to historical use.

Other statistically-based intrusion detection systems include Wisdom & Sense (Vaccaro
1989) and Haystack (Smaha 1988). Haystack is also the core of the Distributed Intrusion
Detection System (Mukherjee et al. 1994).

Neural Network Approaches

Debar et al. (1992) describe a recurrent neural network component for detecting anomalous
user behavior by learning Unix command sequences (see Figure 2.4). Each command
from a pre-defined set of commands was assigned to an input neuron of the network. The
presence of a command at titrie represented as a 1; the absence is represented as 0. The
output neurons, ranging from 0 to 1, predict the next likely command in the sequence. A
knowledge-based system for neural network analysis and control manages recurrent
learning and uncertainty. An expert system analyzes neural network results within the
context of a security policy and produces a decision to the user. Experimental results were
presented for eight command sequences for one user. Over the eight command sequences,
the recurrent neural network predicted the next command with an average predictive
accuracy of 82%. Results were not as strong for predicting the second and third
commands in the sequence.

Audit-Data
Generation
Recurrent
Neural Net
Expert . Analysis &
System Control KB
User
Interface

Figure 2.4: Neural network architecture for intrusion detection.

Rule-Based Approaches

Teng et al. (1990) describe an approach for inductively learning rules from temporal
patterns, or sequences, using the Time-based Inductive Machine (TIM). Induced rules are
subsequently used for anomaly detection (see Figure 2.5). Security events consisted of a
time stamp and descriptive information, such as user name, event type, and process
identifier. A discrete and linear model of time is assumed. Rules generated by TIM have
strictly ordered, deterministic sequences as conditional elements with probabilistic
consequents. For example, consider the simple sequence given by Teng et al. (1990):

ABCSTSTABCABC
From this sequence, TIM induces the following rule-base:

RL: A B - (C, 100%)
R2. C - (S, 50%; A 50%)
R3: S (T, 100%)

R4: T - (A 50%; S, 50%)

Rules are evaluated and selected based on an entropy measure. In the above example, rules
R2 and R4 would be discarded, while rules R1 and R3 would remain to form a profile
because they are stronger since they cover more events in the sequence and their
consequents are more certain. No experimental results were reported, although the authors
did comment that “about 9.5% of the rules generated with an entropy value of less than
0.25 could explain or cover more than 63.5% of the security events over a given period of
time” (Teng et al. 1990, p. 28).

Audit-Data
Generation

PN

Detection | Proﬂlg
Module Generation

Y

User
Interface

Figure 2.5: Intrusion detection architecture based on TIM (Teng et al. 1990).

3 M ethodology

Viewing an intrusion detection application as a concept learning problem gives rise to two
distinct phases (see Figure 3.2). The first phase, or the development phase, involves
collecting an initial set of training examples such that a sufficient concept can be learned and
will provide the system with enough inferential capability to be useful in its intended
environment. The development phase equates to the historical and traditional paradigms of
concept learning or learning from examples.

The second phase, or the deployment phase, involves installing the system in its
environment where it should function in a semi-autonomous fashion. During the
deployment phase, the system must incrementally learn and adapt to changes in the
environment or in the behaviors of users. Incremental learning is required when an
observation is misclassified, which is determined by feedback from the user or from the
environment.

A partial memory incremental learning approach uses learned concepts to determine which
training examples establish the outer bounds of a concept. Referring to Figure 3.1, assume
that for some event space or representation dpaee have a collection of positive and
negative examples and that we have learned some cartbepis complete and consistent.

That is, the concept covers all of the positive examples and none of the negative examples.
The representative positive examples of a concept are those examples that lie at the
boundaries of the concept in the event space (e.g., the outlined plus signs), while the
representative negative examples are those that constrain the concept in the event space
(e.g., the outlined minus signs). All other training examples can be discarded.

E -

Figure 3.1: Partial memory incremental learning.

After the initial concepts have been learned in the development phase and the system has
been deployed, the learned concepts are used for inference. The system will receive
reinforcement or criticism from its environment, its user, or both. If the system makes a
wrong decision, then this is a signal that the system’s concepts require refinement. The
misclassified training example is included with the existing representative examples and
inductive learning takes place. Once new concepts are learned, the training examples are
evaluated and those determined to be representative are selected to form the new set of
representative examples. The new concepts are used for inference and the new
representative training examples are stored. This process repeats indefinitely. Figure 3.2
illustrates the architecture for a partial memory incremental learning system.

A partial memory incremental learning scheme would be difficult, if not impossible, to
implement for memory-based and neural network learning methods. Kith for
example, there is no hypothesis formation, which is a necessary requirement for partial
memory incremental learning. To incrementally learn concepts ksimg additional
training examples are simply memorized. To learn incrementally changing concepts, the
same memorizing mechanism is exploited, but additional aging processes must be
implemented so old concepts are forgotten.

Neural network learning, on the other hand, clearly formulates generalized hypotheses, but
does so in a non-symbolic manner. Consequently, a neural network’s learned concepts are
not available for human inspection or interpretation, which makes mapping concept
boundaries difficult, if not impossible. Not only is such mapping necessary for partial
memory incremental learning, but also direct manipulation of learned concepts is required
for no memory and full memory incremental learning. Consequently, incremental learning,

10

Environment

|

- Inference
Concept / \

Learning i
N Representative @
@ Examples

Partial Memory p—
Incremental Rei rfl Iicism t
Learning einforcemen

Development Phase Deployment Phase

Figure 3.2: Partial memory incremental learning architecture and methodology.

especially as is described by Reinke and Michalski (1988), would be difficult, if not
impossible to implement in neural networks. Since neural network learning involves
converging to a global minimum, learning incrementally changing concepts is also difficult.
Because of this required convergence, learning incrementally changing concepts can only
be accomplished through batch learning, which can require long training periods.

Several issues must be addressed when applying a partial memory incremental learning
methodology to a problem. The first concerns how representative examples are chosen.
The second involves how these representative examples are maintained throughout the
incremental learning process. Regarding the first issue of how representative examples are
chosen, for this study maximally general examples were used that either expanded or
constrained concepts in the representation space. Specifically, the attribute values for the
attributes appearing in learned rules were retained, while other attribute values were
changed to unknown or don’t care values. The set of representative examples was the set
union of these maximally general examples, to eliminate redundancies. For instance, the
training examples

daf f y- event
avgcpu m ncpu maxcpu avgbl ks m nbl ks naxbl ks
12 6 14 50 8 75

coyot e- event
avgcpu m ncpu nmaxcpu avgbl ks m nbl ks naxbl ks
34 32 36 30 20 50

might yield the decision rules

11

daffy-rul e
[avgbl ks = 48..52]

coyote-rul e
[mncpu = 30.. 33]

in which case, the original training examples would be translated into the following
representative examples:

daf f y- event
avgcpu m ncpu maxcpu avgbl ks m nbl ks naxbl ks
? 6 ? 50 ? ?

coyot e- event
avgcpu m ncpu maxcpu avgbl ks m nbl ks naxbl ks
? 32 ? 30 ? ?

The second issue involves how representative examples are maintained throughout the
incremental learning phase. This is an important consideration since examples are
generalized and what is considered representative early in incremental learning may not
remain representative throughout the incremental learning phase. Consequently, attributes
whose values are discarded early may prove to be better in later stages. On the other hand,
fewer generalized examples are likely to be kept than specialized examples. One method is
to eliminate old representative examples as what is considered ‘representative’ changes.
Another method, the method used here, is to keep all past representative examples
regardless of how the representative examples change. The first method would probably
be suitable for rapidly changing domains, whereas the second method would yield better
results in more stable domains.

Application to Intrusion Detection

The proposed incremental learning architecture and methodology was applied to the
problem of computer system intrusion detection. Typically, an intruder masquerades as
one of the legitimate system users. If machine learning could be used toskgatierns

for the users of the computer system, then these patterns could be used to detect intruders.
This research is most similar to the work of Teng et al. (1990) in the sense that we are
inductively learning symbolic rules. It differs in that we do not learn sequences of actions.

In a traditional concept learning scenario, we divide training examples into classes, express
the training examples in a representation space that facilitates learning and assert that the
examples themselves are sufficient for learning the intended concept. For this application,
we might be tempted to divide patterns into classes relating to a “legitimate user” and
“intruder”, but collecting examples of an intruder’s behavior would be a difficult task, since
intrusions are a relatively infrequent events. Rather, we should learn use patterns for
classes of users or for