
CHAPTER 3
SOLVING PROBLEMS BY SEARCHING

function BEST-FIRST-SEARCH(problem, f ) returns a solution node or failure

node← NODE(STATE=problem .INITIAL)

frontier ← a priority queue ordered by f , with node as an element

reached ← a lookup table, with one entry with key problem .INITIAL and value node

while not IS-EMPTY(frontier ) do

node← POP(frontier )

if problem .IS-GOAL(node.STATE) then return node

for each child in EXPAND(problem , node) do

s ← child .STATE

if s is not in reached or child .PATH-COST < reached [s ].PATH-COST then

reached [s]← child

add child to frontier

return failure

function EXPAND(problem ,node) yields nodes

s ← node.STATE

for each action in problem .ACTIONS(s) do

s ′ ← problem .RESULT(s ,action)

cost ← node.PATH-COST + problem .ACTION-COST(s ,action , s ′)

yield NODE(STATE=s ′, PARENT=node, ACTION=action , PATH-COST=cost)

Figure 3.7 The best-first search algorithm, and the function for expanding a node. The data

structures used here are described in Section ??. See Appendix B for yield.


