_____ CHAPTER G

SOLVING PROBLEMS BY SEARCHING

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
node <— NODE(STATE=problem.INITIAL)
frontier <— a priority queue ordered by f, with node as an element
reached < a lookup table, with one entry with key problem.INITIAL and value node
while not IS-EMPTY(frontier) do

node <— POP(frontier)
if problem.Is-GOAL(node.STATE) then return node

for each child in EXPAND(problem, node) do

s < child .STATE
if s is not in reached or child PATH-COST < reached[s].PATH-COST then

reached[s] < child
add child to frontier
return failure

function EXPAND(problem, node) yields nodes
s < node.STATE
for each action in problem.ACTIONS(s) do

s' < problem .RESULT(s, action)
cost <+ node.PATH-COST + problem.ACTION-COST(s, action, s’)
yield NODE(STATE=s’, PARENT=node, ACTION=action, PATH-COST=cost)

Figure 3.7 The best-first search algorithm, and the function for expanding a node. The data
structures used here are described in Section ??. See Appendix B for yield.

