Monte Carlo Tree Search

Mark Maloof Department of Computer Science Georgetown University Washington, DC 20057

1 January 1970

Overview

- ▶ MCTS consists of four main steps (Browne et al., 2012)
 - 1. Selection: Starting at the root, select the best action until reaching a node that has not been fully explored (i.e., a node with untried and therefore unevaluated actions).
 - Expansion: Choose an action, and expand the tree by adding a child node.
 - 3. Simulation: From the newly added child, uniformly randomly select actions until reaching a leaf node and receiving a reward (e.g., +1 for winning, -1 for losing).
 - 4. Backpropagation: Starting at the new child node, propagate the reward to the root by adjusting the visit count N(v) and the simulation reward Q(v) of the nodes along the path.

Figure 2, Brown et al. (2012)

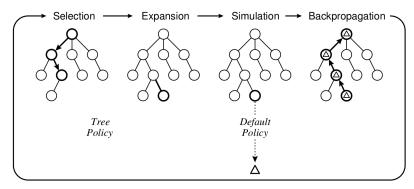


Fig. 2. One iteration of the general MCTS approach.

Upper-confidence Bound for Trees (UCT)

```
    function uctSearch(s₀)
    create a root node v₀ with state s₀
    while within computational budget do
    v₁ ← treePolicy(v₀)
    Δ ← defaultPolicy((s(v₁))
    backup(v₁, Δ)
    end while
    return a(bestChild(v₀, 0))
    end function
```

Tree Policy

```
1: function treePolicy(v)
      while v is non-terminal do
 2:
3:
         if v not fully expanded then
            return expand(v)
 4:
         else
5:
            v \leftarrow \mathsf{bestChild}(v, C_p)
6:
         end if
7:
      end while
8:
9:
      return v
10: end function
```

Expand

- 1: **function** expand(v)
- 2: choose $a \in \text{untried actions from } A(s(v))$
- 3: add a new child v' to v with s(v') = f(s(v), a) and
 - a(v')=a
- 4: return v'
- 5: end function

Best Child

- 1: **function** bestChild(v, c)
- 2: **return** $\underset{v' \in \text{Children}(v)}{\operatorname{return}} \frac{Q(v')}{N(v')} + c\sqrt{\frac{2 \ln N(v)}{N(v')}}$
- 3: end function

Default Policy

```
1: function defaultPolicy(s)
2: while s is non-terminal do
3: choose a \in A(s) uniformly at random
4: s \leftarrow f(s, a)
5: end while
6: return reward for state s
7: end function
```

Backup

```
1: function backup(v, \Delta)

2: while s is not null do

3: N(v) \leftarrow N(v) + 1

4: Q(v) \leftarrow Q(v) + \Delta(v, p) \triangleright p is player

5: v \leftarrow parent of v

6: end while

7: end function
```

Backup Negamax

```
1: function backupNegamax(v, \Delta)

2: while s is not null do

3: N(v) \leftarrow N(v) + 1

4: Q(v) \leftarrow Q(v) + \Delta

5: \Delta \leftarrow -\Delta

6: v \leftarrow parent of v

7: end while

8: end function
```

Figure 3, Brown et al. (2012)

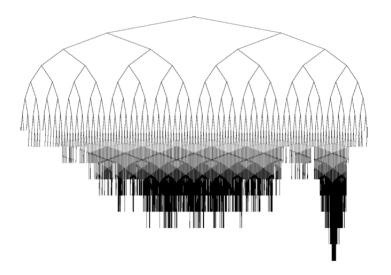


Fig. 3. Asymmetric tree growth [68].

Monte Carlo Tree Search

Mark Maloof Department of Computer Science Georgetown University Washington, DC 20057

1 January 1970

References I

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Fohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search methods. *IEEE Transactions on Computational Intelligence and AI in Games*, 4(1):1–43, 2012. doi: 10.1109/TCIAIG.2012.2186810.