
Monte Carlo Tree Search

Mark Maloof
Department of Computer Science

Georgetown University
Washington, DC 20057

1 January 1970



Overview

I MCTS consists of four main steps (Browne et al., 2012)

1. Selection: Starting at the root, select the best action until
reaching a node that has not been fully explored (i.e., a node
with untried and therefore unevaluated actions).

2. Expansion: Choose an action, and expand the tree by adding a
child node.

3. Simulation: From the newly added child, uniformly randomly
select actions until reaching a leaf node and receiving a reward
(e.g., +1 for winning, −1 for losing).

4. Backpropagation: Starting at the new child node, propagate
the reward to the root by adjusting the visit count N(v) and
the simulation reward Q(v) of the nodes along the path.



Figure 2, Brown et al. (2012)



Upper-confidence Bound for Trees (UCT)

1: function uctSearch(s0)
2: create a root node v0 with state s0
3: while within computational budget do
4: vl ← treePolicy(v0)
5: ∆← defaultPolicy((s(vl))
6: backup(vl ,∆)
7: end while
8: return a(bestChild(v0, 0))
9: end function



Tree Policy

1: function treePolicy(v)
2: while v is non-terminal do
3: if v not fully expanded then
4: return expand(v)
5: else
6: v ← bestChild(v ,Cp)
7: end if
8: end while
9: return v

10: end function



Expand

1: function expand(v)
2: choose a ∈ untried actions from A(s(v))
3: add a new child v ′ to v with s(v ′) = f (s(v), a) and

a(v ′) = a
4: return v ′

5: end function



Best Child

1: function bestChild(v , c)

2: return argmaxv ′∈Children(v)
Q(v ′)
N(v ′) + c

√
2 lnN(v)
N(v ′)

3: end function



Default Policy

1: function defaultPolicy(s)
2: while s is non-terminal do
3: choose a ∈ A(s) uniformly at random
4: s ← f (s, a)
5: end while
6: return reward for state s
7: end function



Backup

1: function backup(v , ∆)
2: while s is not null do
3: N(v)← N(v) + 1
4: Q(v)← Q(v) + ∆(v , p) . p is player
5: v ← parent of v
6: end while
7: end function



Backup Negamax

1: function backupNegamax(v , ∆)
2: while s is not null do
3: N(v)← N(v) + 1
4: Q(v)← Q(v) + ∆
5: ∆← −∆
6: v ← parent of v
7: end while
8: end function



Figure 3, Brown et al. (2012)



Monte Carlo Tree Search

Mark Maloof
Department of Computer Science

Georgetown University
Washington, DC 20057

1 January 1970



References I

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Fohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–43, 2012. doi: 10.1109/TCIAIG.2012.2186810.


	Monte Carlo Tree Search
	Concluding Slide

