
Lisp!

Mark Maloof
Department of Computer Science

Georgetown University
Washington, DC 20057

September 12, 2017



Why Lisp?

I Great for symbolic computation

I Great for functional programming

I Learning Lisp will make you a better programmer in other
languages

I Phillip Greenspun’s Tenth Rule of Programming: “Any
sufficiently complicated C or Fortran program contains an
ad hoc, informally-specified bug-ridden slow implementation
of half of Common Lisp.”



Why Lisp?

I Great for symbolic computation

I Great for functional programming

I Learning Lisp will make you a better programmer in other
languages

I Phillip Greenspun’s Tenth Rule of Programming: “Any
sufficiently complicated C or Fortran program contains an
ad hoc, informally-specified bug-ridden slow implementation
of half of Common Lisp.”



Symbolic Computation

I Differentiation:
I General form: ad ⇒ dad−1

I Application: n2 ⇒ 2n

I DeMorgan’s Law:
I General form: ¬(φ ∧ ψ)⇒ ¬φ ∨ ¬ψ
I Application: ¬(¬p ∧ q → r)⇒ ¬¬p ∨ ¬(q → r)



Functional Programming Languages

I Everything is a function that returns a value, even for loops

I First-class and higher-order functions

I Purely functional languages have immutable data structures,
which eliminates side effects

I No side effects means computation can be distributed

I Pure functional: Haskell

I “Impure” functional: Common Lisp, Clojure

I Languages have different degrees of purity.



What is Lisp?

I Specified by John McCarthy in 1958

I LISP ≡ LISt Processing

I Functional programming language
I Great for symbolic computing; important for AI tasks of the

day
I Predominant languages of the day were Fortran and COBOL

I Interpreted, but it can be compiled

I Great for rapid prototyping



A Lineage of Lisp

Fortran

Logic

Lisp

Prolog

Common Lisp

Scheme

CLOS



Languages for Symbolic Computing

Wolfram Language

Prolog

Haskel

Functional Programming Languages

Languages for Symbolic Computing

Racket

Scheme

Pure

Common Lisp

Clojure

Erlang

OCaml

ML



Why Aren’t We Learning Clojure?

I Clojure is a dialict of Lisp that runs on the Java Virtual
Machine

I Immutable data structures

I Optimized for concurrency via map-reduce

I There are oddities (e.g., doseq returns nil)

I Clojure is still developing

I My advice: Go learn it after this class



Things to get your Head Around

I Most everything in Lisp is a list (a linked list)

I OK, no big deal; I know about linked lists

I Lists can store elements of different types
I OK, that’s cool; I know about generic programming and class

hierarchies

I Most everything is a function that returns a value
I OK, that’s fine; so, no void types. I got it.

I Functions, function calls, and control structures are also linked
lists

I Umm, but, aren’t linked lists for storing and manipulating
data?

I Consequently, there is no distinction between code and data
I OK, now you lost me

I And then there are the parentheses...



Things to get your Head Around

I Most everything in Lisp is a list (a linked list)
I OK, no big deal; I know about linked lists

I Lists can store elements of different types
I OK, that’s cool; I know about generic programming and class

hierarchies

I Most everything is a function that returns a value
I OK, that’s fine; so, no void types. I got it.

I Functions, function calls, and control structures are also linked
lists

I Umm, but, aren’t linked lists for storing and manipulating
data?

I Consequently, there is no distinction between code and data
I OK, now you lost me

I And then there are the parentheses...



Things to get your Head Around

I Most everything in Lisp is a list (a linked list)
I OK, no big deal; I know about linked lists

I Lists can store elements of different types

I OK, that’s cool; I know about generic programming and class
hierarchies

I Most everything is a function that returns a value
I OK, that’s fine; so, no void types. I got it.

I Functions, function calls, and control structures are also linked
lists

I Umm, but, aren’t linked lists for storing and manipulating
data?

I Consequently, there is no distinction between code and data
I OK, now you lost me

I And then there are the parentheses...



Things to get your Head Around

I Most everything in Lisp is a list (a linked list)
I OK, no big deal; I know about linked lists

I Lists can store elements of different types
I OK, that’s cool; I know about generic programming and class

hierarchies

I Most everything is a function that returns a value
I OK, that’s fine; so, no void types. I got it.

I Functions, function calls, and control structures are also linked
lists

I Umm, but, aren’t linked lists for storing and manipulating
data?

I Consequently, there is no distinction between code and data
I OK, now you lost me

I And then there are the parentheses...



Things to get your Head Around

I Most everything in Lisp is a list (a linked list)
I OK, no big deal; I know about linked lists

I Lists can store elements of different types
I OK, that’s cool; I know about generic programming and class

hierarchies

I Most everything is a function that returns a value

I OK, that’s fine; so, no void types. I got it.

I Functions, function calls, and control structures are also linked
lists

I Umm, but, aren’t linked lists for storing and manipulating
data?

I Consequently, there is no distinction between code and data
I OK, now you lost me

I And then there are the parentheses...



Things to get your Head Around

I Most everything in Lisp is a list (a linked list)
I OK, no big deal; I know about linked lists

I Lists can store elements of different types
I OK, that’s cool; I know about generic programming and class

hierarchies

I Most everything is a function that returns a value
I OK, that’s fine; so, no void types. I got it.

I Functions, function calls, and control structures are also linked
lists

I Umm, but, aren’t linked lists for storing and manipulating
data?

I Consequently, there is no distinction between code and data
I OK, now you lost me

I And then there are the parentheses...



Things to get your Head Around

I Most everything in Lisp is a list (a linked list)
I OK, no big deal; I know about linked lists

I Lists can store elements of different types
I OK, that’s cool; I know about generic programming and class

hierarchies

I Most everything is a function that returns a value
I OK, that’s fine; so, no void types. I got it.

I Functions, function calls, and control structures are also linked
lists

I Umm, but, aren’t linked lists for storing and manipulating
data?

I Consequently, there is no distinction between code and data
I OK, now you lost me

I And then there are the parentheses...



Things to get your Head Around

I Most everything in Lisp is a list (a linked list)
I OK, no big deal; I know about linked lists

I Lists can store elements of different types
I OK, that’s cool; I know about generic programming and class

hierarchies

I Most everything is a function that returns a value
I OK, that’s fine; so, no void types. I got it.

I Functions, function calls, and control structures are also linked
lists

I Umm, but, aren’t linked lists for storing and manipulating
data?

I Consequently, there is no distinction between code and data
I OK, now you lost me

I And then there are the parentheses...



Things to get your Head Around

I Most everything in Lisp is a list (a linked list)
I OK, no big deal; I know about linked lists

I Lists can store elements of different types
I OK, that’s cool; I know about generic programming and class

hierarchies

I Most everything is a function that returns a value
I OK, that’s fine; so, no void types. I got it.

I Functions, function calls, and control structures are also linked
lists

I Umm, but, aren’t linked lists for storing and manipulating
data?

I Consequently, there is no distinction between code and data

I OK, now you lost me

I And then there are the parentheses...



Things to get your Head Around

I Most everything in Lisp is a list (a linked list)
I OK, no big deal; I know about linked lists

I Lists can store elements of different types
I OK, that’s cool; I know about generic programming and class

hierarchies

I Most everything is a function that returns a value
I OK, that’s fine; so, no void types. I got it.

I Functions, function calls, and control structures are also linked
lists

I Umm, but, aren’t linked lists for storing and manipulating
data?

I Consequently, there is no distinction between code and data
I OK, now you lost me

I And then there are the parentheses...



Things to get your Head Around

I Most everything in Lisp is a list (a linked list)
I OK, no big deal; I know about linked lists

I Lists can store elements of different types
I OK, that’s cool; I know about generic programming and class

hierarchies

I Most everything is a function that returns a value
I OK, that’s fine; so, no void types. I got it.

I Functions, function calls, and control structures are also linked
lists

I Umm, but, aren’t linked lists for storing and manipulating
data?

I Consequently, there is no distinction between code and data
I OK, now you lost me

I And then there are the parentheses...



Lisp Data Types

list atom

symbol Number

complex real

rational

expression

float
ratiointeger

bignumfixnum

bitshort−float

single−float

double−float

long−float



Lists and Function Calls

I We form lists and function calls using parentheses
I Prefix notation:

I The first element of a list is the operator or function name

I Use a single quote to prevent evaluation
I Empty list: ()
I List: ’(sqrt 4)
I Function Call: (sqrt 4)
I If-statement: (if pig ’cow ’dog)
I List: ’(if pig ’cow ’dog)



Linked Lists in Lisp

’(a b)

ba

nil



Linked Lists in Lisp

’(a (b c))

a

nil

nil

b c



Numeric Operators and Functions

I +

I -

I *

I sqrt

I 1+

I 1-

I min

I max

I expt

I log

I abs

I sin, cos, tan

I asin, acos, atan

I floor, ceiling, round, truncate



Output Functions

I (format 〈file-stream〉 〈control-string〉 〈variable-list〉 )
I Example: (format t "This is a test, ~a~%", ’bob)

I Output: This is a test, BOB

I Basic control codes:
I ~a — any lisp object
I ~s — s-expression
I ~d — decimal
I ~f — float
I ~% — newline character

I Note that in sbcl ouptut is buffered by default.

I (flush-output).



prog1 Blocks

I Syntax:

(prog1

〈form1〉
〈form2〉
. . .
〈formn〉)

I Semantics:
I Evaluates forms 1–n
I prog1 evaluates to the valuation of 〈form1〉



progn Blocks

I Syntax:

(progn

〈form1〉
〈form2〉
. . .
〈formn〉)

I Semantics:
I Evaluates forms 1–n
I progn evaluates to the valuation of 〈formn〉



Defining Functions: defun

I Syntax:

(defun 〈function-name〉 (〈parameter-list〉)
〈form〉)

I Semantics:
I Defines a function with the name 〈function-name〉 with the

parameters 〈parameter-list〉 and the body 〈form〉.
I Evaluates to the function 〈function-name〉



Binding Local Variables: let and let*

I Syntax:

(let[*]((〈variable1〉 〈value1〉)
(〈variable2〉 〈value2〉)
. . .
(〈variablen〉 〈valuen〉))

〈form〉)

I Semantics:
I Defines locally scoped variables 1–n
I Binds or assigns values 1–n to variables 1–n, respectively
I Evaluates 〈form〉
I let evaluates to the valuation of 〈form〉
I let* forces the sequential assignment of variables 1–n



Branching: if-then-else, when, unless

I Syntax:

(if 〈test〉
〈then-form〉
[〈else-form〉])

I Semantics:
I Evaluates 〈test〉
I If 〈test〉 is not nil, evaluates 〈then-form〉
I Otherwise, if 〈else-form〉 is not nil, evaluates 〈else-form〉
I if evaluates to the form evaluated

I Also:
I (when 〈test〉 〈form〉) ≡ (if 〈test〉 〈then-form〉)
I (unless 〈test〉 〈form〉) ≡ (if 〈test〉 nil 〈else-form〉)
I (unless (not 〈test〉) 〈form〉) ≡ (if (not 〈test〉)
〈then-form〉)



Relational and Equality Operators and Functions

I equalp — same expression?

I equal — same expression?

I eql — same symbol or number?

I eq — same symbol?

I = — same number?

I atom — is it an atom?

I numberp — is it a number?

I consp — is it a cons?

I listp — is it a list?

I symbolp — is it a symbol?

I boundp — is it a bound symbol?

I Also member, null, zerop, plusp, minusp, evenp, oddp, <,
<=, >=, and >.



Nested if-then-else Statements: cond

I Syntax:

(cond(〈test1〉 〈consequent1〉)
(〈test2〉 〈consequent2〉)
. . .
(〈testn〉 〈consequentn〉))

I Semantics:
I Evaluates tests 1–n
I Evaluates the consequent of the first test that is not nil
I cond evaluates to the valuation of the consequent or to nil if

no test is not nil
I Note that the literal t always evaluates to true



Looping through Lists: dolist

I Syntax:

(dolist (〈variable〉 〈list-form〉 [〈result-form〉])
〈form〉)

I Semantics:
I Iterates once for each element in 〈list-form〉
I Assigns the element to 〈variable〉
I Evaluates 〈form〉
I Upon loop termination, evaluates 〈result-form〉
I dolist evaluates to the valuation of 〈result-form〉



Count-controlled Loops: dotimes

I Syntax:

(dotimes (〈variable〉 〈upper-bound-form〉 [〈result-form〉])
〈form〉)

I Semantics:
I Iterates over [0, 〈upper-bound-form〉)
I Assigns the counter value to 〈variable〉
I Evaluates 〈form〉
I Upon loop termination, evaluates 〈result-form〉
I dotimes evaluates to the valuation of 〈result-form〉



General Looping Construct: do and do*

I Syntax:

(do[*]((〈var1〉 〈init1〉 〈update1〉)
(〈var2〉 〈init2〉 〈update2〉)
. . .
(〈varn〉 〈initn〉 〈updaten〉))
(〈termination-test〉 〈result-form〉)

〈form〉)

I Semantics:
I Defines locally scoped variables 〈vari 〉
I Initializes them to 〈initi 〉
I Loops until 〈termination-test〉 is not nil by

I updating 〈vari 〉 by evaluating 〈updatei 〉
I evaluating 〈form〉

I Upon loop termination, evaluates 〈result-form〉
I do evaluates to the valuation of 〈result-form〉
I do* forces the sequential assignment of 〈vari 〉



Arrays

I Creation
I (setf single (make-array ’(4)))
I (setf double (make-array ’(2 4)))
I

(setf double (make-array ’(2 4) :initial-element nil)) ; sbcl

I Access
I (format t "~a~%" (aref single 1))
I (format t "~a~%" (aref double 0 0))

I Assignment
I (setf (aref single 1) ’hoya)
I (setf (aref double 0 0) ’saxa)



Binary Trees

A

B C

D E

F G

(A (B nil nil)

(C (D nil nil)

(E (F nil nil)

(G nil nil))))

(A (B)

(C (D)

(E (F)

(G))))



Graphs

Fortran

Logic

Lisp

Prolog

Common Lisp

Scheme

CLOS

(setf (get ’fortran ’influenced) ’(lisp))

(setf (get ’logic ’influenced) ’(lisp prolog))

(setf (get ’lisp ’influenced) ’(scheme common-lisp))

(setf (get ’common-lisp ’influenced) ’(clos))



Things We Won’t Cover

I Dotted Lists

I Types

I Strings

I Serious File I/O

I Packages

I Hash Tables

I Structures (aka records)

I Exceptions: throw and catch

I Programmer-defined macros

I CLOS: classes, properties, methods

I Many, many functions, forms, and macros


	Title Slide
	Why Lisp?
	Symbolic Computation
	Functional Programming Languages
	What is Lisp?
	A Lineage of Lisp
	Languages for Symbolic Computing
	Why Aren't We Learning Clojure?
	Things to get your Head Around
	Lisp Data Types
	Lists and Function Calls
	Linked Lists in Lisp
	Numeric Operators and Functions
	Output
	prog1 Block
	progn Block
	Defining Functions: defun
	Binding Local Variables: let and let*
	Branching: if-then-else, when, unless
	Relational and Equality Operators and Functions
	Nested if-then-else Statements: cond
	Looping through Lists: dolist
	Count-controlled Loops: dotimes
	General Looping Construct: do and do*
	Arrays
	Binary Trees
	Graphs
	Things We Won't Cover

