Homework 1

COSC-2010
Due: F 9/29 @ 11:59 PM EST

You must upload a PDF document to Canvas. Feel free to use pencil and paper to do this homework. If you do, please do not submit a PDF document containing high-resolution digital photographs. Use a PDF scanner such as GeniusScan to produce black-and-white scans for a PDF document.

1. Write the algorithm enqueue that inserts an item at the back of a queue. Use an array as the queue's internal representation. Derive $f(n)$ and $O(g(n))$.
2. Write the algorithm dequeue that removes the item at the front of a queue. Use an array as the queue's internal representation. Derive $f(n)$ and $O(g(n))$.
3. Write the algorithm remove that removes and returns the i th item in an unsorted list. Use an array as the list's internal representation. Assume that the i th element in the list is stored in the i th component of the array. What is the worst case? Derive $f(n)$ and $O(g(n))$.
4. Write the algorithm remove that removes and returns the i th item in an sorted list. Use an array as the list's internal representation. Assume that the i th element in the list is stored in the i th component of the array. What is the worst case? Derive $f(n)$ and $O(g(n))$.
5. Write the iterative algorithm remove that removes and returns a specified object in a sorted list. Use an array as the list's internal representation. What is the worst case? Derive $f(n)$ and $O(g(n))$.
6. Consider bubble-sort (Cormen et al., 2009, p. 40):
```
procedure Bubble-Sort ( }A\mathrm{ )
        for }i=1\mathrm{ to A.length - 1 do
            for }j=A.length downto i+1 do
                if }A[j]<A[j-1] then
                    exchange }A[j]\mathrm{ with }A[j-1
            end if
        end for
        end for
end procedure
```

(a) What is the best case? Explain why.
(b) What is the worst case? Explain why.
(c) Derive expressions for the number of primitive operations for each step of BUBBLE-SORT.
(d) Derive $f(n)$ for the worst case.
(e) Derive $\Theta(g(n)), O(g(n))$, and $\Omega(g(n))$. State the constants for these running times.
(f) Compute $f(n), c^{\prime} g(n)$, and $c^{\prime \prime} g(n)$ for $1 \leq n \leq 5$.
(g) Plot $f(n), c^{\prime} g(n)$, and $c^{\prime \prime} g(n)$.

References

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, 3rd edition, 2009.

